Skip to main content

Effects of Bilateral and Unilateral Resistance Training on Horizontally Orientated Movement Performance: A Systematic Review and Meta-analysis

Abstract

Background

Both bilateral (BLE) and unilateral resistance exercise (ULE) methods can confer benefit to an athlete, but it remains to be established which has a greater effect on movement speed.

Objectives

To evaluate the effects of BLE and ULE on horizontal movement performance.

Data Sources

Google Scholar, CrossRef, and PubMed.

Study Eligibility Criteria

To qualify for inclusion in the meta-analysis, studies must have included a resistance training intervention that compared the effects of BLE and ULE on a measure of movement speed such as sprinting in healthy study participants.

Study Appraisal and Synthesis Methods

We used the inverse-variance random-effects model for meta-analyses. Effect sizes (standardised mean difference), calculated from measures of horizontally orientated performance, were represented by the standardised mean difference and presented alongside 95% confidence intervals (CI).

Results

Though both modalities were effective (BLE = 0.60 [95% CI 0.34, 0.87], Z = 4.44 [p < 0.01]; ULE = 0.57 [95% CI 0.24, 0.89], Z = 3.44 [p = 0.0006]), there was no difference between the effect of BLE and ULE on movement speed (0.17 [95% CI − 0.15, 0.50], Z = 1.03 [p = 0.30]). For BLE, combined strength and plyometric training had the largest effect size (0.88 [95% CI 0.40, 1.36]]) followed by plyometric training (0.55 [95% CI 0.09, 1.01]), with the lowest effect in strength training (0.42 [95% CI − 0.02, 0.86]). For ULE, the largest effect size for training type was in plyometric training (0.78 [95% CI 0.33, 1.24]) closely followed by combined (0.63 [95% CI 0.03, 1.24]) with strength (0.29 [95% CI − 0.42, 1.01]) having a substantially lower effect size.

Conclusions

Both BLE and ULE are effective in enhancing horizontal movement performance. However, contrary to popular opinion, supported by the concept of training specificity, ULE was no more effective at achieving this than BLE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1(2):74–83.

    PubMed  Article  Google Scholar 

  2. Behm DG, Sale DG. Velocity specificity of resistance training. Sport Med Eval Res Exerc Sci Sport Med. 1993;15(6):374–88.

    CAS  Google Scholar 

  3. Izquierdo M, Häkkinen K, Gonzalez-Badillo JJ, Ibáñez J, Gorostiaga EM. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87(3):264–71.

    PubMed  Article  Google Scholar 

  4. Nijem RM, Galpin AJ. Unilateral versus bilateral exercise and the role of the bilateral force deficit. Strength Cond J. 2014;36(5):113–8.

    Article  Google Scholar 

  5. Appleby BB, Cormack SJ, Newton RU. Specificity and transfer of lower-body strength: Influence of bilateral or unilateral lower-body resistance training. J Strength Cond Res. 2019;33(2):318–26.

    PubMed  Article  Google Scholar 

  6. Di Salvo V, Baron R, González-Haro C, Gormasz C, Pigozzi F, Bachl N. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci. 2010;28(14):1489–94.

    PubMed  Article  Google Scholar 

  7. Gabbett TJ. Sprinting patterns of national rugby league competition. J Strength Cond Res. 2012;26(1):121–30.

    PubMed  Article  Google Scholar 

  8. Te Wierike SCM, De Jong MC, Tromp EJY, Vuijk PJ, Lemmink KAPM, Malina RM, et al. Development of repeated sprint ability in talented youth basketball players. J Strength Cond Res. 2014;28(4):928–34.

    Article  Google Scholar 

  9. Kovacs MS. Applied physiology of tennis performance. Br J Sports Med. 2006;40(5):381–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Kuruganti U, Murphy T, Pardy T. Bilateral deficit phenomenon and the role of antagonist muscle activity during maximal isometric knee extensions in young, athletic men. Eur J Appl Physiol. 2011;111(7):1533–9.

    PubMed  Article  Google Scholar 

  11. Makaruk H, Winchester JB, Sadowski J, Czaplicki A, Sacewicz T. Effects of unilateral and bilateral plyometric training on power and jumping ability in women. J Strength Cond Res. 2011;25(12):3311–8.

    PubMed  Article  Google Scholar 

  12. McCurdy KW, Langford GA, Doscher MW, Wiley LP, Mallard KG. The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J Strength Cond Res. 2005;19(1):9–15.

    PubMed  Google Scholar 

  13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPAA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.

    PubMed  Article  Google Scholar 

  14. Faigenbaum AD, Myer GD. Resistance training among young athletes: safety, efficacy and injury prevention effects. Br J Sports Med. 2010;44(1):56–63.

    CAS  PubMed  Article  Google Scholar 

  15. Fisher J, Wallin M. Unilateral versus bilateral lower-body resistance and plyometric training for change of direction speed. J Athl Enhanc. 2014;6(2).

  16. Gonzalo-Skok O, Tous-Fajardo J, Suarez-Arrones L, Arjol-Serrano JL, Casajús JA, Mendez-Villanueva A. Single-leg power output and between-limbs imbalances in team-sport players: unilateral versus bilateral combined resistance training. Int J Sports Physiol Perform. 2017;12(1):106–14.

    PubMed  Article  Google Scholar 

  17. Gonzalo-Skok O, Tous-Fajardo J, Valero-Campo C, Berzosa C, Bataller AV, Arjol-Serrano JL, et al. Eccentric-overload training in team-sport functional performance: constant bilateral vertical versus variable unilateral multidirectional movements. Int J Sports Physiol Perform. 2017;12(7):951–8.

    PubMed  Article  Google Scholar 

  18. Gonzalo-Skok O, Sánchez-Sabaté J, Izquierdo-Lupón L, Sáez de Villarreal E. Influence of force-vector and force application plyometric training in young elite basketball players. Eur J Sport Sci. 2019;19(3):305–14.

    PubMed  Article  Google Scholar 

  19. Núñez FJ, Santalla A, Carrasquila I, Asian JA, Reina JI, Suarez-Arrones LJ. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and its determinants, in team sport players. PLoS One. 2018;13(3):e0193841.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Ramirez-Campillo R, Burgos CH, Henríquez-Olguín C, Andrade DC, Martínez C, Álvarez C, et al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res. 2015;29(5):1317–28.

    PubMed  Article  Google Scholar 

  21. Ramirez-Campillo R, Sanchez-Sanchez J, Gonzalo-Skok O, Rodríguez-Fernandez A, Carretero M, Nakamura FFY, Sanchez-Sanchez J, Gonzalo-Skok O, et al. Specific changes in young soccer player’s fitness after traditional bilateral vs. unilateral combined strength and plyometric training. Front Physiol. 2018;9:265.

    PubMed  PubMed Central  Article  Google Scholar 

  22. DE Speirs, Bennett MA, Finn CV, Turner AP. Unilateral vs. bilateral squat training for strength, sprints, and agility in academy rugby players. J Strength Cond Res. 2016;30(2):386–92.

    PubMed  Article  Google Scholar 

  23. Stern D, Gonzalo-Skok O, Loturco I, Turner A, Bishop C. Comparison of bilateral vs. unilateral-biased strength and power training interventions on measures of physical performance in elite youth Soccer players. J Strength Cond Res. 2020;34(8):2105–11.

    PubMed  Article  Google Scholar 

  24. Review Manager. The Nordic Cochrane Centre. Cochrane collaboration. 2014. p. 1–43.

  25. Turner HM, Bernard RM. Calculating and synthesizing effect sizes. Contemp Issues Commun Sci Disord. 2006;33(1):42–55.

    Article  Google Scholar 

  26. Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7(1):105–25.

    PubMed  Article  Google Scholar 

  27. McKenzie JE, Brennan SE, Ryan RE, Thomson HJ, Johnston R V. Summarizing study characteristics and preparing for synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds.) Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2019.

  28. Yanci J, Los Arcos A, Castillo D, Cámara J. Sprinting, change of direction ability and horizontal jump performance in youth runners according to gender. J Hum Kinet. 2017;60(1):199–297.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Dobbs CW, Gill ND, Smart DJ, McGuigan MR. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J Strength Cond Res. 2015;29(3):661–71.

    PubMed  Article  Google Scholar 

  30. Schuster D, Jones PA. Relationships between unilateral horizontal and vertical drop jumps and 20 m sprint performance. Phys Ther Sport. 2016;21:20–5.

    PubMed  Article  Google Scholar 

  31. Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: Cochrane handbook for systematic reviews of interventions: Cochrane book series. 2008. p. 243–96.

  32. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS One. 2013;8(7).

  33. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.

    PubMed  Article  Google Scholar 

  34. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    PubMed  PubMed Central  Article  Google Scholar 

  35. Higgins JP, Homas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2019.

    Book  Google Scholar 

  36. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    PubMed  Article  Google Scholar 

  37. Moran J, Sandercock GRH, Ramírez-Campillo R, Meylan C, Collison J, Parry DA. Age-related variation in male youth athletes’ countermovement jump following plyometric training. J Strength Cond Res. 2017;31(2):552–65.

    PubMed  Article  Google Scholar 

  38. Hawley JA. Specificity of training adaptation: time for a rethink? J Physiol. 2008;586(1):1–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18(4):918.

    PubMed  Google Scholar 

  40. Mullican K, Nijem R. Are unilateral exercises more effective than bilateral exercises? Strength Cond J. 2016;38(1):68–70.

    Article  Google Scholar 

  41. Howe L, Goodwin J, Blagrove R. The integration of unilateral strength training for the lower extremity within an athletic performance programme. Prof Strength Cond. 2014;33:19–24.

    Google Scholar 

  42. Škarabot J, Cronin N, Strojnik V, Avela J. Bilateral deficit in maximal force production. Eur J Appl Physiol. 2016;116(11–12):2057–84.

    PubMed  Article  Google Scholar 

  43. McCurdy K, Langford G. The relationship between maximum unilateral squat strength and balance in young adult men and women. J Sport Sci Med. 2006;5(2):282–8.

    Google Scholar 

  44. Anderson K, Behm DG. The impact of instability resistance training on balance and stability. Sports. 2005;35(1):43–53.

    Google Scholar 

  45. Behm DG, Anderson KG. The role of instability with resistance training. J Strength Cond Res. 2006;20(3):716–22.

    PubMed  Google Scholar 

  46. Behm DG, Drinkwater EJ, Willardson JM, Cowley PM. Canadian Society for Exercise Physiology position stand: the use of instability to train the core in athletic and nonathletic conditioning. Appl Physiol Nutr Metab. 2010;35(1):109–12.

    PubMed  Article  Google Scholar 

  47. Bobbert MF, De Graaf WW, Jonk JN, Casius LJR. Explanation of the bilateral deficit in human vertical squat jumping. J Appl Physiol. 2006;100(2):493–9.

    PubMed  Article  Google Scholar 

  48. Van Soest AJ, Roebroeck ME, Bobbert MF, Huijing PA, Schenau GJVI. A comparison of one-legged and two-legged countermovement jumps. Med Sci Sports Exerc. 1985;17(6):635–9.

    PubMed  Article  Google Scholar 

  49. Behm DG, Power KE, Drinkwater EJ. Muscle activation is enhanced with multi- and uni-articular bilateral versus unilateral contractions. Can J Appl Physiol. 2003;28(1):38–52.

    PubMed  Article  Google Scholar 

  50. Behm DG, Cappa D, Power GA. Trunk muscle activation during moderate and high-intensity running. Appl Physiol Nutr Metab. 2009;34(6):1008–16.

    PubMed  Article  Google Scholar 

  51. Eliassen W, Saeterbakken AH, van den Tillaar R. Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation. Int J Sports Phys Ther. 2018;13(5):871–81.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Hartmann H, Wirth K, Mickel C, Keiner M, Sander A, Yaghobi D. Stress for vertebral bodies and intervertebral discs with respect to squatting depth. J Funct Morphol Kinesiol. 2016;1:254–68.

    Article  Google Scholar 

  53. Peñailillo L, Espíldora F, Jannas-Vela S, Mujika I, Zbinden-Foncea H. Muscle strength and speed performance in youth soccer players. J Hum Kinet. 2016;50(1):203–10.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Anders JPV, Keller JL, Smith CM, Hill EC, Neltner TJ, Housh TJ, et al. Performance fatigability and neuromuscular responses for bilateral versus unilateral leg extensions in women. J Electromyogr Kinesiol. 2020;50:102367.

    PubMed  Article  Google Scholar 

  55. Costa EC, Moreira A, Cavalcanti B, Krinski K, Aoki MS. Effect of unilateral and bilateral resistance exercise on maximal voluntary strength, total volume of load lifted, and perceptual and metabolic responses. Biol Sport. 2015;32(1):35–40.

    PubMed  Article  Google Scholar 

  56. Wahl MJ, Behm DG. Not all instability training devices enhance muscle activation in highly resistance-trained individuals. J Strength Cond Res. 2008;22(4):1360–70.

    PubMed  Article  Google Scholar 

  57. Pappas E, Hagins M, Sheikhzadeh A, Nordin M, Rose D. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med. 2007;17(4):263–8.

    PubMed  Article  Google Scholar 

  58. Makinejad MD, Abu Osman NA, Wan Abas WAB, Bayat M. Preliminary analysis of knee stress in full extension landing. Clinics. 2013;68(9):1180–8.

    PubMed  PubMed Central  Article  Google Scholar 

  59. Migiano MJ, Vingren JL, Volek JS, Maresh CM, Fragala MS, Ho JY, et al. Endocrine response patterns to acute unilateral and bilateral resistance exercise in men. J Strength Cond Res. 2010;24(1):128–34.

    PubMed  Article  Google Scholar 

  60. Jones MT, Ambegaonkar JP, Nindl BC, Smith JA, Headley SA. Effects of unilateral and bilateral lower-body heavy resistance exercise on muscle activity and testosterone responses. J Strength Cond Res. 2012;26(4):1094–100.

    PubMed  Article  Google Scholar 

  61. Moran J, Sandercock GRH, Ramírez-Campillo R, Meylan C, Collison J, Parry DA. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sports Sci. 2017;35(11):1041–51.

    PubMed  Article  Google Scholar 

  62. Moran J, Ramírez-Campillo R, Granacher U. Effects of jumping exercise on muscular power in older adults: a meta-analysis. Sports. 2018;48(12):2843–57.

    Google Scholar 

  63. Fatouros IG, Jamurtas AZ, Leontsini D, Taxildaris K, Aggelousis N, Kostopoulos N, et al. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J Strength Cond Res. 2000;14(4):470–6.

    Google Scholar 

  64. Zghal F, Colson SS, Blain G, Behm DG, Granacher U, Chaouachi A. Combined resistance and plyometric training is more effective than plyometric training alone for improving physical fitness of pubertal soccer players. Front Physiol. 2019;7(10):1026–37.

    Article  Google Scholar 

  65. Fathi A, Hammami R, Moran J, Borji R, Sahli S, Haithem R. A 16 week combined strength and plyometric training program followed by a detraining period on athletic performance in pubertal volleyball players. J Strength Cond Res. 2018;33(8):2117–27.

    Article  Google Scholar 

  66. Chaouachi A, Hammami R, Kaabi S, Chamari K, Drinkwater EJ, Behm DG. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. J Strength Cond Res. 2014;28(6):1483–96.

    PubMed  Article  Google Scholar 

  67. Hammami R, Granacher U, Makhlouf I, Behm DG, Chaouachi A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res. 2016;30(12):3278–89.

    PubMed  Article  Google Scholar 

  68. Chaouachi A, Othman AB, Hammami R, Drinkwater EJ, Behm DG. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children. J Strength Cond Res. 2014;28(2):401–12.

    PubMed  Article  Google Scholar 

  69. Behrens MJ, Simonson SR. A comparison of the various methods used to enhance sprint speed. Strength Cond J. 2011;33(2):64–71.

    Article  Google Scholar 

  70. De Villarreal ES, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84.

    Article  Google Scholar 

  71. Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in Sports and Exercise Medicine research? Eur J Sport Sci. 2014;14(8):847–51.

    PubMed  Article  Google Scholar 

  72. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332:1080.

    PubMed  PubMed Central  Article  Google Scholar 

  73. Sandercock GRH, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc. 2005;37(3):433–9.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Moran.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Jason Moran, Rodrigo Ramirez-Campillo, Bernard Liew, Helmi Chaabene, David Behm, Antonio García-Hermoso, Mikel Izquierdo, and Urs Granacher declare that they have no conflicts of interest relevant to the content of this review.

Authorship contributions

JM collected the data, analysed the data, and wrote the manuscript; RRC collected the data and wrote the manuscript; BL analysed the data and wrote the manuscript; HC analysed the data and wrote the manuscript; DB wrote the manuscript; AGH analysed the data and wrote the manuscript; MI wrote the manuscript; and UG analysed the data and wrote the manuscript.

Data sharing statement

There are no underlying data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moran, J., Ramirez-Campillo, R., Liew, B. et al. Effects of Bilateral and Unilateral Resistance Training on Horizontally Orientated Movement Performance: A Systematic Review and Meta-analysis. Sports Med 51, 225–242 (2021). https://doi.org/10.1007/s40279-020-01367-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01367-9