Skip to main content
Log in

Does Muscle–Tendon Unit Structure Predispose to Hamstring Strain Injury During Running? A Critical Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Hamstring strain injury (HSI) remains the most common muscle injury in high-intensity running in humans. The majority of acute HSI occur specifically within the proximal region of the long head of biceps femoris and there is a sustained interest among researchers in understanding the factors that predispose to HSI. The present critical review describes the current understanding of biceps femoris long head (BFlh) structural features that might influence strain injury risk. Inter-individual differences in muscle–tendon architecture and interactions, muscle fiber type and region-specific innervation are likely to influence biceps femoris long head injury risk and might inform why some individuals are at an increased risk of sustaining a HSI during running. However, more research is needed, with future studies focusing on prospective data acquisition, improved computer simulations and direct imaging techniques to better understand the relationship between structural features, hamstring muscle function, and injury risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Entwisle T, Ling Y, Splatt A, Brukner P, Connell D. Distal musculotendinous T junction injuries of the biceps femoris: an MRI case review. Orthop J Sports Med. 2017;5:2325967117714998.

    PubMed  PubMed Central  Google Scholar 

  2. Arner JW, McClincy MP, Bradley JP. hamstring injuries in athletes: evidence-based treatment. J Am Acad Orthop Surg. 2019;27:868–77.

    PubMed  Google Scholar 

  3. Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50:1524–35.

    PubMed  Google Scholar 

  4. Van Crombrugge G, Duvivier BM, Van Crombrugge K, Bellemans J, Peers K. Hamstring injury prevention in Belgian and English elite football teams. Acta Orthop Belg. 2019;85:373–80.

    PubMed  Google Scholar 

  5. Askling CM, Tengvart M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running—a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35:197–206.

    PubMed  Google Scholar 

  6. Beltran L, Ghazikhanian V, Padron M, Beltran J. The proximal hamstring muscle-tendon-bone unit: a review of the normal anatomy, biomechanics, and pathophysiology. Eur J Radiol. 2012;81:3772–9.

    PubMed  Google Scholar 

  7. Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008;37:1101–9.

    PubMed  PubMed Central  Google Scholar 

  8. Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol. 2003;32:582–9.

    PubMed  Google Scholar 

  9. van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool RP, Engebretsen L, van Dijk CN, et al. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. 2015;23:2115–22.

    PubMed  Google Scholar 

  10. Huygaerts S, Cos F, Cohen DD, Calleja-González J, Guitart M, Blazevich AJ, et al. Mechanisms of hamstring strain injury: interactions between fatigue, muscle activation and function. Sports. 2020;8:65.

    PubMed Central  Google Scholar 

  11. Moore KL, Dalley AF, Agur AMR. Clinically orientated anatomy. 7th ed. Baltimore: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  12. Battermann N, Appell H-J, Dargel J, Koebke J. An anatomical study of the proximal hamstring muscle complex to elucidate muscle strains in this region. Int J Sports Med. 2011;32:211–5.

    CAS  PubMed  Google Scholar 

  13. Sato K, Nimura A, Yamaguchi K, Akita K. Anatomical study of the proximal origin of hamstring muscles. J Orthop Sci. 2012;17:614–8.

    PubMed  Google Scholar 

  14. Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs (Print). 2005;179:125–41.

    Google Scholar 

  15. Miller SL, Gill J, Webb GR. The proximal origin of the hamstrings and surrounding anatomy encountered during repair. A cadaveric study. J Bone Joint Surg Am. 2007;89:44–8.

    PubMed  Google Scholar 

  16. Kellis E. Intra- and inter-muscular variations in hamstring architecture and mechanics and their implications for injury: a narrative review. Sports Med. 2018;48:2271–83.

    PubMed  Google Scholar 

  17. Chleboun GS, France AR, Crill MT, Braddock HK, Howell JN. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs (Print). 2001;169:401–9.

    CAS  Google Scholar 

  18. Kellis E, Galanis N, Kapetanos G, Natsis K. Architectural differences between the hamstring muscles. J Electromyogr Kinesiol. 2012;22:520–6.

    PubMed  Google Scholar 

  19. Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol. 2010;20:1237–43.

    PubMed  Google Scholar 

  20. Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42:2549–54.

    PubMed  Google Scholar 

  21. Makihara Y, Nishino A, Fukubayashi T, Kanamori A. Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc. 2006;14:310–7.

    PubMed  Google Scholar 

  22. Thelen DG, Chumanov ES, Sherry MA, Heiderscheit BC. Neuromusculoskeletal models provide insights into the mechanisms and rehabilitation of hamstring strains. Exerc Sport Sci Rev. 2006;34:135–41.

    PubMed  Google Scholar 

  23. Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467:1074–82.

    PubMed  Google Scholar 

  24. Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209:289–310.

    PubMed  PubMed Central  Google Scholar 

  25. Lieber RL, Jacobson MD, Fazeli BM, Abrams RA, Botte MJ. Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer. J Hand Surg Am. 1992;17:787–98.

    CAS  PubMed  Google Scholar 

  26. Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.

    CAS  PubMed  Google Scholar 

  27. Azizi E, Roberts TJ. Geared up to stretch: pennate muscle behavior during active lengthening. J Exp Biol. 2014;217:376–81.

    PubMed  PubMed Central  Google Scholar 

  28. Ando R, Nosaka K, Tomita A, Watanabe K, Blazevich AJ, Akima H. Vastus intermedius vs vastus lateralis fascicle behaviors during maximal concentric and eccentric contractions. Scand J Med Sci Sports. 2018;28:1018–26.

    CAS  PubMed  Google Scholar 

  29. Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47:905–13.

    PubMed  Google Scholar 

  30. Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28:1775–83.

    CAS  PubMed  Google Scholar 

  31. Blazevich AJ. Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med. 2006;36:1003–17.

    PubMed  Google Scholar 

  32. Pimenta R, Blazevich AJ, Freitas SR. Biceps femoris long-head architecture assessed using different sonographic techniques. Med Sci Sports Exerc. 2018;50:2584–94.

    PubMed  Google Scholar 

  33. Mendez-Villanueva A, Suarez-Arrones L, Rodas G, Fernandez-Gonzalo R, Tesch P, Linnehan R, et al. MRI-based regional muscle use during hamstring strengthening exercises in elite soccer players. PLoS ONE. 2016;11:e0161356.

    PubMed  PubMed Central  Google Scholar 

  34. Fridén J, Seger J, Sjöström M, Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med. 1983;4:177–83.

    PubMed  Google Scholar 

  35. Bolsterlee B, D’Souza A, Herbert RD. Reliability and robustness of muscle architecture measurements obtained using diffusion tensor imaging with anatomically constrained tractography. J Biomech. 2019;86:71–8.

    PubMed  Google Scholar 

  36. Sikdar S, Wei Q, Cortes N. Dynamic ultrasound imaging applications to quantify musculoskeletal function. Exerc Sport Sci Rev. 2014;42:126–35.

    PubMed  PubMed Central  Google Scholar 

  37. Konow N, Azizi E, Roberts TJ. Muscle power attenuation by tendon during energy dissipation. Proc Biol Sci. 2012;279:1108–13.

    PubMed  Google Scholar 

  38. Konow N, Roberts TJ. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proc Biol Sci. 2015;282:20142800.

    PubMed  PubMed Central  Google Scholar 

  39. Ishikawa M, Finni T, Komi PV. Behaviour of vastus lateralis muscle-tendon during high intensity SSC exercises in vivo. Acta Physiol Scand. 2003;178:205–13.

    CAS  PubMed  Google Scholar 

  40. Aeles J, Vanwanseele B. Do stretch-shortening cycles really occur in the medial gastrocnemius? A detailed bilateral analysis of the muscle-tendon interaction during jumping. Front Physiol. 2019;10:1504.

    PubMed  PubMed Central  Google Scholar 

  41. Hollville E, Nordez A, Guilhem G, Lecompte J, Rabita G. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing. Scand J Med Sci Sports. 2019;29:55–70.

    PubMed  Google Scholar 

  42. Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44:647–58.

    PubMed  Google Scholar 

  43. Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47:3325–33.

    PubMed  PubMed Central  Google Scholar 

  44. Fiorentino NM, Rehorn MR, Chumanov ES, Thelen DG, Blemker SS. Computational models predict larger muscle tissue strains at faster sprinting speeds. Med Sci Sports Exerc. 2014;46:776–86.

    PubMed  PubMed Central  Google Scholar 

  45. Li L, Wang D. Parallel and cross-sectional hamstring injuries in sprint running. J Sport Health Sci. 2017;6:141–2.

    PubMed  PubMed Central  Google Scholar 

  46. Garrett WE, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984;12:98–103.

    PubMed  Google Scholar 

  47. Fridén J, Sjöström M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med. 1983;4:170–6.

    PubMed  Google Scholar 

  48. Macaluso F, Isaacs AW, Myburgh KH. Preferential type II muscle fiber damage from plyometric exercise. J Athl Train. 2012;47:414–20.

    PubMed  PubMed Central  Google Scholar 

  49. Starbuck C, Eston RG. Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer. Eur J Appl Physiol. 2012;112:1005–13.

    PubMed  Google Scholar 

  50. Goode AP, Reiman MP, Harris L, DeLisa L, Kauffman A, Beltramo D, et al. Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br J Sports Med. 2015;49:349–56.

    PubMed  Google Scholar 

  51. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287–332.

    CAS  PubMed  Google Scholar 

  52. Delextrat A, Baker J, Cohen DD, Clarke ND. Effect of a simulated soccer match on the functional hamstrings-to-quadriceps ratio in amateur female players. Scand J Med Sci Sports. 2013;23:478–86.

    CAS  PubMed  Google Scholar 

  53. Lord C, Ma’ayah F, Blazevich AJ. Change in knee flexor torque after fatiguing exercise identifies previous hamstring injury in football players. Scand J Med Sci Sports. 2018;28:1235–43.

    CAS  PubMed  Google Scholar 

  54. Pinto MD, Blazevich AJ, Andersen LL, Mil-Homens P, Pinto RS. Hamstring-to-quadriceps fatigue ratio offers new and different muscle function information than the conventional non-fatigued ratio. Scand J Med Sci Sports. 2018;28:282–93.

    CAS  PubMed  Google Scholar 

  55. Freckleton G, Cook J, Pizzari T. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. Br J Sports Med. 2014;48:713–7.

    PubMed  Google Scholar 

  56. Delextrat A, Piquet J, Matthews MJ, Cohen DD. Strength-endurance training reduces the hamstrings strength decline following simulated football competition in female players. Front Physiol. 2018;9:1059.

    PubMed  PubMed Central  Google Scholar 

  57. Edouard P, Mendiguchia J, Lahti J, Arnal PJ, Gimenez P, Jiménez-Reyes P, et al. Sprint acceleration mechanics in fatigue conditions: compensatory role of gluteal muscles in horizontal force production and potential protection of hamstring muscles. Front Physiol. 2018;9:1706.

    PubMed  PubMed Central  Google Scholar 

  58. Evangelidis PE, Massey GJ, Ferguson RA, Wheeler PC, Pain MTG, Folland JP. The functional significance of hamstrings composition: is it really a “fast” muscle group? Scand J Med Sci Sports. 2017;27:1181–9.

    PubMed  Google Scholar 

  59. Simunič B. Between-day reliability of a method for non-invasive estimation of muscle composition. J Electromyogr Kinesiol. 2012;22:527–30.

    PubMed  Google Scholar 

  60. An XC, Lee JH, Im S, Lee MS, Hwang K, Kim HW, et al. Anatomic localization of motor entry points and intramuscular nerve endings in the hamstring muscles. Surg Radiol Anat. 2010;32:529–37.

    CAS  PubMed  Google Scholar 

  61. Seidel PM, Seidel GK, Gans BM, Dijkers M. Precise localization of the motor nerve branches to the hamstring muscles: an aid to the conduct of neurolytic procedures. Arch Phys Med Rehabil. 1996;77:1157–60.

    CAS  PubMed  Google Scholar 

  62. Sunderland S, Hughes ESR. Metrical and non-metrical features of the muscular branches of the sciatic nerve and its medial and lateral popliteal divisions. J Comp Neurol. 1946;85:205–22.

    CAS  PubMed  Google Scholar 

  63. Branch EA, Anz AW. Distal insertions of the biceps femoris: a quantitative analysis. Orthop J Sports Med. 2015;3:2325967115602255.

    PubMed  PubMed Central  Google Scholar 

  64. Ertelt T, Gronwald T. Hamstring injury risk factors in elite sports: the role of muscle geometry and function. Acta Physiol (Oxf). 2019;227:e13253.

    Google Scholar 

  65. Hegyi A, Csala D, Péter A, Finni T, Cronin NJ. High-density electromyography activity in various hamstring exercises. Scand J Med Sci Sports. 2019;29:34–43.

    PubMed  Google Scholar 

  66. Ménétrey J. Current concept: muscle injuries. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie. 2000;48:44–7.

    Google Scholar 

  67. Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy JD, Sims C, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48:251–67.

    PubMed  Google Scholar 

  68. De Vos R-J, Reurink G, Goudswaard G-J, Moen MH, Weir A, Tol JL. Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br J Sports Med. 2014;48:1377–84.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Clarissa Brusco for the image acquisition (Universidade Federal do Rio Grande do Sul and Edith Cowan University). We would also like to thank the three reviewers for their insightful comments and rigorous and thorough discussions through the manuscript review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Blazevich.

Ethics declarations

Funding

The authors did not receive specific funding for this work.

Conflict of interest

Shaun Huygaerts, Francesc Cos, Daniel Cohen, Julio Calleja-González, Ricard Pruna, Pedro Alcaraz and Anthony Blazevich declare that they have no conflicts of interest relevant to the content of this review.

Author contributions

SH drafted the article. FC, DC, JC-G, RP, PA and AB revised and contributed to the manuscript according to their respective fields of expertise. All authors read and approved the final manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huygaerts, S., Cos, F., Cohen, D.D. et al. Does Muscle–Tendon Unit Structure Predispose to Hamstring Strain Injury During Running? A Critical Review. Sports Med 51, 215–224 (2021). https://doi.org/10.1007/s40279-020-01385-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01385-7

Navigation