Skip to main content

Sex Differences in Adaptations in Muscle Strength and Size Following Resistance Training in Older Adults: A Systematic Review and Meta-analysis



Reductions in muscle size and strength occur with aging. These changes can be mitigated by participation in resistance training. At present, it is unknown if sex contributes to differences in adaptation to resistance training in older adults.


The aim of this systematic review was to determine if sex differences are apparent in adaptations to resistance training in older adults.


Systematic review with meta-analysis.

Data Sources

Web of Science; Science Direct; SPORTDiscus; CINAHL; and MEDLINE were searched from inception to June 2020.

Eligibility Criteria

Studies where males and females older than 50 years of age performed identical resistance training interventions and had outcome measures of muscle strength or size.


We initially screened 5337 studies. 30 studies (with 41 comparison groups) were included in our review (1410 participants; 651 males, 759 females). Mean study quality was 14.7/29 on a modified Downs and Black checklist, considered moderate quality. Females gained more relative lower-body strength than males (g = − 0.21 [95% CI − 0.33, − 0.10], p = 0.0003) but there were no differences in relative change for upper-body strength (g = − 0.29 [95% CI − 0.62, 0.04], p = 0.08) or relative muscle size (g = 0.10 [95% CI − 0.04, 0.23], p = 0.16). Males gained more absolute upper-body strength (g = 0.48 [95% CI 0.09, 0.88], p = 0.016), absolute lower-body strength (g = 0.33 [95% CI 0.19, 0.47], p < 0.0001), and absolute muscle size (g = 0.45 [95% CI 0.23, 0.66], p < 0.0001).


Our results indicate that sex differences in adaptations to resistance training are apparent in older adults. However, it is evident that the interpretation of sex-dependent adaptations to resistance training is heavily influenced by the presentation of the results in either an absolute or relative context.

Study Registration

Open Science Framework (

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Frontera WR, Hughes VA, Fielding RA, et al. Aging of skeletal muscle: a 12-year longitudinal study. J Appl Physiol. 2000;88(4):1321–6.

    CAS  PubMed  Google Scholar 

  2. 2.

    Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

    PubMed  Google Scholar 

  3. 3.

    Chen L-K, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–7.

    PubMed  Google Scholar 

  4. 4.

    Chumlea WC, Cesari M, Evans W, et al. International working group on Sarcopenia. J Nutr Health Aging. 2011;15(6):450–5.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

    Google Scholar 

  6. 6.

    Senior HE, Henwood TR, Beller EM, et al. Prevalence and risk factors of sarcopenia among adults living in nursing homes. Maturitas. 2015;82(4):418–23.

    PubMed  Google Scholar 

  7. 7.

    Tay L, Ding YY, Leung BP, et al. Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. Age. 2015;37(6):121.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Du Y, Wang X, Xie H, et al. Sex differences in the prevalence and adverse outcomes of sarcopenia and sarcopenic obesity in community dwelling elderly in East China using the AWGS criteria. BMC Endocr Disord. 2019;19(1):109.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Yeung SS, Reijnierse EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019;10(3):485–500.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gale CR, Cooper C, Aihie SA. Prevalence and risk factors for falls in older men and women: the English longitudinal study of ageing. Age Ageing. 2016;45(6):789–94.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    He H, Liu Y, Tian Q, et al. Relationship of sarcopenia and body composition with osteoporosis. Osteoporosis Int. 2016;27(2):473–82.

    CAS  Google Scholar 

  12. 12.

    Pinedo-Villanueva R, Westbury LD, Syddall HE, et al. Health care costs associated with muscle weakness: a UK population-based estimate. Calcif Tissue Int. 2019;104(2):137–44.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Gallagher D, Visser M, De Meersman RE, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol. 1997;83(1):229–39.

    CAS  PubMed  Google Scholar 

  14. 14.

    Kozakai R, Ando F, Kim HY, et al. Sex-differences in age-related grip strength decline: a 10-year longitudinal study of community-living middle-aged and older Japanese. J Phys Fit Sports Med. 2016;5(1):87–94.

    Article  Google Scholar 

  15. 15.

    Ishii S, Tanaka T, Shibasaki K, et al. Development of a simple screening test for sarcopenia in older adults. Geriatr Gerontol Int. 2014;14(Suppl 1):93–101.

    Article  PubMed  Google Scholar 

  16. 16.

    Yamada M, Nishiguchi S, Fukutani N, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc. 2013;14(12):911–5.

    Article  PubMed  Google Scholar 

  17. 17.

    Shaw SC, Dennison EM, Cooper C. Epidemiology of sarcopenia: determinants throughout the lifecourse. Calcif Tissue Int. 2017;101(3):229–47.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.

    PubMed  Google Scholar 

  19. 19.

    Fiatarone MA, Marks EC, Ryan ND, et al. High-intensity strength training in nonagenarians: effects on skeletal muscle. JAMA. 1990;263(22):3029–34.

    CAS  PubMed  Google Scholar 

  20. 20.

    Nelson ME, Fiatarone MA, Morganti CM, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures: a randomized controlled trial. JAMA. 1994;272(24):1909–14.

    CAS  PubMed  Google Scholar 

  21. 21.

    MacDonald HV, Johnson BT, Huedo-Medina TB, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc. 2016;5(10):e003231.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gordon B, Benson A, Bird S, et al. Resistance training improves metabolic health in type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2009;83(2):157–75.

    CAS  PubMed  Google Scholar 

  23. 23.

    Papa EV, Dong X, Hassan M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin Interv Aging. 2017;12:955–61.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Seynnes O, Fiatarone Singh MA, Hue O, et al. Physiological and functional responses to low-moderate versus high-intensity progressive resistance training in frail elders. J Gerontol Ser A Biol Sci Med Sci. 2004;59(5):M503–9.

    Google Scholar 

  25. 25.

    Singh NA, Clements KM, Fiatarone MA. A randomized controlled trial of progressive resistance training in depressed elders. J Gerentol A Biol Sci Med Sci. 1997;52(1):M27–35.

    CAS  Google Scholar 

  26. 26.

    Fragala MS, Cadore EL, Dorgo S, et al. Resistance training for older adults: position statement from the National Strength and Conditioning Association. J Strength Cond Res. 2019;33(8):2019–52.

    PubMed  Google Scholar 

  27. 27.

    Ratamess NA, Alvar BA, Evetoch TE, et al. Progression models in resistance training for healthy adults. Med Sci Sport Exerc. 2009;41(3):687–708.

    Google Scholar 

  28. 28.

    Faigenbaum AD, Kraemer WJ, Blimkie CJ, et al. Youth resistance training: updated position statement paper from the National Strength and Conditioning Association. J Strength Cond Res. 2009;23:S60–79.

    PubMed  Google Scholar 

  29. 29.

    Hunter SK. Sex differences in fatigability of dynamic contractions. Exp Physiol. 2016;101(2):250–5.

    PubMed  Google Scholar 

  30. 30.

    Marshall PW, Metcalf E, Hagstrom AD, et al. Changes in fatigue are the same for trained men and women after resistance exercise. Med Sci Sport Ex. 2020;52(1):196–204.

    Google Scholar 

  31. 31.

    Metcalf E, Hagstrom AD, Marshall PW. Trained females exhibit less fatigability than trained males after a heavy knee extensor resistance exercise session. Eur J Appl Physiol. 2019;119(1):181–90.

    PubMed  Google Scholar 

  32. 32.

    Stupka N, Lowther S, Chorneyko K, et al. Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol. 2000;89(6):2325–32.

    CAS  PubMed  Google Scholar 

  33. 33.

    Flores DF, Gentil P, Brown LE, et al. Dissociated time course of recovery between genders after resistance exercise. J Strength Cond Res. 2011;25(11):3039–44.

    PubMed  Google Scholar 

  34. 34.

    Haizlip K, Harrison B, Leinwand L. Sex-based differences in skeletal muscle kinetics and fiber-type composition. J Physiol. 2015;30(1):30–9.

    CAS  Google Scholar 

  35. 35.

    Staron RS, Hagerman FC, Hikida RS, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Wilmore JH. Alterations in strength, body composition and anthropometric measurements consequent to a 10-week weight training program. Med Sci Sports. 1974;6(2):133–8.

    CAS  PubMed  Google Scholar 

  37. 37.

    Hunter GR, Bryan DR, Wetzstein CJ, et al. Resistance training and intra-abdominal adipose tissue in older men and women. Med Sci Sport Ex. 2002;34(6):1023–8.

    Google Scholar 

  38. 38.

    Kosek DJ, Kim J-S, Petrella JK, et al. Efficacy of 3 days/week resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol. 2006;101(2):531–44.

    CAS  PubMed  Google Scholar 

  39. 39.

    Kell RT. The influence of periodized resistance training on strength changes in men and women. J Strength Cond Res. 2011;25(3):735–44.

    PubMed  Google Scholar 

  40. 40.

    Hurlbut D, Lott M, Ryan A, et al. Does age, sex, or ACE genotype affect glucose and insulin responses to strength training? J Appl Physiol. 2002;92(2):643–50.

    CAS  PubMed  Google Scholar 

  41. 41.

    Staron R, Karapondo D, Kraemer W, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol. 1994;76(3):1247–55.

    CAS  PubMed  Google Scholar 

  42. 42.

    Jozsi A, Campbell W, Joseph L, et al. Changes in power with resistance training in older and younger men and women. J Gerontol Ser A Biol Sci Med Sci. 1999;54(11):M591–6.

    CAS  Google Scholar 

  43. 43.

    Roberts BM, Nuckols G, Krieger JW. Sex differences in resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2020.

    Article  PubMed  Google Scholar 

  44. 44.

    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res Ed). 2009;339:b2535.

    Article  Google Scholar 

  45. 45.

    Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hagstrom AD, Marshall PW, Halaki M, et al. The effect of resistance training in women on dynamic strength and muscular hypertrophy: a systematic review with meta-analysis. Sports Med. 2020;50:1075–93.

    PubMed  Google Scholar 

  47. 47.

    Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. J Invest Med. 2018;66(5):1–9.

    Google Scholar 

  48. 48.

    Haun CT, Vann CG, Roberts BM, et al. A critical evaluation of the biological construct skeletal muscle hypertrophy: size matters but so does the measurement. Front Physiol. 2019;10:247.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Higgins JPT, Deeks JJ, Altman DG (editors). Chapter 16: Special topics in statistics. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration; 2011. Available from

  50. 50.

    Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. Chinchester: Wiley; 2009.

    Google Scholar 

  51. 51.

    Higgins JPT, Deeks JJ (editors). Chapter 7: Selecting studies and collecting data. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration; 2011. Available from

  52. 52.

    Hakkinen K, Kallinen M, Izquierdo M, et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84(4):1341–9.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Hakkinen K, Kraemer WJ, Pakarinen A, et al. Effects of heavy resistance/power training on maximal strength, muscle morphology, and hormonal response patterns in 60–75-year-old men and women. Can J Appl Physiol. 2002;27(3):213–31.

    CAS  PubMed  Google Scholar 

  54. 54.

    Holviala J, Hakkinen A, Alen M, et al. Effects of prolonged and maintenance strength training on force production, walking, and balance in aging women and men. Scand J Med Sci Sports. 2014;24(1):224–33.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    McCartney N, Hicks AL, Martin J, et al. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerentol A Biol Sci Med Sci. 1995;50A(2):B97-104.

    Google Scholar 

  56. 56.

    Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J JEpidemiol Community Health. 1998;52(6):377–84.

    CAS  Google Scholar 

  57. 57.

    Laframboise MA, deGraauw C. The effects of aerobic physical activity on adiposity in school-aged children and youth: a systematic review of randomized controlled trials. J Can Chirop Assoc. 2011;55(4):256.

    Google Scholar 

  58. 58.

    Slade SC, Dionne CE, Underwood M, et al. Consensus on exercise reporting template (CERT): explanation and elaboration statement. Br J Sports Med. 2016;50(23):1428–37.

    PubMed  Google Scholar 

  59. 59.

    Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic press; 2013.

    Google Scholar 

  60. 60.

    Haff GG, Triplett NT. Essentials of strength training and conditioning. 4th ed. London: Human Kinetics Publishers; 2015.

    Google Scholar 

  61. 61.

    Ades PA, Ballor DL, Ashikaga T, et al. Weight training improves walking endurance in healthy elderly persons. Ann Intern Med. 1996;124(6):568–72.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Bellew JW, Yates JW, Gater DR. The initial effects of low-volume strength training on balance in untrained older men and women. J Strength Cond Res. 2003;17(1):121–8.

    PubMed  Google Scholar 

  63. 63.

    Beneka A, Malliou P, Fatouros I, et al. Resistance training effects on muscular strength of elderly are related to intensity and gender. J Sci Med Sport. 2005;8(3):274–83.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Binns A, Gray M, Henson A, et al. Changes in lean mass and serum myostatin with habitual protein intake and high-velocity resistance training. J Nutr Health Aging. 2017;21(10):1111–7.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Charbonneau DE, Hanson ED, Ludlow AT, et al. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sport Exerc. 2008;40(4):677–83.

    CAS  Article  Google Scholar 

  66. 66.

    Delmonico MJ, Kostek MC, Doldo NA, et al. Effects of moderate-velocity strength training on peak muscle power and movement velocity: do women respond differently than men? J Appl Physiol. 2005;99(5):1712–8.

    PubMed  Google Scholar 

  67. 67.

    Fernández-Lezaun E, Schumann M, Mäkinen T, et al. Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up. Exp Gerontol. 2017;95:44–53.

    Article  PubMed  Google Scholar 

  68. 68.

    Fragala MS, Jajtner AR, Beyer KS, et al. Biomarkers of muscle quality: N-terminal propeptide of type III procollagen and C-terminal agrin fragment responses to resistance exercise training in older adults. J Cachexia Sarcopenia Muscle. 2014;5(2):139–48.

    Article  PubMed  Google Scholar 

  69. 69.

    Galvão DA, Newton RU, Taaffe DR. Does sex affect the muscle strength and regional lean tissue mass response to resistance training in older adults? J Sport Health Sci. 2006;4:36–43.

    Google Scholar 

  70. 70.

    Häkkinen K, Kallinen M, Linnamo V, et al. Neuromuscular adaptations during bilateral versus unilateral strength training in middle-aged and elderly men and women. Acta Physiol Scand. 1996;158(1):77–88.

    PubMed  Google Scholar 

  71. 71.

    Hakkinen K, Pakarinen A. Serum hormones and strength development during strength training in middle-aged and elderly males and females. Acta Physiol Scand. 1994;150(2):211–9.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Ivey FM, Tracy BL, Lemmer JT, et al. Effects of strength training and detraining on muscle quality: age and gender comparisons. J Gerentol A Biol Sci Med Sci. 2000;55(3):B152–7.

    CAS  Article  Google Scholar 

  73. 73.

    Leenders M, Verdijk LB, van der Hoeven L, et al. Elderly men and women benefit equally from prolonged resistance-type exercise training. J Gerentol A Biol Sci Med Sci. 2013;68(7):769–79.

    Article  Google Scholar 

  74. 74.

    Lemmer JT, Ivey FM, Ryan AS, et al. Effect of strength training on resting metabolic rate and physical activity: age and gender comparisons. Med Sci Sport Exerc. 2001;33(4):532–41.

    CAS  Google Scholar 

  75. 75.

    Lexell J, Downham DY, Larsson Y, et al. Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports. 1995;5(6):329–41.

    CAS  PubMed  Google Scholar 

  76. 76.

    Mackey AL, Esmarck B, Kadi F, et al. Enhanced satellite cell proliferation with resistance training in elderly men and women. Scand J Med Sci Sports. 2007;17(1):34–42.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int. 2000;66(6):399–404.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Njemini R, Forti LN, Mets T, et al. Sex difference in the heat shock response to high external load resistance training in older humans. Exp Gerontol. 2017;93:46–53.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Ochala J, Lambertz D, Van Hoecke J, et al. Changes in muscle and joint elasticity following long-term strength training in old age. Eur J Appl Physiol. 2007;100(5):491–8.

    Article  PubMed  Google Scholar 

  80. 80.

    Sharman MJ, Newton RU, Triplett-McBride T, et al. Changes in myosin heavy chain composition with heavy resistance training in 60- to 75-year-old men and women. Eur J Appl Physiol. 2001;84(1–2):127–32.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Sood S, Hanson ED, Delmonico MJ, et al. Does insulin-like growth factor 1 genotype influence muscle power response to strength training in older men and women? Eur J Appl Physiol. 2012;112(2):743–53.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Tanton LC, Cappeart TA, Gordon PM, et al. Strength, size, and muscle quality in the upper arm following unilateral training in younger and older males and females. Clin Med Arthritis Musculoskelet Disord. 2009;2:9–18.

    Google Scholar 

  83. 83.

    Walts CT, Hanson ED, Delmonico MJ, et al. Do sex or race differences influence strength training effects on muscle or fat? Med Sci Sport Exerc. 2008;40(4):669–76.

    Google Scholar 

  84. 84.

    Bishop P, Cureton K, Collins M. Sex difference in muscular strength in equally-trained men and women. Ergonomics. 1987;30(4):675–87.

    CAS  PubMed  Google Scholar 

  85. 85.

    Hosler WW, Morrow JR Jr. Arm and leg strength compared between young women and men after allowing for differences in body size and composition. Ergonomics. 1982;25(4):309–13.

    CAS  PubMed  Google Scholar 

  86. 86.

    Molenaar JP, McNeil CJ, Bredius MS, et al. Effects of aging and sex on voluntary activation and peak relaxation rate of human elbow flexors studied with motor cortical stimulation. Age. 2013;35(4):1327–37.

    CAS  PubMed  Google Scholar 

  87. 87.

    Miller AEJ, MacDougall J, Tarnopolsky M, et al. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62.

    CAS  PubMed  Google Scholar 

  88. 88.

    Cheng S-J, Yang Y-R, Cheng F-Y, et al. The changes of muscle strength and functional activities during aging in male and female populations. Int J Gerontol. 2014;8(4):197–202.

    Google Scholar 

  89. 89.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

    PubMed  Google Scholar 

  90. 90.

    Morton RW, Sato K, Gallaugher MP, et al. Muscle androgen receptor content but not systemic hormones is associated with resistance training-induced skeletal muscle hypertrophy in healthy, young men. Front Physiol. 2018;9:1373.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Lee D-M, Bajracharya P, Lee EJ, et al. Effects of gender-specific adult bovine serum on myogenic satellite cell proliferation, differentiation and lipid accumulation. Vitro Cell Dev Biol Anim. 2011;47(7):438–44.

    CAS  Google Scholar 

  92. 92.

    Dreyer HC, Fujita S, Glynn EL, et al. Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta physiol. 2010;199(1):71–81.

    CAS  Google Scholar 

  93. 93.

    Lavin KM, Roberts BM, Fry CS, et al. The importance of resistance exercise training to combat neuromuscular aging. Physiology. 2019;34(2):112–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010;11(6):391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Loenneke JP, Loprinzi PD, Murphy CH, et al. Per meal dose and frequency of protein consumption is associated with lean mass and muscle performance. Clin Nutr. 2016;35(6):1506–11.

    Article  PubMed  Google Scholar 

  96. 96.

    National Health Service. Health survey for England 2016 physical activity in adults. 2017. Accessed 10 June 2020.

  97. 97.

    Waters DL, Wayne SJ, Andrieu S, et al. Sexually dimorphic patterns of nutritional intake and eating behaviors in community-dwelling older adults with normal and slow gait speed. J Nutr Health Aging. 2014;18(3):228–33.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Alameel T, Basheikh M, Andrew MK. Digestive symptoms in older adults: prevalence and associations with institutionalization and mortality. Can J Gasteroenterol. 2012;26(12):881–4.

    Article  Google Scholar 

  99. 99.

    Borde R, Hortobágyi T, Granacher U. Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 2015;45(12):1693–720.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amanda D. Hagstrom.

Ethics declarations


Michael Wewege was supported by a University Postgraduate Award and a School of Medical Sciences Top-Up Scholarship from the University of New South Wales, and a Postgraduate Scholarship from the National Health and Medical Research Council of Australia. No other sources of funding were used to assist in the preparation of this article.

Conflict of interest

Matthew Jones, Michael Wewege, Daniel Hackett, Justin Keogh and Amanda Hagstrom declare that they have no conflicts of interest relevant to the content of this review.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Data and code are available on the Open Science Framework (

Availability of data and material

All data and analysis code will be available after publication on the Open Science Framework (

Author contributions

ADH study design, literature search, and writing of the manuscript. MJ screening, study quality, results and methods manuscript writing. MW screening, statistical analysis, results. DH study quality. ADH, MJ, MW, and DH contributed to data extraction. JK contributed to writing of the manuscript. All authors reviewed the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1684 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, M.D., Wewege, M.A., Hackett, D.A. et al. Sex Differences in Adaptations in Muscle Strength and Size Following Resistance Training in Older Adults: A Systematic Review and Meta-analysis. Sports Med 51, 503–517 (2021).

Download citation