Skip to main content

Refining Treatment Strategies for Iron Deficient Athletes

Abstract

Iron deficiency (ID) is a prevailing nutritional concern amongst the athletic population due to the increased iron demands of this group. Athletes’ ability to replenish taxed iron stores is challenging due to the low bioavailability of dietary sources, and the interaction between exercise and hepcidin, the primary iron-regulatory hormone. To date, copious research has explored the link between exercise and iron regulation, with a more recent focus on optimising iron treatment applications. Currently, oral iron supplementation is typically the first avenue of iron replacement therapy beyond nutritional intervention, for treatment of ID athletes. However, many athletes encounter associated gastrointestinal side-effects which can deter them from fulfilling a full-term oral iron treatment plan, generally resulting in sub-optimal treatment efficacy. Consequently, various strategies (e.g. dosage, composition, timing) of oral iron supplementation have been investigated with the goal of increasing fractional iron absorption, reducing gastric irritation, and ultimately improving the efficacy of oral iron therapy. This review explores the various treatment strategies pertinent to athletes and concludes a contemporary strategy of oral iron therapy entailing morning supplementation, ideally within the 30 min following morning exercise, and in athletes experiencing gut sensitivity, consumed on alternate days or at lower doses.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Peeling P, Blee T, Goodman C, Dawson B, Claydon G, Beilby J, et al. Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. Int J Sport Nutr Exerc Metab. 2007;17(3):221.

    CAS  PubMed  Google Scholar 

  2. 2.

    Burden RJ, Morton K, Richards T, Whyte GP, Pedlar CR. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Br J Sports Med. 2015;49(21):1389–97.

    PubMed  Google Scholar 

  3. 3.

    Clénin G, Cordes M, Huber A, Schumacher YO, Noack P, Scales J, et al. Iron deficiency in sports–definition, influence on performance and therapy. Swiss Med Weekly. 2015;145:w14196.

    Google Scholar 

  4. 4.

    Garvican LA, Saunders PU, Cardoso T, Macdougall IC, Lobigs LM, Fazakerley R, et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med Sci Sport Exerc. 2014;46(2):376–85.

    CAS  Google Scholar 

  5. 5.

    DellaValle DM, Haas JD. Iron status is associated with endurance performance and training in female rowers. Med Sci Sport Exerc. 2012;44(8):1552–9.

    CAS  Google Scholar 

  6. 6.

    Klingshirn LA, Pate RR, Bourque SP, Davis JM, Sargent RG. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med Sci Sport Exerc. 1992;24(7):819–24.

    CAS  Google Scholar 

  7. 7.

    Fogelholm M, Jaakkola L, Lampisjärvi T. Effects of iron supplementation in female athletes with low serum ferritin concentration. Int J Sports Med. 1992;13(02):158–62.

    CAS  PubMed  Google Scholar 

  8. 8.

    Friedmann B, Weller E, Mairbaurl H, Bärtsch P. Effects of iron repletion on blood volume and performance capacity in young athletes. Med Sci Sport Exerc. 2001;33(5):741–6.

    CAS  Google Scholar 

  9. 9.

    Hinton PS, Giordano C, Brownlie T, Haas JD. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol. 2000;88(3):1103–11.

    CAS  PubMed  Google Scholar 

  10. 10.

    LaManca JJ, Haymes EM. Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med Sci Sport Exerc. 1993;25(12):1386–92.

    CAS  Google Scholar 

  11. 11.

    Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007;370(9586):511–20.

    CAS  PubMed  Google Scholar 

  12. 12.

    Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AK, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur JAppl Physiol. 2019;119(7):1–16.

    Google Scholar 

  13. 13.

    DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sport Exerc. 2014;46(6):1204–15.

    CAS  Google Scholar 

  14. 14.

    Haas JD, Brownlie T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131(2):676S–S690690.

    CAS  PubMed  Google Scholar 

  15. 15.

    Waller MF, Haymes EM. The effects of heat and exercise on sweat iron loss. Med Sci Sport Exer. 1996;28(2):197–203.

    CAS  Google Scholar 

  16. 16.

    Jones GR, Newhouse I. Sport-related hematuria: a review. Clin J Sport Med. 1997;7:120–6.

    Google Scholar 

  17. 17.

    Gaudin C, Zerath E, Guezennec CY. Gastric lesions secondary to long-distance running. Dig Dis Sci. 1990;35(10):1239–43.

    CAS  PubMed  Google Scholar 

  18. 18.

    Peters HP, De Vries WR, Vanberge-Henegouwen GP, Akkermans LM. Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut. 2001;48(3):435–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.

    CAS  PubMed  Google Scholar 

  20. 20.

    Craig WJ. Iron status of vegetarians. Am J Clin Nutr. 1233S;59(5):1233S–S12371237.

    CAS  PubMed  Google Scholar 

  21. 21.

    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    CAS  PubMed  Google Scholar 

  22. 22.

    Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck E, Swinkels D, et al. Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab. 2009;19(6):583.

    CAS  PubMed  Google Scholar 

  23. 23.

    Miller BJ, Pate RR, Burgess W. Foot impact force and intravascular hemolysis during distance running. Int J Sports Med. 1988;9(1):56–60.

    CAS  PubMed  Google Scholar 

  24. 24.

    Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA. Footstrike is the major cause of hemolysis during running. J Appl Physiol. 2003;94(1):38–42.

    CAS  PubMed  Google Scholar 

  25. 25.

    Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014;5:115.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    McKay AK, Peeling P, Pyne DB, Welvaert M, Tee N, Leckey JJ, et al. Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Med Sci Sports Exerc. 2019;51:548–55.

    CAS  PubMed  Google Scholar 

  27. 27.

    Cook JD. Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol. 2005;18(2):319–32.

    CAS  PubMed  Google Scholar 

  28. 28.

    Tolkien Z, Stecher L, Mander AP, Pereira DI, Powell JJ. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS ONE. 2015;10(2):e0117383.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Macdougall IC. Strategies for iron supplementation: oral versus intravenous. Kidney Int. 1999;55:S61–S6666.

    Google Scholar 

  30. 30.

    Harvey LJ, Armah CN, Dainty JR, Foxall RJ, Lewis DJ, Langford NJ, et al. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr. 2005;94(04):557–64.

    CAS  PubMed  Google Scholar 

  31. 31.

    National Health and Medical Research Council. Iron. In: Nutrient Reference Values for Australia and New Zealand. 2014. https://www.nrv.gov.au/nutrients/iron. Accessed Dec 2019.

  32. 32.

    Björn-Rasmussen E, Hallberg L, Isaksson B, Arvidsson B. Food iron absorption in man. Applications of the two-pool extrinsic tag method to measure heme and nonheme iron absorption from the whole diet. J Clin Invest. 1974;53(1):247–55.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Beard J, Tobin B. Iron status and exercise. Am J Clin Nutr. 2000;72(2):594S–S597597.

    CAS  PubMed  Google Scholar 

  34. 34.

    Brune M, Rossander L, Hallberg L. Iron absorption and phenolic compounds: importance of different phenolic structures. Eur J Clin Nutr. 1989;43(8):547–57.

    CAS  PubMed  Google Scholar 

  35. 35.

    Hallberg L, Brune M, Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J Clin Nutr. 1989;49(1):140–4.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hurrell RF, Reddy M, Cook JD. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br J Nutr. 1999;81(04):289–95.

    CAS  PubMed  Google Scholar 

  37. 37.

    Hallberg L, Brune M, Erlandsson M, Sandberg AS, Rossander-Hultén L. Calcium: effect of different amounts on non-heme and heme iron absorption in humans. Am J Clin Nutr. 1991;53(1):112–9.

    CAS  PubMed  Google Scholar 

  38. 38.

    James LJ, Stevenson EJ, Rumbold PL, Hulston CJ. Cow's milk as a post-exercise recovery drink: implications for performance and health. Eur J Sport Sci. 2019;19(1):40–8.

    PubMed  Google Scholar 

  39. 39.

    Diaz M, Rosado JL, Allen LH, Abrams S, García OP. The efficacy of a local ascorbic acid-rich food in improving iron absorption from Mexican diets: a field study using stable isotopes. Am J Clin Nutr. 2003;78(3):436–40.

    CAS  PubMed  Google Scholar 

  40. 40.

    Chatard J-C, Mujika I, Guy C, Lacour J-R. Anaemia and iron deficiency in athletes. Sports Med. 1999;27(4):229–40.

    CAS  PubMed  Google Scholar 

  41. 41.

    Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–28.

    PubMed  Google Scholar 

  42. 42.

    Pelly FE, Burkhart SJ. Dietary regimens of athletes competing at the Delhi 2010 Commonwealth Games. Int J Sport Nutr Exerc Metab. 2014;24(1):28–36.

    PubMed  Google Scholar 

  43. 43.

    Shaw NS, Chin CJ, Pan WH. A vegetarian diet rich in soybean products compromises iron status in young students. J Nutr. 1995;125(2):212–9.

    CAS  PubMed  Google Scholar 

  44. 44.

    Ball MJ, Bartlett MA. Dietary intake and iron status of Australian vegetarian women. Am J Clin Nutr. 1999;70(3):353–8.

    CAS  PubMed  Google Scholar 

  45. 45.

    Logue D, Madigan SM, Delahunt E, Heinen M, Mc Donnell S-J, Corish CA. Low energy availability in athletes: a review of prevalence, dietary patterns, physiological health, and sports performance. Sports Med. 2018;48(1):73–96.

    PubMed  Google Scholar 

  46. 46.

    Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687–97.

    PubMed  Google Scholar 

  47. 47.

    Badenhorst CE, Black KE, O’Brien WJ. Hepcidin as a prospective individualised biomarker for individuals at risk of low energy availability. Int J Sport Nutr Exerc Metab. 2019;29(6):671–81.

    CAS  Google Scholar 

  48. 48.

    Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864–6.

    CAS  PubMed  Google Scholar 

  49. 49.

    Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.

    CAS  PubMed  Google Scholar 

  50. 50.

    Domínguez R, Sánchez-Oliver AJ, Mata-Ordoñez F, Feria-Madueño A, Grimaldi-Puyana M, López-Samanes Á, Pérez-López A. Effects of an acute exercise bout on serum hepcidin levels. Nutrients. 2018;10(2):209.

    PubMed Central  Google Scholar 

  51. 51.

    Goto K, Kojima C, Kasai N, Sumi D, Hayashi N, Hwang H. Resistance exercise causes greater serum hepcidin elevation than endurance (cycling) exercise. PLoS ONE. 2020;15(2):e0228766.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    McCormick R, Moretti D, McKay AK, Laarakkers CM, Trinder D, Cox GR, et al. The impact of morning versus afternoon exercise on iron absorption in athletes. Med Sci Sports Exerc. 2019;51(10):2147–55.

    CAS  PubMed  Google Scholar 

  53. 53.

    Peeling P, McKay AK, Pyne DB, Guelfi KJ, McCormick RH, Laarakkers CM, et al. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol. 2017;117(6):1233–9.

    CAS  PubMed  Google Scholar 

  54. 54.

    Kemna EH, Tjalsma H, Podust VN, Swinkels DW. Mass spectrometry-based hepcidin measurements in serum and urine: analytical aspects and clinical implications. Clin Chem. 2007;53(4):620–8.

    CAS  PubMed  Google Scholar 

  55. 55.

    Santiago P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci World J. 2012;2012:846824.

    Google Scholar 

  56. 56.

    Dawson B, Goodman C, Blee T, Claydon G, Peeling P, Beilby J, et al. Iron supplementation: oral tablets versus intramuscular injection. Int J Sport Nutr Exerc Metab. 2006;16(2):180–6.

    CAS  PubMed  Google Scholar 

  57. 57.

    Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, Haya-Palazuelos J, Ciria-Recasens M, Manasanch J, et al. Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin. 2013;29(4):291–303.

    CAS  PubMed  Google Scholar 

  58. 58.

    Nielsen P, Nachtigall D. Iron supplementation in athletes. Sports Med. 1998;26(4):207–16.

    CAS  PubMed  Google Scholar 

  59. 59.

    Stoffel NU, von Siebenthal HK, Moretti D, Zimmermann MB. Oral iron supplementation in iron-deficient women: How much and how often? Mol Asp Med. 2020;100865.

  60. 60.

    Moretti D, Goede JS, Zeder C, Jiskra M, Chatzinakou V, Tjalsma H, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981. https://doi.org/10.1182/blood-2015-05-642223.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Werner T, Wagner SJ, Martínez I, Walter J, Chang J-S, Clavel T, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut. 2011;60(3):325–33.

    CAS  PubMed  Google Scholar 

  62. 62.

    Stoffel NU, Zeder C, Brittenham GM, Moretti D, Zimmermann MB. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica. 2020;105(5):1232–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Peña-Rosas JP, Viteri FE. Effects of routine oral iron supplementation with or without folic acid for women during pregnancy. Cochrane Database Syst Rev. 2003;(3):CD004736.

  64. 64.

    McCormick R, Dreyer A, Dawson B, Sim M, Lester L, Goodman C, Peeling P. The effectiveness of daily and alternate day iron supplementation in athletes with sub-optimal iron status (part 2). Int J Sport Nutr Exerc Metab. 2020;30(3):191–6.

    Google Scholar 

  65. 65.

    Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9.

    CAS  PubMed  Google Scholar 

  66. 66.

    Nagpal J, Choudhury P. Iron formulations in pediatric practice. Indian Pediatr. 2004;41(8):807–16.

    PubMed  Google Scholar 

  67. 67.

    Davidsson L, Kastenmayer P, Szajewska H, Hurrell RF, Barclay D. Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate. Am J Clin Nutr. 2000;71(6):1597–602.

    CAS  PubMed  Google Scholar 

  68. 68.

    Zariwala M, Somavarapu S, Farnaud S, Renshaw D. Comparison study of oral iron preparations using a human intestinal model. Sci Pharm. 2013;81(4):1123–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hashash JG, Proksell S, Kuan S-F, Behari J. Iron Pill-induced gastritis. ACG Case Rep J. 2013;1(1):13.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Kothadia JP, Arju R, Kaminski M, Mahmud A, Chow J, Giashuddin S. Gastric siderosis: an under-recognized and rare clinical entity. SAGE Open Med. 2016;4:2050312116632109.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Casparis D, Del PC, Branconi F, Grossi A, Merante D, Gafforio L. Effectiveness and tolerability of oral liquid ferrous gluconate in iron-deficiency anemia in pregnancy and in the immediate post-partum period: comparison with other liquid or solid formulations containing bivalent or trivalent iron. Minerva Ginecol. 1996;48(11):511–8.

    CAS  PubMed  Google Scholar 

  72. 72.

    Hall R, Peeling P, Nemeth E, Bergland D, McCluskey WT, Stellingwerff T. Single versus split dose of iron optimizes hemoglobin mass gains at 2106 m altitude. Med Sci Sport Exerc. 2019;51(4):751–9.

    CAS  Google Scholar 

  73. 73.

    Nandadeva T, Dissanayake A, Rajaratne A, Nanayakkara S. Effect of iron supplementation during high altitude training on haemoglobin and iron status of Sri Lankan middle-and long-distance athletes. Sri Lanka Journal of Medicine. 2019;28(1):29–40.

    Google Scholar 

  74. 74.

    Fidler MC, Davidsson L, Zeder C, Walczyk T, Hurrell RF. Iron absorption from ferrous fumarate in adult women is influenced by ascorbic acid but not by Na 2 EDTA. Br J Nutr. 2003;90(6):1081–5.

    CAS  PubMed  Google Scholar 

  75. 75.

    Harrington M, Hotz C, Zeder C, Polvo G, Villalpando S, Zimmermann M, et al. A comparison of the bioavailability of ferrous fumarate and ferrous sulfate in non-anemic Mexican women and children consuming a sweetened maize and milk drink. Eur J Clin Nutr. 2011;65(1):20–5.

    CAS  PubMed  Google Scholar 

  76. 76.

    Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 1461S;91(5):1461S–S14671467.

    CAS  PubMed  Google Scholar 

  77. 77.

    Fogelholm M, Jaakkola L, Lampisjärvi T. Effects of iron supplementation in female athletes with low serum ferritin concentration. Int J Sport Med. 1992;13(2):158–62.

    CAS  Google Scholar 

  78. 78.

    Friedmann B, Weller E, Mairbäurl H, Bärtsch P. Effects of iron repletion on blood volume and performance capacity in young athletes. Med Sci Sport Exerc. 2001;33(5):741–6.

    CAS  Google Scholar 

  79. 79.

    DellaValle DM. Iron supplementation for female athletes: effects of iron status and performance outcomes. Curr Sport Med Rep. 2013;12(4):234–9.

    Google Scholar 

  80. 80.

    Ferrari P, Nicolini A, Manca ML, Rossi G, Anselmi L, Conte M, et al. Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: comparison between oral ferrous bisglycinate chelate and ferrous sulfate. Biomed Pharmacother. 2012;66(6):414–8.

    CAS  Google Scholar 

  81. 81.

    Jeppsen R, Borzelleca J. Safety evaluation of ferrous bisglycinate chelate. Food Chem Toxicol. 1999;37(7):723–31.

    CAS  PubMed  Google Scholar 

  82. 82.

    Bovell-Benjamin AC, Viteri FE, Allen LH. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Am J Clin Nutr. 2000;71(6):1563–9.

    CAS  PubMed  Google Scholar 

  83. 83.

    Grant K, Bothwell R, Streekstra W. A model for calculating the cost of employing iron absorption enhancement strategies in fortification programs. Int J Vitam Nutr Res. 2004;74(6):463–6.

    PubMed  Google Scholar 

  84. 84.

    Allen LH. Advantages and limitations of iron amino acid chelates as iron fortificants. Nutr Rev. 2002;60(suppl_7):S18–S21.

    PubMed  Google Scholar 

  85. 85.

    Drozd M, Jankowska EA, Banasiak W, Ponikowski P. Iron therapy in patients with heart failure and iron deficiency: review of iron preparations for practitioners. Am J Cardiovasc Drugs. 2017;17(3):183–201.

    CAS  Google Scholar 

  86. 86.

    Kaltwasser J, Hansen C, Oebike Y, Werner E. Assessment of iron availability using stable 54Fe. Eur J Clin Invest. 1991;21(4):436–42.

    CAS  PubMed  Google Scholar 

  87. 87.

    Yasa B, Agaoglu L, Unuvar E. Efficacy, tolerability, and acceptability of iron hydroxide polymaltose complex versus ferrous sulfate: a randomized trial in pediatric patients with iron deficiency anemia. Int J Pediatr. 2011;2011:524520.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Toblli JE, Brignoli R. Iron (III)-hydroxide polymaltose complex in iron deficiency anemia. Arzneimittelforschung. 2007;57(06):431–8.

    CAS  PubMed  Google Scholar 

  89. 89.

    Nielsen P, Gabbe E, Fischer R, Heinrich H. Bioavailability of iron from oral ferric polymaltose in humans. Arzneimittel Forschung. 1994;44:743–8.

    CAS  PubMed  Google Scholar 

  90. 90.

    Ruiz-Argüelles GJ, Díaz-Hernández A, Manzano C, Ruiz-Delgado GJ. Ineffectiveness of oral iron hydroxide polymaltose in iron-deficiency anemia. Hematology. 2007;12(3):255–6.

    PubMed  Google Scholar 

  91. 91.

    Jacobs P, Fransman D, Coghlan P. Comparative bioavailability of ferric polymaltose and ferrous sulphate in iron-deficient blood donors. J Clin Apheresis. 1993;8(2):89–95.

    CAS  PubMed  Google Scholar 

  92. 92.

    Tuomainen T-P, Nyyssönen K, Porkkala-Sarataho E, Salonen R, Baumgartner JA, Geisser P, et al. Oral supplementation with ferrous sulfate but not with non-ionic iron polymaltose complex increases the susceptibility of plasma lipoproteins to oxidation. Nutr Res. 1999;19(8):1121–32.

    CAS  Google Scholar 

  93. 93.

    Geisser P, Burckhardt S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics. 2011;3(1):12–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Frazer D, Wilkins S, Becker E, Murphy T, Vulpe C, McKie A, et al. A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut. 2003;52(3):340–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wright AJ, Southon S, Fairweather-Tait SJ. Measurement of non-haem iron absorption in non-anaemic rats using Fe: can the Fe content of duodenal mucosal cells cause lumen or mucosal radioisotope dilution, or both, thus resulting in the underestimation of Fe absorption? Br J Nutr. 1989;62(03):719–27.

    CAS  PubMed  Google Scholar 

  96. 96.

    Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006;26:323–42.

    CAS  PubMed  Google Scholar 

  97. 97.

    Cook J, Carriaga M, Skikne B, Kahn S, Schalch W. Gastric delivery system for iron supplementation. Lancet. 1990;335(8698):1136–9.

    CAS  PubMed  Google Scholar 

  98. 98.

    Stoffel NU, Cercamondi CI, Brittenham G, Zeder C, Geurts-Moespot AJ, Swinkels DW, et al. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials. Lancet Haematol. 2017;4(11):e524–e533533.

    PubMed  Google Scholar 

  99. 99.

    Peña-Rosas JP, De-Regil LM, Dowswell T, Viteri FE. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2012;7(7):CD009997.

    PubMed Central  Google Scholar 

  100. 100.

    Macdougall IC. Evolution of IV iron compounds over the last century. J Ren Care. 2009;35:8–13.

    PubMed  Google Scholar 

  101. 101.

    Woods A, Garvican-Lewis LA, Saunders PU, Lovell G, Hughes D, Fazakerley R, et al. Four weeks of IV iron supplementation reduces perceived fatigue and mood disturbance in distance runners. PLoS ONE. 2014;9(9):e108042.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Garvican LA, Lobigs L, Telford R, Fallon K, Gore CJ. Haemoglobin mass in an anaemic female endurance runner before and after iron supplementation. Int J Sports Physiol Perform. 2011;6(1):137–40.

    PubMed  Google Scholar 

  103. 103.

    Burden RJ, Pollock N, Whyte GP, Richards T, Moore B, Busbridge M, et al. Impact of intravenous iron on aerobic capacity and iron metabolism in elite athletes. Med Sci Sport Exerc. 2014;47(7):1399–407.

    Google Scholar 

  104. 104.

    McKay AK, Goods PS, Binnie MJ, Goodman C, Peeling P. Examining the decay in serum ferritin following intravenous iron infusion: a retrospective cohort analysis of Olympic sport female athletes. Appl Physiol Nutr Metab. 2020. https://doi.org/10.1139/apnm-2020-0132.

    Article  PubMed  Google Scholar 

  105. 105.

    Blee T, Goodman C, Dawson B, Stapff A. The effect of intramuscular iron injections on serum ferritin levels and physical performance in elite netballers. J Sci Med Sport. 1999;2(4):311–21.

    CAS  PubMed  Google Scholar 

  106. 106.

    Pedlar CR, Whyte GP, Burden R, Moore B, Horgan G, Pollock N. A case study of an iron-deficient female Olympic 1500-m runner. Int J Sport Physiol Perform. 2013;8(6):695–8.

    Google Scholar 

  107. 107.

    Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, et al. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE. 2014;9(3):e93002.

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    McKay AK, Peeling P, Pyne DB, Welvaert M, Tee N, Leckey JJ, et al. Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers. J Sci Med Sport. 2019;22(6):635–40.

    PubMed  Google Scholar 

  109. 109.

    Pedlar CR, Brugnara C, Bruinvels G, Burden R. Iron balance and iron supplementation for the female athlete: a practical approach. Eur J Sport Sci. 2018;18(2):295–305.

    PubMed  Google Scholar 

  110. 110.

    Van Wyck DB, Martens MG, Seid MH, Baker JB, Mangione A. Intravenous ferric carboxymaltose compared with oral iron in the treatment of postpartum anemia: a randomized controlled trial. Obstet Gynecol. 2007;110(2 Part 1):267–78.

    PubMed  Google Scholar 

  111. 111.

    Van Wyck DB, Roppolo M, Martinez CO, Mazey RM, McMurray S. A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. Kidney Int. 2005;68(6):2846–56.

    PubMed  Google Scholar 

  112. 112.

    Rampton D, Folkersen J, Fishbane S, Hedenus M, Howaldt S, Locatelli F, et al. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica. 2014;99(11):1671–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Rejinold NS, Kim HK, Isakovic AF, Gater DL, Kim Y-C. Therapeutic vitamin delivery: chemical and physical methods with future directions. J Control Release. 2019;298:83–988.

    CAS  PubMed  Google Scholar 

  114. 114.

    Gupta A, Crumbliss AL. Treatment of iron deficiency anemia: are monomeric iron compounds suitable for parenteral administration? J Lab Clin Med. 2000;136(5):371–8.

    CAS  PubMed  Google Scholar 

  115. 115.

    Murthy SN, Vaka SRK. Irontophoresis™: transdermal delivery of iron by iontophoresis. J Pharm Sci. 2009;98(8):2670–6.

    CAS  PubMed  Google Scholar 

  116. 116.

    Modepalli N, Shivakumar HN, McCrudden MT, Donnelly RF, Banga A, Murthy SN. Transdermal delivery of iron using soluble microneedles: dermal kinetics and safety. J Pharm Sci. 2016;105(3):1196–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    McCormick R, Dawson B, Sim M, Lester L, Goodman C, Peeling P. The effectiveness of transdermal iron patches in athletes with sub-optimal iron status (part 1). Int J Sport Nutr Exerc Metab. 2020;30(3):185–90.

    Google Scholar 

  118. 118.

    Australian Institute of Sport Sports Supplement Framework team. Iron supplement. In: AIS sports supplement framework. 2019. https://www.ais.gov.au/nutrition/supplements/tiles/group_a/resources-iron-supplement. Accessed Jan 2020.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachel McCormick.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of Interest

Rachel McCormick, Marc Sim, Brian Dawson and Peter Peeling declare that they have no conflicts of interest relevant to the content of this review.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Authorship Contributions

RM wrote the first draft of the manuscript. MS, BD and PP revised the original manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCormick, R., Sim, M., Dawson, B. et al. Refining Treatment Strategies for Iron Deficient Athletes. Sports Med 50, 2111–2123 (2020). https://doi.org/10.1007/s40279-020-01360-2

Download citation