Skip to main content
Log in

Acute Effects of Warm-Up, Exercise and Recovery-Related Strategies on Assessments of Soccer Kicking Performance: A Critical and Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

A number of reviews have collated information on the impact of warming-up, physical exertion and recovery strategies on physical, subjective and physiological markers in soccer players yet none have solely analyzed their potential effects on components of kicking performance.

Objective

To systematically analyse the influence of warm-up, exercise and/or recovery-related strategies on kicking performance in male soccer players and provide a critical appraisal on research paradigm related to kicking testing constraints and data acquisition methods.

Methods

A systematic literature search was performed (until July 2020) in PubMed, Web of Science, SPORTDiscus, Scopus and ProQuest. Studies in male soccer populations, which included the effects of warm-up routines, physical exercise and/or recovery-related interventions, reported on comparisons pre–post or between experimental conditions and that computed at least one measure of kicking kinematics and/or performance were considered. Methodological quality and risk of bias were determined for the included studies. Constraints related to kicking testing and data acquisition methods were also summarized and discussed.

Results

Altogether, 52 studies were included. Of these, 10 examined the respective effects of a warm-up, 34 physical exercise, and 21 recovery-related strategies. The results of eight studies showed that lower limb kinematics, kicking accuracy or ball velocity were improved following warm-ups involving dynamic but not static stretching. Declines in ball velocity occurred notably following intermittent endurance or graded until exhaustion exercise (three studies in both cases) without inclusion of any ball skills. In contrast, conflicting evidence in five studies was observed regarding ball velocity following intermittent endurance exercise interspersed with execution of ball skills. Kicking accuracy was less frequently affected by physical exercise (remained stable across 14 of 19 studies). One investigation indicated that consumption of a carbohydrate beverage pre- and mid-exercise demonstrated benefits in counteracting the potentially deleterious consequences of exercise on ball velocity, while four studies reported conflicting results regarding kicking accuracy. Most evidence synthesized for the interventions demonstrated moderate level (77%) and unclear-to-high risk of bias in at least one item evaluated (98%). The main limitations identified across studies were kicks generally performed over short distances (50%), in the absence of opposition (96%), and following experimental instructions which did not concomitantly consider velocity and accuracy (62%). Also, notational-based metrics were predominantly used to obtain accuracy outcomes (54%).

Conclusions

The results from this review can help inform future research and practical interventions in an attempt to measure and optimise soccer kicking performance. However, given the risk of bias and a relative lack of strong evidence, caution is required when applying some of the current findings in practice.

PROSPERO ID: CRD42018096942.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lees A, Asai T, Andersen TB, Nunome H, Sterzing T. The biomechanics of kicking in soccer: a review. J Sports Sci. 2010;28(8):805–17. https://doi.org/10.1080/02640414.2010.481305.

    Article  CAS  PubMed  Google Scholar 

  2. Castellano J, Casamichana D, Lago C. The use of match statistics that discriminate between successful and unsuccessful soccer teams. J Hum Kinet. 2012;31:139–47. https://doi.org/10.2478/v10078-012-0015-7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu H, Hopkins WG, Gómez M-A. Modelling relationships between match events and match outcome in elite football. Eur J Sport Sci. 2016;16(5):516–25. https://doi.org/10.1080/17461391.2015.1042527.

    Article  PubMed  Google Scholar 

  4. Yi Q, Ruano MÁG, Liu H, Sampaio J. Variation of match statistics and football teams’ match performance in the group stage of the EUFA Champions league from 2010 to 2017. Kinesiology. 2019;51(2):170–81. https://doi.org/10.26582/k.51.2.4.

    Article  Google Scholar 

  5. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665–74. https://doi.org/10.1080/02640410500482529.

    Article  PubMed  Google Scholar 

  6. Aslan A, Acikada C, Güvenç A, Gören H, Hazir T, Ozkara A. Metabolic demands of match performance in young soccer players. J Sports Sci Med. 2012;11(1):170–9.

    PubMed  PubMed Central  Google Scholar 

  7. Carling C, Le Gall F, Dupont G. Analysis of repeated high-intensity running performance in professional soccer. J Sports Sci. 2012;30(4):325–36. https://doi.org/10.1080/02640414.2011.652655.

    Article  PubMed  Google Scholar 

  8. Serpiello FR, Duthie GM, Moran C, Kovacevic D, Selimi E, Varley MC. The occurrence of repeated high acceleration ability (RHAA) in elite youth football. Int J Sports Med. 2018;39(7):502–7. https://doi.org/10.1055/a-0608-4738.

    Article  PubMed  Google Scholar 

  9. Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):2161–70. https://doi.org/10.1249/MSS.0b013e31821e9c5c.

    Article  PubMed  Google Scholar 

  10. Brocherie F, Millet GP, Girard O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur J Appl Physiol. 2015;115(5):891–903. https://doi.org/10.1007/s00421-014-3070-z.

    Article  PubMed  Google Scholar 

  11. Russell M, Kingsley M. Influence of exercise on skill proficiency in soccer. Sports Med. 2011;41(7):523–39. https://doi.org/10.2165/11589130-000000000-00000.

    Article  PubMed  Google Scholar 

  12. Silva JR, Rumpf MC, Hertzog M, Castagna C, Farooq A, Girard O, et al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48(3):539–83. https://doi.org/10.1007/s40279-017-0798-8.

    Article  CAS  PubMed  Google Scholar 

  13. Torreblanca-Martinez V, Otero-Saborido FM, Gonzalez-Jurado JA. Effects of muscle fatigue induced by countermovement jumps on efficacy parameters of instep ball kicking in soccer. J Appl Biomech. 2017;33(2):105–11. https://doi.org/10.1123/jab.2016-0040.

    Article  PubMed  Google Scholar 

  14. Stevenson EJ, Watson A, Theis S, Holz A, Harper LD, Russell M. A comparison of isomaltulose versus maltodextrin ingestion during soccer-specific exercise. Eur J Appl Physiol. 2017;117(11):2321–33. https://doi.org/10.1007/s00421-017-3719-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferraz R, van den Tillaar R, Marques MC. The effect of fatigue on kicking velocity in soccer players. J Hum Kinet. 2012;35:97–107. https://doi.org/10.2478/v10078-012-0083-8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Russell M, Benton D, Kingsley M. The effects of fatigue on soccer skills performed during a soccer match simulation. Int J Sports Physiol Perform. 2011;6(2):221–33. https://doi.org/10.1123/ijspp.6.2.221.

    Article  PubMed  Google Scholar 

  17. Ali A, Williams C, Nicholas CW, Foskett A. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc. 2007;39(11):1969–76. https://doi.org/10.1249/mss.0b013e31814fb3e3.

    Article  CAS  PubMed  Google Scholar 

  18. Currell K, Conway S, Jeukendrup AE. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int J Sport Nutr Exerc Metab. 2009;19(1):34–46. https://doi.org/10.1123/ijsnem.19.1.34.

    Article  PubMed  Google Scholar 

  19. Maly T, Sugimoto D, Izovska J, Zahalka F, Mala L. Effect of muscular strength, asymmetries and fatigue on kicking performance in soccer players. Int J Sports Med. 2018;39(4):297–303. https://doi.org/10.1055/s-0043-123648.

    Article  PubMed  Google Scholar 

  20. Gharbi A, Masmoudi L, Chtourou H, Chaari N, Tabka Z. Effects of recovery mode on physiological and psychological responses and performance of specific skills in young soccer players. J Sports Med Phys Fit. 2017;57(12):1590–6. https://doi.org/10.23736/S0022-4707.16.06598-1.

    Article  Google Scholar 

  21. Sánchez-Sánchez J, García-Unanue J, Jiménez-Reyes P, Gallardo A, Burillo P, Felipe JL, et al. Influence of the mechanical properties of third-generation artificial turf systems on soccer players’ physiological and physical performance and their perceptions. PLoS ONE. 2014;9(10):e111368. https://doi.org/10.1371/journal.pone.0111368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018;18(6):806–19. https://doi.org/10.1080/17461391.2018.1463397.

    Article  PubMed  Google Scholar 

  23. Apriantono T, Nunome H, Ikegami Y, Sano S. The effect of muscle fatigue on instep kicking kinetics and kinematics in association football. J Sports Sci. 2006;24(9):951–60. https://doi.org/10.1080/02640410500386050.

    Article  PubMed  Google Scholar 

  24. Carling C, Dupont G. Are declines in physical performance associated with a reduction in skill-related performance during professional soccer match-play? J Sports Sci. 2011;29(1):63–71. https://doi.org/10.1080/02640414.2010.521945.

    Article  PubMed  Google Scholar 

  25. Serpiello FR, Cox A, Oppici L, Hopkins WG, Varley MC. The Loughborough Soccer Passing Test has impractical criterion validity in elite youth football. Sci Med Football. 2017;1(1):60–4. https://doi.org/10.1080/02640414.2016.1254810.

    Article  Google Scholar 

  26. Ré AHN, Cattuzzo TM, Santos FMC, Monteiro CBM. Anthropometric characteristics, field test scores and match-related technical performance in youth indoor soccer players with different playing status. Int J Perform Anal Sport. 2014;14(2):482–92. https://doi.org/10.1080/24748668.2014.11868737.

    Article  Google Scholar 

  27. van den Tillaar R, Fuglstad P. Effect of instructions prioritizing speed or accuracy on kinematics and kicking performance in football players. J Mot Behav. 2017;49(4):414–21. https://doi.org/10.1080/00222895.2016.1219311.

    Article  PubMed  Google Scholar 

  28. van den Tillaar R, Ulvik A. Influence of instruction on velocity and accuracy in soccer kicking of experienced soccer players. J Mot Behav. 2014;46(5):287–91. https://doi.org/10.1080/00222895.2014.898609.

    Article  PubMed  Google Scholar 

  29. Navarro M, van der Kamp J, Ranvaud R, Savelsbergh GJ. The mere presence of a goalkeeper affects the accuracy of penalty kicks. J Sports Sci. 2013;31(9):921–9. https://doi.org/10.1080/02640414.2012.762602.

    Article  PubMed  Google Scholar 

  30. Orth D, Davids K, Araujo D, Renshaw I, Passos P. Effects of a defender on run-up velocity and ball speed when crossing a football. Eur J Sport Sci. 2014;14(Suppl 1):S316–23. https://doi.org/10.1080/17461391.2012.696712.

    Article  PubMed  Google Scholar 

  31. Egan CD, Verheul MH, Savelsbergh GJ. Effects of experience on the coordination of internally and externally timed soccer kicks. J Mot Behav. 2007;39(5):423–32. https://doi.org/10.3200/jmbr.39.5.423-432.

    Article  PubMed  Google Scholar 

  32. Nunome H, Lake M, Georgakis A, Stergioulas LK. Impact phase kinematics of instep kicking in soccer. J Sports Sci. 2006;24(1):11–22. https://doi.org/10.1080/02640410400021450.

    Article  PubMed  Google Scholar 

  33. Kellis E, Katis A. Biomechanical characteristics and determinants of instep soccer kick. J Sports Sci Med. 2007;6(2):154–65.

    PubMed  PubMed Central  Google Scholar 

  34. Shan G, Zhang X. From 2D leg kinematics to 3D full-body biomechanics-the past, present and future of scientific analysis of maximal instep kick in soccer. Sports Med Arthrosc Rehabil Ther Technol. 2011;3(1):23. https://doi.org/10.1186/1758-2555-3-23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ali A. Measuring soccer skill performance: a review. Scand J Med Sci Sports. 2011;21(2):170–83. https://doi.org/10.1111/j.1600-0838.2010.01256.x.

    Article  CAS  PubMed  Google Scholar 

  36. Young WB, Rath DA. Enhancing foot velocity in football kicking: the role of strength training. J Strength Cond Res. 2011;25(2):561–6. https://doi.org/10.1519/JSC.0b013e3181bf42eb.

    Article  PubMed  Google Scholar 

  37. Amiri-Khorasani M, Ferdinands RED. The acute effect of stretching on the kinematics of instep kicking in soccer. Sports Technol. 2014;7(1–2):69–78. https://doi.org/10.1080/19346182.2014.893348.

    Article  Google Scholar 

  38. Beliard S, Cassirame J, Ennequin G. The effects of a calf pump device on second half performance of a simulated soccer match in competitive youth players. J Sports Sci. 2019;37(6):708–16. https://doi.org/10.1080/02640414.2018.1522947.

    Article  CAS  PubMed  Google Scholar 

  39. Russell M, Benton D, Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J Sci Med Sport. 2012;15(4):348–54. https://doi.org/10.1016/j.jsams.2011.12.006.

    Article  PubMed  Google Scholar 

  40. Hammami A, Zois J, Slimani M, Russel M, Bouhlel E. The efficacy and characteristics of warm-up and re-warm-up practices in soccer players: a systematic review. J Sports Med Phys Fit. 2018;58(1–2):135–49. https://doi.org/10.23736/s0022-4707.16.06806-7.

    Article  Google Scholar 

  41. Silva LM, Neiva HP, Marques MC, Izquierdo M, Marinho DA. Effects of warm-up, post-warm-up, and re-warm-up strategies on explosive efforts in team sports: a systematic review. Sports Med. 2018;48(10):2285–99. https://doi.org/10.1007/s40279-018-0958-5.

    Article  PubMed  Google Scholar 

  42. Bizzini M, Impellizzeri FM, Dvorak J, Bortolan L, Schena F, Modena R, et al. Physiological and performance responses to the “FIFA 11+” (part 1): is it an appropriate warm-up? J Sports Sci. 2013;31(13):1481–90. https://doi.org/10.1080/02640414.2013.802922.

    Article  PubMed  Google Scholar 

  43. Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part ii-recovery strategies. Sports Med. 2013;43(1):9–22. https://doi.org/10.1007/s40279-012-0002-0.

    Article  PubMed  Google Scholar 

  44. Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):997–1015. https://doi.org/10.2165/11635270-000000000-00000.

    Article  PubMed  Google Scholar 

  45. Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403. https://doi.org/10.3389/fphys.2018.00403.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Russell M, West DJ, Harper LD, Cook CJ, Kilduff LP. Half-time strategies to enhance second-half performance in team-sports players: a review and recommendations. Sports Med. 2015;45(3):353–64. https://doi.org/10.1007/s40279-014-0297-0.

    Article  PubMed  Google Scholar 

  47. Amiri-Khorasani M, Kellis E. Static vs. dynamic acute stretching effect on quadriceps muscle activity during soccer instep kicking. J Hum Kinet. 2013;39:37–47. https://doi.org/10.2478/hukin-2013-0066.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Amiri-Khorasani M, Mohammadkazemi R, Sarafrazi S, Riyahi-Malayeri S, Sotoodeh V. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching. J Strength Cond Res. 2012;26(11):3010–7. https://doi.org/10.1519/jsc.0b013e3182443442.

    Article  PubMed  Google Scholar 

  49. Amiri-Khorasani M. Kinematics analysis: the acute effect of different stretching methods on dynamic range of motion of lower extremity joints during soccer instep kicking. Int J Perform Anal Sport. 2013;13(1):190–9. https://doi.org/10.1080/24748668.2013.11868641.

    Article  Google Scholar 

  50. Gelen E. Acute effects of different warm-up methods on sprint, slalom dribbling, and penalty kick performance in soccer players. J Strength Cond Res. 2010;24(4):950–6. https://doi.org/10.1519/JSC.0b013e3181cb703f.

    Article  PubMed  Google Scholar 

  51. Frikha M, Derbel MS, Chaâri N, Gharbi A, Chamari K. Acute effect of stretching modalities on global coordination and kicking accuracy in 12–13 year-old soccer players. Hum Mov Sci. 2017;54:63–72. https://doi.org/10.1016/j.humov.2017.03.008.

    Article  PubMed  Google Scholar 

  52. Towlson C, Midgley AW, Lovell R. Warm-up strategies of professional soccer players: practitioners’ perspectives. J Sports Sci. 2013;31(13):1393–401. https://doi.org/10.1080/02640414.2013.792946.

    Article  PubMed  Google Scholar 

  53. Harper LD, Fothergill M, West DJ, Stevenson E, Russell M. Practitioners’ perceptions of the soccer extra-time period: implications for future research. PLoS ONE. 2016;11(7):e0157687. https://doi.org/10.1371/journal.pone.0157687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014;14(1):579. https://doi.org/10.1186/s12913-014-0579-0.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harrison PW, James LP, McGuigan MR, Jenkins DG, Kelly VG. Resistance priming to enhance neuromuscular performance in sport: evidence, potential mechanisms and directions for future research. Sports Med. 2019;49(10):1499–514. https://doi.org/10.1007/s40279-019-01136-3.

    Article  PubMed  Google Scholar 

  57. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions, version 6.0 [updated July 2019]. The Cochrane Collaboration; 2019. http://www.training.cochrane.org/handbook. Accessed 5 Dec 2019.

  58. Review Manager (RevMan) [Computer program]. Version 5.3 ed. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.

  59. Palucci Vieira LH, Carling C, Barbieri FA, Aquino R, Santiago PRP. Match running performance in young soccer players: a systematic review. Sports Med. 2019;49(2):289–318. https://doi.org/10.1007/s40279-018-01048-8.

    Article  PubMed  Google Scholar 

  60. Armijo-Olivo S, da Costa BR, Cummings GG, Ha C, Fuentes J, Saltaji H, et al. PEDro or Cochrane to assess the quality of clinical trials? A meta-epidemiological study. PLoS ONE. 2015;10(7):e0132634. https://doi.org/10.1371/journal.pone.0132634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sarmento H, Clemente FM, Araujo D, Davids K, McRobert A, Figueiredo A. What performance analysts need to know about research trends in Association Football (2012–2016): a systematic review. Sports Med. 2018;48(4):799–836. https://doi.org/10.1007/s40279-017-0836-6.

    Article  PubMed  Google Scholar 

  62. Vieira LHP, Cunha SA, Moraes R, Barbieri FA, Aquino R, Oliveira LP, et al. Kicking performance in young U9 to U20 soccer players: assessment of velocity and accuracy simultaneously. Res Q Exerc Sport. 2018;89(2):210–20. https://doi.org/10.1080/02701367.2018.1439569.

    Article  PubMed  Google Scholar 

  63. Berjan Bacvarevic B, Pazin N, Bozic PR, Mirkov D, Kukolj M, Jaric S. Evaluation of a composite test of kicking performance. J Strength Cond Res. 2012;26(7):1945–52. https://doi.org/10.1519/JSC.0b013e318237e79d.

    Article  PubMed  Google Scholar 

  64. Katis A, Amiridis I, Kellis E, Lees A. Recovery of powerful kick biomechanics after intense running fatigue in male and female soccer players. Asian J Sports Med. 2014;5(4):e24013. https://doi.org/10.5812/asjsm.24013.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Katis A, Kellis E. Three-dimensional kinematics and ground reaction forces during the instep and outstep soccer kicks in pubertal players. J Sports Sci. 2010;28(11):1233–41. https://doi.org/10.1080/02640414.2010.504781.

    Article  PubMed  Google Scholar 

  66. Levanon J, Dapena J. Comparison of the kinematics of the full-instep and pass kicks in soccer. Med Sci Sports Exerc. 1998;30(6):917–27. https://doi.org/10.1097/00005768-199806000-00022.

    Article  CAS  PubMed  Google Scholar 

  67. Barbieri FA, Gobbi LT, Santiago PR, Cunha SA. Performance comparisons of the kicking of stationary and rolling balls in a futsal context. Sports Biomech. 2010;9(1):1–15. https://doi.org/10.1080/14763141003690211.

    Article  PubMed  Google Scholar 

  68. Barbieri FA, Gobbi LT, Santiago PR, Cunha SA. Dominant-non-dominant asymmetry of kicking a stationary and rolling ball in a futsal context. J Sports Sci. 2015;33(13):1411–9. https://doi.org/10.1080/02640414.2014.990490.

    Article  PubMed  Google Scholar 

  69. Neilson P, Jones R. Dynamic soccer ball performance measurement. In: Reilly T, Korkusuz F, editors. Science and football V. London/New York: Routledge; 2005.

  70. Peacock J, Garofolini A, Oppici L, Serpiello F, Ball K. Differences in kicking dynamics of futsal and soccer ball. ISBS Proc Arch. 2017;35(1):48.

    Google Scholar 

  71. Katis A, Kellis E, Lees A. Age and gender differences in kinematics of powerful instep kicks in soccer. Sports Biomech. 2015;14(3):287–99. https://doi.org/10.1080/14763141.2015.1056221.

    Article  PubMed  Google Scholar 

  72. Kellis E, Katis A, Gissis I. Knee biomechanics of the support leg in soccer kicks from three angles of approach. Med Sci Sports Exerc. 2004;36(6):1017–28. https://doi.org/10.1249/01.mss.0000128147.01979.31.

    Article  PubMed  Google Scholar 

  73. Radman I, Wessner B, Bachl N, Ruzic L, Hackl M, Baca A, et al. Reliability and discriminative ability of a new method for soccer kicking evaluation. PLoS ONE. 2016;11(1):e0147998. https://doi.org/10.1371/journal.pone.0147998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Andersen TB, Dorge HC. The influence of speed of approach and accuracy constraint on the maximal speed of the ball in soccer kicking. Scand J Med Sci Sports. 2011;21(1):79–84. https://doi.org/10.1111/j.1600-0838.2009.01024.x.

    Article  CAS  PubMed  Google Scholar 

  75. Teixeira LA. Kinematics of kicking as a function of different sources of constraint on accuracy. Percept Mot Skills. 1999;88(3):785–9. https://doi.org/10.2466/pms.1999.88.3.785.

    Article  CAS  PubMed  Google Scholar 

  76. Shan G, Westerhoff P. Full-body kinematic characteristics of the maximal instep soccer kick by male soccer players and parameters related to kick quality. Sports Biomech. 2005;4(1):59–72. https://doi.org/10.1080/14763140508522852.

    Article  PubMed  Google Scholar 

  77. Katis A, Giannadakis E, Kannas T, Amiridis I, Kellis E, Lees A. Mechanisms that influence accuracy of the soccer kick. J Electromyogr Kinesiol. 2013;23(1):125–31. https://doi.org/10.1016/j.jelekin.2012.08.020.

    Article  PubMed  Google Scholar 

  78. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hilsdale: Lawrence Earlbaum Associates; 1988.

    Google Scholar 

  79. Bleakley CM, Costello JT, Glasgow PD. Should athletes return to sport after applying ice? A systematic review of the effect of local cooling on functional performance. Sports Med. 2012;42(1):69–87. https://doi.org/10.2165/11595970-000000000-00000.

    Article  PubMed  Google Scholar 

  80. Fox JL, Scanlan AT, Stanton R, Sargent C. Insufficient sleep in young athletes? Causes, consequences, and potential treatments. Sports Med. 2020;50(3):461–70. https://doi.org/10.1007/s40279-019-01220-8.

    Article  PubMed  Google Scholar 

  81. Araújo CG, Scharhag J. Athlete: a working definition for medical and health sciences research. Scand J Med Sci Sports. 2016;26(1):4–7. https://doi.org/10.1111/sms.12632.

    Article  PubMed  Google Scholar 

  82. Chaabene H, Prieske O, Moran J, Negra Y, Attia A, Granacher U. Effects of resistance training on change-of-direction speed in youth and young physically active and athletic adults: a systematic review with meta-analysis. Sports Med. 2020;50(8):1483–99. https://doi.org/10.1007/s40279-020-01293-w.

    Article  PubMed  PubMed Central  Google Scholar 

  83. van Tulder M, Furlan A, Bombardier C, Bouter L, Group tEBotCCBR. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine (Phila Pa 1976). 2003;28(12):1290–9. https://doi.org/10.1097/01.Brs.0000065484.95996.Af.

    Article  Google Scholar 

  84. Fanchini M, Steendahl IB, Impellizzeri FM, Pruna R, Dupont G, Coutts AJ, et al. Exercise-based strategies to prevent muscle injury in elite footballers: a systematic review and best evidence synthesis. Sports Med. 2020;50(9):1653–66. https://doi.org/10.1007/s40279-020-01282-z.

    Article  PubMed  Google Scholar 

  85. Abbey EL, Rankin JW. Effect of ingesting a honey-sweetened beverage on soccer performance and exercise-induced cytokine response. Int J Sport Nutr Exerc Metab. 2009;19(6):659–72. https://doi.org/10.1123/ijsnem.19.6.659.

    Article  CAS  PubMed  Google Scholar 

  86. Abt G, Zhou S, Weatherby R. The effect of a high-carbohydrate diet on the skill performance of midfield soccer players after intermittent treadmill exercise. J Sci Med Sport. 1998;1(4):203–12. https://doi.org/10.1016/s1440-2440(09)60003-7.

    Article  CAS  PubMed  Google Scholar 

  87. Amiri-Khorasani M, Osman N, Yusof A. Kinematics analysis: number of trials necessary to achieve performance stability during soccer instep kicking. J Hum Kinet. 2010;23(1):15–20. https://doi.org/10.2478/v10078-010-0002-9.

    Article  Google Scholar 

  88. Amiri-Khorasani M, Abu Osman NA, Yusof A. Electromyography assessments of the vastus medialis muscle during soccer instep kicking between dynamic and static stretching. J Hum Kinet. 2010;24(1):35–41. https://doi.org/10.2478/v10078-010-0017-2.

    Article  Google Scholar 

  89. Amiri-Khorasani M, Abu Osam NA, Yusof A. Biomechanical responses of thigh and lower leg during 10 consecutive soccer instep kicks. J Strength Cond Res. 2011;25(4):1177–81. https://doi.org/10.1519/JSC.0b013e3181d6508c.

    Article  PubMed  Google Scholar 

  90. Amiri-Khorasani M, Abu Osman NA, Yusof A. Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players. J Strength Cond Res. 2011;25(6):1647–52. https://doi.org/10.1519/JSC.0b013e3181db9f41.

    Article  PubMed  Google Scholar 

  91. Cariolo A, Del Coso J, Argudo FM, Borges-Hernandez PJ. Effects of rehydration on the physical and technical condition in soccer players. Apunts Medicina de l’Esport. 2018;54(201):5–11. https://doi.org/10.1016/j.apunts.2018.09.004.

    Article  Google Scholar 

  92. Deutschmann KC, Jones AD, Korporaal CM. A non-randomised experimental feasibility study into the immediate effect of three different spinal manipulative protocols on kicking speed performance in soccer players. Chiropr Man Ther. 2015;23(1):1. https://doi.org/10.1186/s12998-014-0046-3.

    Article  Google Scholar 

  93. Draganidis D, Chatzinikolaou A, Jamurtas AZ, Barbero JC, Tsoukas D, Theodorou AS, et al. The time-frame of acute resistance exercise effects on football skill performance: the impact of exercise intensity. J Sports Sci. 2013;31(7):714–22. https://doi.org/10.1080/02640414.2012.746725.

    Article  PubMed  Google Scholar 

  94. Ferraz R, van den Tillar R, Marques MC. The influence of different exercise intensities on kicking accuracy and velocity in soccer players. J Sport Health Sci. 2017;6(4):462–7. https://doi.org/10.1016/j.jshs.2015.10.001.

    Article  PubMed  Google Scholar 

  95. Ferraz R, Van Den Tillaar R, Ferraz S, Santos A, Mendes R, Marinho DA, et al. A pilot study on the influence of fatigue on kicking velocity in the soccer players. J Phys Educ Sport. 2011;11(2):178–81.

    Google Scholar 

  96. Ferraz RMP, van den Tillaar R, Pereira A, Marques MC. The effect of fatigue and duration knowledge of exercise on kicking performance in soccer players. J Sport Health Sci. 2019;8(6):567–73. https://doi.org/10.1016/j.jshs.2016.02.001.

    Article  PubMed  Google Scholar 

  97. Greig M. Intermittent treadmill running induces kinematic compensations to maintain soccer kick foot speed despite no change in knee extensor strength. J Appl Biomech. 2018;34(4):278–83. https://doi.org/10.1123/jab.2017-0017.

    Article  PubMed  Google Scholar 

  98. Hasan H, Davids K, Chow JY, Kerr G. Compression and texture in socks enhance football kicking performance. Hum Mov Sci. 2016;48:102–11. https://doi.org/10.1016/j.humov.2016.04.008.

    Article  PubMed  Google Scholar 

  99. Hasan H, Davids K, Chow JY, Kerr G. Changes in organisation of instep kicking as a function of wearing compression and textured materials. Eur J Sport Sci. 2017;17(3):294–302. https://doi.org/10.1080/17461391.2016.1241829.

    Article  PubMed  Google Scholar 

  100. Juarez D, de Subijana CL, Mallo J, Navarro E. Acute effects of endurance exercise on jumping and kicking performance in top-class young soccer players. Eur J Sport Sci. 2011;11(3):191–6. https://doi.org/10.1080/17461391.2010.500335.

    Article  Google Scholar 

  101. Katis A, Kellis E, Lees A. Bilateral leg differences in soccer kick kinematics following exhaustive running fatigue. Asian J Sports Med. 2017;8(2):e33680. https://doi.org/10.5812/asjsm.33680.

    Article  Google Scholar 

  102. Kellis E, Katis A, Vrabas IS. Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scand J Med Sci Sports. 2006;16(5):334–44.

    Article  CAS  PubMed  Google Scholar 

  103. Masmoudi L, Gharbi A, Chtourou H, Souissi N. Effect of time of day on soccer specific skills in children: psychological and physiological responses. Biol Rhythm Res. 2016;47(1):59–68. https://doi.org/10.1080/09291016.2015.1073888.

    Article  Google Scholar 

  104. McMorris T, Sproule J, Draper S, Child R. Performance of a psychomotor skill following rest, exercise at the plasma epinephrine threshold and maximal intensity exercise. Percept Mot Skills. 2000;91(2):553–62. https://doi.org/10.2466/pms.2000.91.2.553.

    Article  CAS  PubMed  Google Scholar 

  105. McMorris T, Swain J, Lauder M, Smith N, Kelly J. Warm-up prior to undertaking a dynamic psychomotor task: does it aid performance? J Sports Med Phys Fit. 2006;46(2):328–34.

    CAS  Google Scholar 

  106. Muller C, Brandes M. Effect of kinesiotape applications on ball velocity and accuracy in amateur soccer and handball. J Hum Kinet. 2015;49(1):119–29. https://doi.org/10.1515/hukin-2015-0114.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Owen JA, Kehoe SJ, Oliver SJ. Influence of fluid intake on soccer performance in a temperate environment. J Sports Sci. 2013;31(1):1–10. https://doi.org/10.1080/02640414.2012.720701.

    Article  PubMed  Google Scholar 

  108. Ozturk M, Gelen E. The acute effects of specific preconditioning activities on penalty kick performance in soccer players. Anthropologist. 2015;22(3):679–86.

    Google Scholar 

  109. Pallesen S, Gundersen HS, Kristoffersen M, Bjorvatn B, Thun E, Harris A. The effects of sleep deprivation on soccer skills. Percept Mot Skills. 2017;124(4):812–29. https://doi.org/10.1177/0031512517707412.

    Article  PubMed  Google Scholar 

  110. Radman I, Wessner B, Bachl N, Ruzic L, Hackl M, Prpic T, et al. The acute effects of graded physiological strain on soccer kicking performance: a randomized, controlled cross-over study. Eur J Appl Physiol. 2016;116(2):373–82. https://doi.org/10.1007/s00421-015-3293-7.

    Article  PubMed  Google Scholar 

  111. Sasadai J, Urabe Y, Maeda N, Shinohara H, Fujii E. The effect of ankle taping to restrict plantar flexion on ball and foot velocity during an instep kick in soccer. J Sport Rehabil. 2015;24(3):261–7. https://doi.org/10.1123/jsr.2013-0156.

    Article  PubMed  Google Scholar 

  112. Stone KJ, Oliver JL. The effect of 45 minutes of soccer-specific exercise on the performance of soccer skills. Int J Sports Physiol Perform. 2009;4(2):163–75. https://doi.org/10.1123/ijspp.4.2.163.

    Article  PubMed  Google Scholar 

  113. Zemková E, Hamar D. The effect of soccer match induced fatigue on neuromuscular performance. Kinesiology. 2009;41(2):195–202.

    Google Scholar 

  114. Gaspar A, Santos S, Coutinho D. Acute effects of differential learning on football kicking performance and in countermovement jump. PLoS ONE. 2019;14(10):e0224280. https://doi.org/10.1371/journal.pone.0224280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Otten R, Stam S, Langhout R, Weir A, Tak I. The effect of compression shorts on pain and performance in male football players with groin pain—a double blinded randomized controlled trial. Phys Ther Sport. 2019;38:87–95. https://doi.org/10.1016/j.ptsp.2019.04.013.

    Article  PubMed  Google Scholar 

  116. Izquierdo JM, De Benito AM, Gorka A, Guevara G, Redondo JC. Influence of competition on performance factors in under-19 soccer players at national league level. PLoS ONE. 2020;15(3):e0230068. https://doi.org/10.1371/journal.pone.0230068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaviani M, Chilibeck PD, Gall S, Jochim J, Zello GA. The effects of low- and high-glycemic index sport nutrition bars on metabolism and performance in recreational soccer players. Nutrients. 2020;12(4):982. https://doi.org/10.3390/nu12040982.

    Article  CAS  PubMed Central  Google Scholar 

  118. Paillard T. Effects of general and local fatigue on postural control: a review. Neurosci Biobehav Rev. 2012;36(1):162–76. https://doi.org/10.1016/j.neubiorev.2011.05.009.

    Article  PubMed  Google Scholar 

  119. Chamari K, Padulo J. “Aerobic” and “Anaerobic” terms used in exercise physiology: a critical terminology reflection. Sports Med Open. 2015;1(1):9. https://doi.org/10.1186/s40798-015-0012-1.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jones AM, Vanhatalo A. The “critical power” concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47(Suppl 1):65–78. https://doi.org/10.1007/s40279-017-0688-0.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Boullosa D, Del Rosso S, Behm DG, Foster C. Post-activation potentiation (PAP) in endurance sports: a review. Eur J Sport Sci. 2018;18(5):595–610. https://doi.org/10.1080/17461391.2018.1438519.

    Article  PubMed  Google Scholar 

  122. Nicholas CW, Nuttall FE, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97–104. https://doi.org/10.1080/026404100365162.

    Article  CAS  PubMed  Google Scholar 

  123. Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med. 2009;30(8):573–8. https://doi.org/10.1055/s-0029-1202822.

    Article  CAS  PubMed  Google Scholar 

  124. Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51. https://doi.org/10.2165/00007256-200838010-00004.

    Article  PubMed  Google Scholar 

  125. Russell M, Rees G, Benton D, Kingsley M. An exercise protocol that replicates soccer match-play. Int J Sports Med. 2011;32(7):511–8. https://doi.org/10.1055/s-0031-1273742.

    Article  CAS  PubMed  Google Scholar 

  126. Greig MP, McNaughton LR, Lovell RJ. Physiological and mechanical response to soccer-specific intermittent activity and steady-state activity. Res Sports Med. 2006;14(1):29–52. https://doi.org/10.1080/15438620500528257.

    Article  PubMed  Google Scholar 

  127. Palucci Vieira L, Barbieri F, Kellis E, Oliveira LP, Aquino R, Cunha S, et al. Organisation of instep kicking in young U11 to U20 soccer players. Sci Med Football. 2020. https://doi.org/10.1080/24733938.2020.1807043 (Publish Ahead of Print).

    Article  Google Scholar 

  128. Knudson D. Top cited research over fifteen years in Sports Biomechanics. Sports Biomech. 2020;19(6):808–16. https://doi.org/10.1080/14763141.2018.1518478.

    Article  PubMed  Google Scholar 

  129. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.

    Article  CAS  PubMed  Google Scholar 

  130. Rathke A. An examination of expected goals and shot efficiency in soccer. J Hum Sport Exerc. 2017;12(2):514–29. https://doi.org/10.14198/jhse.2017.12.Proc2.05.

    Article  Google Scholar 

  131. Schulze E, Mendes B, Maurício N, Furtado B, Cesário N, Carriço S, et al. Effects of positional variables on shooting outcome in elite football. Sci Med Football. 2018;2(2):93–100. https://doi.org/10.1080/24733938.2017.1383628.

    Article  Google Scholar 

  132. Scurr J, Hall B. The effects of approach angle on penalty kicking accuracy and kick kinematics with recreational soccer players. J Sports Sci Med. 2009;8(2):230–4.

    PubMed  PubMed Central  Google Scholar 

  133. Navia JA, van der Kamp J, Avilés C, Aceituno J. Self-control in aiming supports coping with psychological pressure in soccer penalty kicks. Front Psychol. 2019;10:1438. https://doi.org/10.3389/fpsyg.2019.01438.

    Article  PubMed  PubMed Central  Google Scholar 

  134. De Witt JK, Hinrichs RN. Mechanical factors associated with the development of high ball velocity during an instep soccer kick. Sports Biomech. 2012;11(3):382–90. https://doi.org/10.1080/14763141.2012.661757.

    Article  PubMed  Google Scholar 

  135. Hunter AH, Angilletta MJ Jr, Wilson RS. Behaviors of shooter and goalkeeper interact to determine the outcome of soccer penalties. Scand J Med Sci Sports. 2018;28(12):2751–9. https://doi.org/10.1111/sms.13276.

    Article  PubMed  Google Scholar 

  136. Hughes M, Wells J. Analysis of penalties taken in shoot-outs. Int J Perform Anal Sport. 2002;2(1):55–72. https://doi.org/10.1080/24748668.2002.11868261.

    Article  Google Scholar 

  137. Dichiera A, Webster KE, Kuilboer L, Morris ME, Bach TM, Feller JA. Kinematic patterns associated with accuracy of the drop punt kick in Australian Football. J Sci Med Sport. 2006;9(4):292–8. https://doi.org/10.1016/j.jsams.2006.06.007.

    Article  CAS  PubMed  Google Scholar 

  138. Ishii H, Yanagiya T, Naito H, Katamoto S, Maruyama T. Numerical study of ball behavior in side-foot soccer kick based on impact dynamic theory. J Biomech. 2009;42(16):2712–20. https://doi.org/10.1016/j.jbiomech.2009.08.025.

    Article  PubMed  Google Scholar 

  139. Andersen TB, Dörge T. Collisions in soccer kicking. Sports Eng. 1999;2(2):121–5. https://doi.org/10.1046/j.1460-2687.1999.00015.x.

    Article  Google Scholar 

  140. Hadlow SM, Pinder RA, Sayers MGL. Influence of football size on kicking performance in youth Australian rules footballers. J Sports Sci. 2017;35(18):1808–16. https://doi.org/10.1080/02640414.2016.1239023.

    Article  Google Scholar 

  141. Andersen TB, Krustrup P, Bendiksen M, Orntoft CO, Randers MB, Pettersen SA. Kicking velocity and effect on match performance when using a smaller, lighter ball in women’s football. Int J Sports Med. 2016;37(12):966–72. https://doi.org/10.1055/s-0042-109542.

    Article  CAS  PubMed  Google Scholar 

  142. Sedano Campo S, Vaeyens R, Philippaerts RM, Redondo JC, de Benito AM, Cuadrado G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J Strength Cond Res. 2009;23(6):1714–22. https://doi.org/10.1519/JSC.0b013e3181b3f537.

    Article  PubMed  Google Scholar 

  143. Smith L, Kensrud J. Field and laboratory measurements of softball player swing speed and bat performance. Sports Eng. 2014;17(2):75–82. https://doi.org/10.1007/s12283-013-0126-y.

    Article  Google Scholar 

  144. Nunome H, Ikegami Y, editors. Kinematics of soccer instep kicking: a comparison of two-dimensional and three-dimensional analysis. ISBS Proc Arch. 2006;MOB2–3:1–4.

  145. Palucci Vieira LH, De Andrade VL, Aquino RL, Moraes R, Barbieri FA, Cunha SA, et al. Construct validity of tests that measure kick performance for young soccer players based on cluster analysis: exploring the relationship between coaches rating and actual measures. J Sports Med Phys Fit. 2017;57(12):1613–22. https://doi.org/10.23736/S0022-4707.16.06863-8.

    Article  Google Scholar 

  146. Asai T, Carré M, Akatsuka T, Haake S. The curve kick of a football I: impact with the foot. Sports Eng. 2002;5(4):183–92. https://doi.org/10.1046/j.1460-2687.2002.00108.x.

    Article  Google Scholar 

  147. Deschamps K, Staes F, Roosen P, Nobels F, Desloovere K, Bruyninckx H, et al. Body of evidence supporting the clinical use of 3D multisegment foot models: a systematic review. Gait Posture. 2011;33(3):338–49. https://doi.org/10.1016/j.gaitpost.2010.12.018.

    Article  PubMed  Google Scholar 

  148. Knudson D, Bahamonde R. Effect of endpoint conditions on position and velocity near impact in tennis. J Sports Sci. 2001;19(11):839–44. https://doi.org/10.1080/026404101753113787.

    Article  CAS  PubMed  Google Scholar 

  149. Augustus S, Amca AM, Hudson PE, Smith N. Improved accuracy of biomechanical motion data obtained during impacts using a time-frequency low-pass filter. J Biomech. 2020;101:109639. https://doi.org/10.1016/j.jbiomech.2020.109639.

    Article  PubMed  Google Scholar 

  150. Russell M, Benton D, Kingsley M. Reliability and construct validity of soccer skills tests that measure passing, shooting, and dribbling. J Sports Sci. 2010;28(13):1399–408. https://doi.org/10.1080/02640414.2010.511247.

    Article  PubMed  Google Scholar 

  151. Padrón-Cabo A, Rey E, Pérez-Ferreirós A, Kalén A. Test-retest reliability of skill tests in the F-MARC battery for youth soccer players. Percept Mot Skills. 2019;126(5):1006–23. https://doi.org/10.1177/0031512519866038.

    Article  PubMed  Google Scholar 

  152. Bacurau RFP, Monteiro GA, Ugrinowitsch C, Tricoli V, Cabral LF, Aoki MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res. 2009;23(1):304–8. https://doi.org/10.1519/JSC.0b013e3181874d55.

    Article  PubMed  Google Scholar 

  153. Shellock FG, Prentice WE. Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Med. 1985;2(4):267–78. https://doi.org/10.2165/00007256-198502040-00004.

    Article  CAS  PubMed  Google Scholar 

  154. Knudson D, Bennett K, Corn R, Leick D, Smith C. Acute effects of stretching are not evident in the kinematics of the vertical jump. J Strength Cond Res. 2001;15(1):98–101.

    CAS  PubMed  Google Scholar 

  155. Cramer JT, Housh TJ, Weir JP, Johnson GO, Coburn JW, Beck TW. The acute effects of static stretching on peak torque, mean power output, electromyography, and mechanomyography. Eur J Appl Physiol. 2005;93(5–6):530–9. https://doi.org/10.1007/s00421-004-1199-x.

    Article  CAS  PubMed  Google Scholar 

  156. Behm DG, Button DC, Butt JC. Factors affecting force loss with prolonged stretching. Can J Appl Physiol. 2001;26(3):261–72.

    Article  CAS  PubMed  Google Scholar 

  157. Cramer JT, Beck TW, Housh TJ, Massey LL, Marek SM, Danglemeier S, et al. Acute effects of static stretching on characteristics of the isokinetic angle—torque relationship, surface electromyography, and mechanomyography. J Sports Sci. 2007;25(6):687–98. https://doi.org/10.1080/02640410600818416.

    Article  PubMed  Google Scholar 

  158. Oliveira LP, Vieira LHP, Aquino R, Manechini JPV, Santiago PRP, Puggina EF. Acute effects of active, ballistic, passive, and proprioceptive neuromuscular facilitation stretching on sprint and vertical jump performance in trained young soccer players. J Strength Cond Res. 2018;32(8):2199–208. https://doi.org/10.1519/jsc.0000000000002298.

    Article  PubMed  Google Scholar 

  159. Gabbett TJ, Sheppard JM, Pritchard-Peschek KR, Leveritt MD, Aldred MJ. Influence of closed skill and open skill warm-ups on the performance of speed, change of direction speed, vertical jump, and reactive agility in team sport athletes. J Strength Cond Res. 2008;22(5):1413–5. https://doi.org/10.1519/JSC.0b013e3181739ecd.

    Article  PubMed  Google Scholar 

  160. Little T, Williams AG. Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. J Strength Cond Res. 2006;20(1):203–7. https://doi.org/10.1519/r-16944.1.

    Article  PubMed  Google Scholar 

  161. Fradkin AJ, Zazryn TR, Smoliga JM. Effects of warming-up on physical performance: a systematic review with meta-analysis. J Strength Cond Res. 2010;24(1):140–8. https://doi.org/10.1519/JSC.0b013e3181c643a0.

    Article  PubMed  Google Scholar 

  162. Speirs DE, Bennett MA, Finn CV, Turner AP. Unilateral vs. bilateral squat training for strength, sprints, and agility in academy rugby players. J Strength Cond Res. 2016;30(2):386–92. https://doi.org/10.1519/jsc.0000000000001096.

    Article  PubMed  Google Scholar 

  163. Bishop D. Warm up II: performance changes following active warm up and how to structure the warm up. Sports Med. 2003;33(7):483–98. https://doi.org/10.2165/00007256-200333070-00002.

    Article  PubMed  Google Scholar 

  164. Wilson JM, Duncan NM, Marin PJ, Brown LE, Loenneke JP, Wilson SM, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854–9. https://doi.org/10.1519/JSC.0b013e31825c2bdb.

    Article  PubMed  Google Scholar 

  165. Castagna C, Francini L, Povoas SCA, D’Ottavio S. Long-sprint abilities in soccer: ball versus running drills. Int J Sports Physiol Perform. 2017;12(9):1256–63. https://doi.org/10.1123/ijspp.2016-0565.

    Article  PubMed  Google Scholar 

  166. Zagatto AM, Papoti M, Da Silva A, Barbieri RA, Campos EZ, Ferreira EC, et al. The Hoff circuit test is more specific than an incremental treadmill test to assess endurance with the ball in youth soccer players. Biol Sport. 2016;33(3):263–8. https://doi.org/10.5604/20831862.1201913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Milioni F, Vieira LH, Barbieri RA, Zagatto AM, Nordsborg NB, Barbieri FA, et al. Futsal match-related fatigue affects running performance and neuromuscular parameters but not finishing kick speed or accuracy. Front Physiol. 2016;7:518. https://doi.org/10.3389/fphys.2016.00518.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Aquino R, Carling C, Maia J, Palucci Vieira LH, Wilson RS, Smith N, et al. Relationships between running demands in soccer match-play, anthropometric, and physical fitness characteristics: a systematic review. Int J Perform Anal Sport. 2020;20(3):534–55. https://doi.org/10.1080/24748668.2020.1746555.

    Article  Google Scholar 

  169. Paul DJ, Nassis GP. Physical fitness testing in youth soccer: issues and considerations regarding reliability, validity and sensitivity. Pediatr Exerc Sci. 2015;27(3):301–13. https://doi.org/10.1123/mc.2014-0085.

    Article  PubMed  Google Scholar 

  170. Rampinini E, Bishop D, Marcora SM, Ferrari Bravo D, Sassi R, Impellizzeri FM. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28(3):228–35. https://doi.org/10.1055/s-2006-924340.

    Article  CAS  PubMed  Google Scholar 

  171. Delaney JA, Thornton HR, Rowell AE, Dascombe BJ, Aughey RJ, Duthie GM. Modelling the decrement in running intensity within professional soccer players. Sci Med Football. 2018;2(2):86–92. https://doi.org/10.1080/24733938.2017.1383623.

    Article  Google Scholar 

  172. Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):1095–100. https://doi.org/10.1055/s-0034-1375695.

    Article  CAS  PubMed  Google Scholar 

  173. Hunter AH, Angilletta MJ Jr, Pavlic T, Lichtwark G, Wilson RS. Modeling the two-dimensional accuracy of soccer kicks. J Biomech. 2018;72:159–66. https://doi.org/10.1016/j.jbiomech.2018.03.003.

    Article  PubMed  Google Scholar 

  174. Rodacki AL, Fowler NE, Bennett SJ. Vertical jump coordination: fatigue effects. Med Sci Sports Exerc. 2002;34(1):105–16. https://doi.org/10.1097/00005768-200201000-00017.

    Article  PubMed  Google Scholar 

  175. Rodacki AL, Fowler NE, Bennett SJ. Multi-segment coordination: fatigue effects. Med Sci Sports Exerc. 2001;33(7):1157–67. https://doi.org/10.1097/00005768-200107000-00013.

    Article  CAS  PubMed  Google Scholar 

  176. Vieira LH, de Souza SF, de Andrade VL, de Paula OL, Mariano FP, Santana JE, et al. Kicking performance and muscular strength parameters with dominant and non-dominant lower limbs in Brazilian elite professional futsal players. J Appl Biomech. 2016;32(6):578–85. https://doi.org/10.1123/jab.2016-0125.

    Article  PubMed  Google Scholar 

  177. Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. J Sports Sci. 2005;23(6):593–9. https://doi.org/10.1080/02640410400021286.

    Article  PubMed  Google Scholar 

  178. Mohr M, Krustrup P, Nybo L, Nielsen JJ, Bangsbo J. Muscle temperature and sprint performance during soccer matches – beneficial effect of re-warm-up at half-time. Scand J Med Sci Sports. 2004;14(3):156–62. https://doi.org/10.1111/j.1600-0838.2004.00349.x.

    Article  CAS  PubMed  Google Scholar 

  179. Lovell R, Midgley A, Barrett S, Carter D, Small K. Effects of different half-time strategies on second half soccer-specific speed, power and dynamic strength. Scand J Med Sci Sports. 2013;23(1):105–13. https://doi.org/10.1111/j.1600-0838.2011.01353.x.

    Article  CAS  PubMed  Google Scholar 

  180. Maly T, Zahalka F, Mala L, Teplan J. Profile, correlation and structure of speed in youth elite soccer players. J Hum Kinet. 2014;40:149–59. https://doi.org/10.2478/hukin-2014-0017.

    Article  Google Scholar 

  181. Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781–96. https://doi.org/10.2165/00007256-200636090-00005.

    Article  PubMed  Google Scholar 

  182. Hills SP, Russell M. Carbohydrates for soccer: a focus on skilled actions and half-time practices. Nutrients. 2018;10(1):22.

    Article  Google Scholar 

  183. Krustrup P, Ørtenblad N, Nielsen J, Nybo L, Gunnarsson TP, Iaia FM, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95. https://doi.org/10.1007/s00421-011-1919-y.

    Article  PubMed  Google Scholar 

  184. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94. https://doi.org/10.1249/01.mss.0000058433.85789.66.

    Article  CAS  PubMed  Google Scholar 

  185. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):S25–33. https://doi.org/10.1007/s40279-014-0148-z.

    Article  PubMed  Google Scholar 

  186. Pluta A, Williams CC, Binsted G, Hecker KG, Krigolson OE. Chasing the zone: reduced beta power predicts baseball batting performance. Neurosci Lett. 2018;686:150–4. https://doi.org/10.1016/j.neulet.2018.09.004.

    Article  CAS  PubMed  Google Scholar 

  187. Collins D, Powell G, Davies I. Cerebral activity prior to motion task performance: an electroencephalographic study. J Sports Sci. 1991;9(3):313–24. https://doi.org/10.1080/02640419108729892.

    Article  CAS  PubMed  Google Scholar 

  188. Bongers CC, Thijssen DH, Veltmeijer MT, Hopman MT, Eijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377–84. https://doi.org/10.1136/bjsports-2013-092928.

    Article  PubMed  Google Scholar 

  189. Fullagar HH, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161–86. https://doi.org/10.1007/s40279-014-0260-0.

    Article  PubMed  Google Scholar 

  190. Bonnar D, Bartel K, Kakoschke N, Lang C. Sleep interventions designed to improve athletic performance and recovery: a systematic review of current approaches. Sports Med. 2018;48(3):683–703. https://doi.org/10.1007/s40279-017-0832-x.

    Article  PubMed  Google Scholar 

  191. Lastella M, Lovell GP, Sargent C. Athletes’ precompetitive sleep behaviour and its relationship with subsequent precompetitive mood and performance. Eur J Sport Sci. 2014;14(Suppl 1):S123–30. https://doi.org/10.1080/17461391.2012.660505.

    Article  PubMed  Google Scholar 

  192. Buchheit M. Houston, we still have a problem. Int J Sports Physiol Perform. 2017;12(8):1111–4. https://doi.org/10.1123/ijspp.2017-0422.

    Article  PubMed  Google Scholar 

  193. Gabbett TJ, Whyte DG, Hartwig TB, Wescombe H, Naughton GA. The relationship between workloads, physical performance, injury and illness in adolescent male football players. Sports Med. 2014;44(7):989–1003. https://doi.org/10.1007/s40279-014-0179-5.

    Article  PubMed  Google Scholar 

  194. Amiri-Khorasani M, Osman NAA, Yusof A. Biomechanical responds of instep kick between different positions in professional soccer players. J Hum Kinet. 2009;22(1):21–7. https://doi.org/10.2478/v10078-009-0019-0.

    Article  Google Scholar 

  195. Carling C, Bloomfield J, Nelsen L, Reilly T. The role of motion analysis in elite soccer: contemporary performance measurement techniques and work rate data. Sports Med. 2008;38(10):839–62. https://doi.org/10.2165/00007256-200838100-00004.

    Article  PubMed  Google Scholar 

  196. Gomes TN, Katzmarzyk PT, Pereira S, Thuany M, Standage M, Maia J. A systematic review of children’s physical activity patterns: concept, operational definitions, instruments, statistical analyses, and health implications. Int J Environ Res Public Health. 2020;17(16):5837. https://doi.org/10.3390/ijerph17165837.

    Article  PubMed Central  Google Scholar 

  197. MacMillan GCS, Batterham AM, Chesterton P, Gregson W, Lolli L, Weston M, Atkinson G. Variability in the study quality appraisals reported in systematic reviews on the acute:chronic workload ratio and injury risk. Sports Med. 2020;50(11):2065–7. https://doi.org/10.1007/s40279-020-01333-5.

    Article  PubMed  Google Scholar 

  198. Torreblanca-Martínez V, Nevado-Garrosa F, Otero-Saborido FM, Gonzalez-Jurado JA. Effects of fatigue induced by repeated-sprint on kicking accuracy and velocity in female soccer players. PLoS ONE. 2020;15(1):e0227214. https://doi.org/10.1371/journal.pone.0227214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors offer warm thanks to the study authors who provided additional data for summarization of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Palucci Vieira.

Ethics declarations

Conflict of interest

Luiz Henrique Palucci Vieira, Felipe Balistieri Santinelli, Christopher Carling, Eleftherios Kellis, Paulo Roberto Pereira Santiago and Fabio Augusto Barbieri declare that they have no conflict of interest relevant to the content of this review.

Funding

This study was funded by the São Paulo Research Foundation—FAPESP Doctorate scholarship under process number [2018/02965-7] received by Luiz H. Palucci Vieira, and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Paulo Santiago is supported by FAPESP Grants [2019/22262-3] and [2019/17729-0].

Data Availability Statement

All raw data supporting this systematic review are from previously reported studies, which have been cited. Additional processed data that support the findings of the current review are available from the corresponding author upon request.

Author contributions

LV and FB designed the research. FB, CC and PS supervised the research activity planning and execution. LV and FS conducted the literature search, screening steps and data extraction, which were verified by EK. LV, FS, CC, EK, PS and FB interpreted the data analysis. LV and CC wrote the first draft of the manuscript with critical input from FS, EK, PS and FB. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palucci Vieira, L.H., Santinelli, F.B., Carling, C. et al. Acute Effects of Warm-Up, Exercise and Recovery-Related Strategies on Assessments of Soccer Kicking Performance: A Critical and Systematic Review. Sports Med 51, 661–705 (2021). https://doi.org/10.1007/s40279-020-01391-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01391-9

Navigation