Skip to main content

Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-analysis

Abstract

Background

Even from a young age, modern soccer requires high levels of physical fitness development, particularly jumping and sprinting. Plyometric jump training (PJT), combined with young athletes’ regular soccer sessions, has the potential to improve jumping and sprinting. However, studies exploring the effects of PJT are generally limited by small sample sizes. This problem of underpowered studies may, thus, be resolved by pooling study results in a meta-analysis.

Objective

The objective of this systematic review with meta-analysis (SRMA) was to assess the effects of plyometric jump training (PJT) on jumping and sprinting among young male soccer players.

Methods

The SRMA included peer-reviewed articles that incorporated PJT in healthy players (i.e., < 23 years of age), a control group, and a measure of jumping or sprinting. Means and standard deviations of outcomes were converted to Hedges’ g effect sizes (ES), using the inverse variance random-effects model. Moderator analyses were conducted for PJT duration, frequency, total number of sessions, participants’ chronological age, and FIFA age categories (i.e., U-17 vs. U-20 vs. U-23). A multivariate random-effects meta-regression was also conducted.

Results

Thirty-three studies were included, comprising 1499 participants. PJT improved vertical jump tests (ES = 0.60–0.98; all p < 0.01) and linear sprint performance (ES = 0.60–0.98; p < 0.03). Interventions of > 7 weeks and > 14 PJT sessions induced greater effects compared to PJT with ≤ 7 weeks and ≤ 14 total sessions on 10-m sprint performance (between group p = 0.038).

Conclusion

PJT is effective in improving jumping and sprinting performance among young male soccer players. Greater 10-m linear sprinting improvements were noted after interventions > 7-week duration and > 14 sessions, suggesting a greater return from exposure to longer PJT interventions, partially in support for the adoption of a long-term approach to athletic development in young athletes. However, with reference to the findings of the meta-regression, and those from the remaining subgroup and single factors analysis, a robust confirmation regarding the moderator role of participant’s age or PJT configuration effects on young soccer player’s fitness qualities needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability Statement

The datasets generated during and/or analyzed during the current review are available from the corresponding author on reasonable request.

References

  1. Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Physical fitness, injuries, and team performance in soccer. Med Sci Sports Exerc. 2004;36(2):278–85.

    PubMed  Article  Google Scholar 

  2. Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–36.

    PubMed  Article  Google Scholar 

  3. Castagna C, D’Ottavio S, Abt G. Activity profile of young soccer players during actual match play. J Strength Cond Res. 2003;17(4):775–80.

    PubMed  Google Scholar 

  4. Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–31.

    PubMed  Article  Google Scholar 

  5. Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):1095–100.

    CAS  PubMed  Article  Google Scholar 

  6. Turner E, Munro AG, Comfort P. Female soccer: part 1—a needs analysis. Strength Condition J. 2013;35(1):51–7.

    Article  Google Scholar 

  7. Datson N, Hulton A, Andersson H, Lewis T, Weston M, Drust B, et al. Applied physiology of female soccer: an update. Sports Med. 2014;44(9):1225–40.

    PubMed  Article  Google Scholar 

  8. Hansen L, Bangsbo J, Twisk J, Klausen K. Development of muscle strength in relation to training level and testosterone in young male soccer players. J Appl Physiol. 1999;87(3):1141–7.

    CAS  PubMed  Article  Google Scholar 

  9. Vaeyens R, Malina RM, Janssens M, Van Renterghem B, Bourgois J, Vrijens J, et al. A multidisciplinary selection model for youth soccer: the Ghent Youth Soccer Project. Br J Sports Med. 2006;40(11):928–34; discussion 34.

  10. le Gall F, Carling C, Williams M, Reilly T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J Sci Med Sport. 2010;13(1):90–5.

    PubMed  Article  Google Scholar 

  11. Reilly T, Gilbourne D. Science and football: a review of applied research in the football codes. J Sports Sci. 2003;21(9):693–705.

    PubMed  Article  Google Scholar 

  12. Meylan C, Cronin J, Oliver J, Hughes M, Manson S. An evidence-based model of power development in youth soccer. Int J Sports Sci Coach. 2014;9(5):1241–64.

    Article  Google Scholar 

  13. Bedoya AA, Miltenberger MR, Lopez RM. Plyometric training effects on athletic performance in youth soccer athletes: a systematic review. J Strength Cond Res. 2015;29(8):2351–60.

    PubMed  Article  Google Scholar 

  14. Rossler R, Donath L, Verhagen E, Junge A, Schweizer T, Faude O. Exercise-based injury prevention in child and adolescent sport: a systematic review and meta-analysis. Sports Med. 2014;44(12):1733–48.

    PubMed  Article  Google Scholar 

  15. Taube W, Leukel C, Gollhofer A. How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev. 2012;40(2):106–15.

    PubMed  Article  Google Scholar 

  16. Komi PV, Gollhofer A. Stretch reflex can have an important role in force enhancement during SSC-exercise. J Appl Biomech. 1997;13:451–9.

    Article  Google Scholar 

  17. Duda M. Plyometrics: a legitimate form of power training? Phys Sportsmed. 1988;16(3):212–8.

    CAS  PubMed  Article  Google Scholar 

  18. Faigenbaum A, Chu D. Plyometric training for children and adolescents. Indianapolis, IN: American College of Sports Medicine; 2017.

    Google Scholar 

  19. Sands WA, Wurth JJ, Hewit JK. Speed and Agility Training. In: (NSCA) TNSaCAs, editor. Basics of Strength and Conditioning manual; 2012.

  20. Negra Y, Chaabene H, Fernandez-Fernandez J, Sammoud S, Bouguezzi R, Prieske O, et al. Short-term plyometric jump training improves repeated-sprint ability in prepuberal male soccer players. J Strength Cond Res. In press Jun 14.

  21. Loturco I, Pereira LA, Kobal R, Maldonado T, Piazzi AF, Bottino A, et al. Improving sprint performance in soccer: effectiveness of jump squat and olympic push press exercises. PLoS ONE. 2016;11(4):e0153958.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Ramirez-Campillo R, Vergara-Pedreros M, Henriquez-Olguin C, Martinez-Salazar C, Alvarez C, Nakamura FY, et al. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J Sports Sci. 2016;34(8):687–93.

    PubMed  Article  Google Scholar 

  23. Thomas K, French D, Hayes PR. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J Strength Cond Res. 2009;23(1):332–5.

    PubMed  Article  Google Scholar 

  24. Kobal R, Loturco I, Barroso R, Gil S, Cuniyochi R, Ugrinowitsch C, et al. Effects of different combinations of strength, power, and plyometric training on the physical performance of elite young soccer players. J Strength Cond Res. 2017;31(6):1468–76.

    PubMed  Article  Google Scholar 

  25. Yanci J, Los Arcos A, Camara J, Castillo D, García A, Castagna C. Effects of horizontal plyometric training volume on soccer players’ performance. Res Sports Med. 2016;24(4):308–19.

    PubMed  Article  Google Scholar 

  26. Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Ramirez-Velez R, Gentil P, Asadi A, et al. Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med. 2018;48(5):1059–81.

    PubMed  Article  Google Scholar 

  27. Ramirez-Campillo R, Moran J, Chaabene H, Granacher U, Behm DG, Garcia-Hermoso A, et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand J Med Sci Sports. 2020 Feb 8.

  28. de Villarreal ES, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495–506.

    PubMed  Article  Google Scholar 

  29. de Villarreal ES, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Condition Res. 2012;26(2):575–84.

    Article  Google Scholar 

  30. van de Hoef PA, Brauers JJ, van Smeden M, Backx FJG, Brink MS. The effects of lower-extremity plyometric training on soccer-specific outcomes in adult male soccer players: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2019;4:1–15.

    Google Scholar 

  31. Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Medicine. 2017 September 12.

  32. Moran J, Clark CCT, Ramirez-Campillo R, Davies MJ, Drury B. A meta-analysis of plyometric training in female youth: its efficacy and shortcomings in the literature. J Strength Cond Res. 2019;33(7):1996–2008.

    PubMed  Article  Google Scholar 

  33. Moran J, Sandercock G, Ramírez-Campillo R, Meylan C, Collison J, Parry D. Age-related variation in male youth athletes’ countermovement jump after plyometric training: a meta-analysis of controlled trials. Journal of Strength and Conditioning Research. 2017;31(2):552–65.

    PubMed  Article  Google Scholar 

  34. Lloyd RS, Cronin JB, Faigenbaum AD, Haff GG, Howard R, Kraemer WJ, et al. National Strength and Conditioning Association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6):1491–509.

    PubMed  Article  Google Scholar 

  35. Lloyd RS, Meyers RW, Oliver JL. The natural development and trainability of plyometric ability during childhood. Strength Cond J. 2011;33(2):23–32.

    Article  Google Scholar 

  36. Lloyd RS, Oliver JL. The youth physical development model: a new approach to long-term athletic development. Strength Cond J. 2012;34(3):61–72.

    Article  Google Scholar 

  37. Lloyd RS, Oliver JL, Hughes MG, Williams CA. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. J Strength Cond Res. 2011;25(7):1889–97.

    PubMed  Article  Google Scholar 

  38. Ramirez-Campillo R, Sanchez-Sanchez J, Romero-Moraleda B, Yanci J, Garcia-Hermoso A, Manuel CF. Effects of plyometric jump training in female soccer player’s vertical jump height: a systematic review with meta-analysis. J Sports Sci. 2020;7:1–13.

    Google Scholar 

  39. Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Keogh JWL, García-Pinillos F, Pereira LA, et al. Effects of jump training on jumping performance of handball players: A systematic review with meta-analysis of randomised controlled trials. Inter J Sports Sci Coach. 2020:1747954120928932.

  40. Ramirez-Campillo R, Andrade DC, Nikolaidis PT, Moran J, Clemente FM, Chaabene H, et al. Effects of plyometric jump training on vertical jump height of volleyball players: a systematic review with meta-analysis of randomized-controlled trial. J Sport Sci Med. 2020;19:489–99.

    Google Scholar 

  41. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester (UK): Wiley; 2019.

    Book  Google Scholar 

  42. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Chu D, Myer G. Plyometrics. Champaign: Human Kinetics; 2013.

    Google Scholar 

  44. Moran J, Ramirez-Campillo R, Granacher U. Effects of jumping exercise on muscular power in older adults: a meta-analysis. Sports Med. 2018;48(12):2843–57.

    PubMed  Article  Google Scholar 

  45. FIFA. Federation Internationale de Football Association. Zürich, Switzerland. 2020;Accessed at: https://www.fifa.com.

  46. Turner HM, Bernard RM. Calculating and synthesizing effect sizes. Contemp Issues Commun Sci Disord. 2006;33:42–55.

    Article  Google Scholar 

  47. Slinde F, Suber C, Suber L, Edwen CE, Svantesson U. Test-retest reliability of three different countermovement jumping tests. J Strength Cond Res. 2008;22(2):640–4.

    PubMed  Article  Google Scholar 

  48. Altmann S, Ringhof S, Neumann R, Woll A, Rumpf MC. Validity and reliability of speed tests used in soccer: a systematic review. PLoS ONE. 2019;14(8):e0220982.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Murtagh CF, Brownlee TE, OʼBoyle A, Morgans R, Drust B, Erskine RM. Importance of speed and power in elite youth soccer depends on maturation status. J Strength Cond Res. 2018;32(2):297-303.

  50. Moran J, Paxton K, Jones B, Granacher U, Sandercock GRH, Hope E, et al. Variable long-term developmental trajectories of short sprint speed and jumping height in English Premier League academy soccer players: an applied case study. J Sport Sci. In Press.

  51. Stojanović E, Ristić V, McMaster DT, Milanović Z. Effect of plyometric training on vertical jump performance in female athletes: a systematic review and meta-analysis. Sports Med. 2017;47(5):975–86.

    PubMed  Article  Google Scholar 

  52. Ramirez-Campillo R, Sanchez-Sanchez J, Romero-Moraleda B, Yanci J, García-Hermoso A, Manuel Clemente F. Effects of plyometric jump training in female soccer player’s vertical jump height: a systematic review with meta-analysis. J Sports Sci. 2020 (in press).

  53. Higgins JP, Altman DG. Assessing Risk of Bias in Included Studies. Cochrane Handbook for Systematic Reviews of Interventions; 2008. p. 187–241.

  54. Skrede T, Steene-Johannessen J, Anderssen SA, Resaland GK, Ekelund U. The prospective association between objectively measured sedentary time, moderate-to-vigorous physical activity and cardiometabolic risk factors in youth: a systematic review and meta-analysis. Obes Rev. 2019;20(1):55–74.

    CAS  PubMed  Article  Google Scholar 

  55. Garcia-Hermoso A, Ramirez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49(7):1079–94.

    PubMed  Article  Google Scholar 

  56. Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: Higgins JP, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration; 2008. p. 243–96.

  57. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS ONE. 2013;8(7):e69930.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619–29.

    CAS  PubMed  Article  Google Scholar 

  59. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.

    PubMed  Article  Google Scholar 

  60. Higgins JP, Deeks JJ, Altman DG. Special topics in statistics. In: Higgins JP, Green S, editors. Cochrane handbook for systematic reviews of interventions: The Cochrane Collaboration; 2008. p. 481–529.

  61. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    PubMed  Article  Google Scholar 

  63. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Moran J, Clark CCT, Ramirez-Campillo R, Davies MJ, Drury B. A meta-analysis of plyometric training in female youth: its efficacy and shortcomings in the literature. J Strength Cond Res. IN PRESS.

  65. Moran J, Sandercock G, Ramirez-Campillo R, Clark CCT, Fernandes JFT, Drury B. A meta-analysis of resistance training in female youth: its effect on muscular strength, and shortcomings in the literature. Sports Med. 2018 Apr 6.

  66. Moran J, Sandercock GR, Ramirez-Campillo R, Meylan C, Collison J, Parry DA. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sports Sci. 2017;35(11):1041–51.

    PubMed  Article  Google Scholar 

  67. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87.

  68. Asadi A, Ramirez-Campillo R, Arazi H, Saez de Villarreal E. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J Sports Sci. 2018;36(21):2405–11.

  69. Beato M, Bianchi M, Coratella G, Merlini M, Drust B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J Strength Cond Res. 2018;32(2):289–96.

    PubMed  Article  Google Scholar 

  70. Brito J, Vasconcellos F, Oliveira J, Krustrup P, Rebelo A. Short-term performance effects of three different low-volume strength-training programmes in college male soccer players. J Hum Kinet. 2014;40:121–8.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Chelly MS, Ghenem MA, Abid K, Hermassi S, Tabka Z, Shephard RJ. Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players. J Strength Cond Res. 2010;24(10):2670–6.

    PubMed  Article  Google Scholar 

  72. Chtara M, Rouissi M, Haddad M, Chtara H, Chaalali A, Owen A, et al. Specific physical trainability in elite young soccer players: efficiency over 6 weeks’ in-season training. Biol Sport. 2017;34(2):137–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Coratella G, Beato M, Milanese C, Longo S, Limonta E, Rampichini S, et al. Specific adaptations in performance and muscle architecture after weighted jumpsquat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res. 2018;32(4):921–9.

  74. Hammami M, Negra Y, Aouadi R, Shephard RJ, Chelly MS. Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J Strength Cond Res. 2016;30(12):3312–20.

    PubMed  Article  Google Scholar 

  75. Hammami M, Gaamouri N, Shephard RJ, Chelly MS. Effects of contrast strength vs. plyometric training on lower-limb explosive performance, ability to change direction and neuromuscular adaptation in soccer players. J Strength Cond Res. 2019;33(8):2094–103.

  76. Jlid MC, Coquart J, Maffulli N, Paillard T, Bisciotti GN, Chamari K. Effects of in season multi-directional plyometric training on vertical jump performance, change of direction speed and dynamic postural control in U-21 soccer players. Front Physiol. 2020;11:374.

    PubMed  PubMed Central  Article  Google Scholar 

  77. Jlid MC, Racil G, Coquart J, Paillard T, Bisciotti GN, Chamari K. Multidirectional plyometric training: very efficient way to improve vertical jump performance, change of direction performance and dynamic postural control in young soccer players. Front Physiol. 2019;10:1462.

    PubMed  PubMed Central  Article  Google Scholar 

  78. McKinlay BJ, Wallace P, Dotan R, Long D, Tokuno C, Gabriel DA, et al. Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in young adolescent soccer players. J Strength Cond Res. 2018;32(11):3039–50.

    PubMed  Article  Google Scholar 

  79. Meylan C, Malatesta D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J Strength Cond Res. 2009;23(9):2605–13.

    PubMed  Article  Google Scholar 

  80. Michailidis Y, Fatouros IG, Primpa E, Michailidis C, Avloniti A, Chatzinikolaou A, et al. Plyometrics trainability in preadolescent soccer athletes. J Strength Cond Res. 2013;27(1):38–49.

    PubMed  Article  Google Scholar 

  81. Nakamura D, Suzuki T, Yasumatsu M, Akimoto T. Moderate running and plyometric training during off-season did not show a significant difference on soccer-related high-intensity performances compared with no-training controls. J Strength Cond Res. 2012;26(12):3392–7.

    PubMed  Article  Google Scholar 

  82. Negra Y, Chaabene H, Stöggl T, Hammami M, Chelly MS, Hachana Y. Effectiveness and time-course adaptation of resistance training vs. plyometric training in prepubertal soccer players. J Sport Health Sci. 2016 2016/07/16/.

  83. Ramirez-Campillo R, Andrade DC, Alvarez C, Henriquez-Olguin C, Martinez C, Baez-Sanmartin E, et al. The effects of interset rest on adaptation to 7 weeks of explosive training in young soccer players. J Sports Sci Med. 2014;13(2):287–96.

    PubMed  PubMed Central  Google Scholar 

  84. Ramirez-Campillo R, Meylan C, Alvarez C, Henriquez-Olguin C, Martinez C, Canas-Jamett R, et al. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5):1335–42.

    PubMed  Article  Google Scholar 

  85. Ramirez-Campillo R, Meylan CM, Alvarez-Lepin C, Henriquez-Olguin C, Martinez C, Andrade DC, et al. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players. J Strength Cond Res. 2015;29(4):972–9.

    PubMed  Article  Google Scholar 

  86. Ramirez-Campillo R, Burgos CH, Henriquez-Olguin C, Andrade DC, Martinez C, Alvarez C, et al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res. 2015;29(5):1317–28.

    PubMed  Article  Google Scholar 

  87. Ramirez-Campillo R, Gallardo F, Henriquez-Olguin C, Meylan CM, Martinez C, Alvarez C, et al. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J Strength Cond Res. 2015;29(7):1784–95.

    PubMed  Article  Google Scholar 

  88. Ramirez-Campillo R, Henriquez-Olguin C, Burgos C, Andrade DC, Zapata D, Martinez C, et al. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J Strength Cond Res. 2015;29(7):1884–93.

    PubMed  Article  Google Scholar 

  89. Ramirez-Campillo R, Alvarez C, García-Pinillos F, Sanchez-Sanchez J, Yanci J, Castillo D, et al. Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J Strength Cond Res. 2018;32(4):885–93.

    PubMed  Article  Google Scholar 

  90. Ramirez-Campillo R, Alvarez C, Garcia-Pinillos F, Gentil P, Moran J, Pereira LA, et al. Effects of plyometric training on physical performance of young male soccer players: potential effects of different drop jump heights. Pediatr Exerc Sci. 2019;31(3):306–13.

    PubMed  Article  Google Scholar 

  91. Ramirez-Campillo R, Alvarez C, Gentil P, Loturco I, Sanchez-Sanchez J, Izquierdo M, et al. Sequencing effects of plyometric training applied before or after regular soccer training on measures of physical fitness in young players. J Strength Cond Res. 2018;34(7):1959–66.

    Article  Google Scholar 

  92. Ramirez-Campillo R, Alvarez C, Garcia-Pinillos F, Garcia-Ramos A, Loturco I, Chaabene H, et al. Effects of combined surfaces vs. single-surface plyometric training on soccer players’ physical fitness. J Strength Cond Res. 2019 Jan 17.

  93. Rosas F, Ramirez-Campillo R, Diaz D, Abad-Colil F, Martinez-Salazar C, Caniuqueo A, et al. Jump training in youth soccer players: effects of haltere type handheld loading. Int J Sports Med. 2016;37(13):1060–5.

    CAS  PubMed  Article  Google Scholar 

  94. Sedano S, Matheu A, Redondo JC, Cuadrado G. Effects of plyometric training on explosive strength, acceleration capacity and kicking speed in young elite soccer players. J Sports Med Phys Fitness. 2011;51(1):50–8.

    CAS  PubMed  Google Scholar 

  95. Söhnlein Q, Müller E, Stöggl TL. The effect of 16-week plyometric training on explosive actions in early to mid-puberty elite soccer players. J Strength Cond Res. 2014;28(8):2105–14.

    PubMed  Article  Google Scholar 

  96. Spineti J, Figueiredo T, Bastos De Oliveira V, Assis M, Fernandes De Oliveira L, Miranda H, et al. Comparison between traditional strength training and complex contrast training on repeated sprint ability and muscle architecture in elite soccer players. J Sports Med Phys Fit. 2016;56(11):1269–78.

  97. Váczi M, Tollár J, Meszler B, Juhász I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Human Kin. 2013;36(1):17–26.

    Article  Google Scholar 

  98. Vlachopoulos D, Barker AR, Ubago-Guisado E, Williams CA, Gracia-Marco L. The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Arch Osteoporosis. 2018;13(1):128.

    Article  Google Scholar 

  99. Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859–95.

    PubMed  Article  Google Scholar 

  100. Slimani M, Chamari K, Miarka B, Del Vecchio FB, Chéour F. Effects of plyometric training on physical fitness in team sport athletes: a systematic review. J Hum Kinetics. 2016;53(1):231–47.

    Article  Google Scholar 

  101. Ullrich B, Pelzer T, Pfeiffer M. Neuromuscular effects to 6 weeks of loaded countermovement jumping with traditional and daily undulating periodization. J Strength Cond Res. 2018;32(3):660–74.

    PubMed  Article  Google Scholar 

  102. Sáez De Villarreal E, Suarez-Arrones L, Requena B, Haff GG, Ferrete C. Effects of plyometric and sprint training on physical and technical skill performance in adolescent soccer players. J Strength Cond Res. 2015;29(7):1894–903.

  103. Faude O, Roth R, Giovine DD, Zahner L, Donath L. Combined strength and power training in high-level amateur football during the competitive season: a randomised-controlled trial. J Sport Sci. 2013;31(13):1460–7.

    Article  Google Scholar 

  104. Ramirez-Campillo R, Alvarez C, Sanchez-Sanchez J, Slimani M, Gentil P, Chelly MS, et al. Effects of plyometric jump training on the physical fitness of young male soccer players: Modulation of response by inter-set recovery interval and maturation status. J Sport Sci. 2019:1–8.

  105. Moran J, Sandercock G, Rumpf MC, Parry DA. Variation in responses to sprint training in male youth athletes: a meta-analysis. Int J Sports Med. 2017;38(1):1–11.

    CAS  PubMed  Google Scholar 

  106. Ramirez-Campillo R, Garcia-Pinillos F, Garcia-Ramos A, Yanci J, Gentil P, Chaabene H, et al. Effects of different plyometric training frequencies on components of physical fitness in amateur female soccer players. Front Physiol. 2018;9:934.

    PubMed  PubMed Central  Article  Google Scholar 

  107. Yanci J, Castillo D, Iturricastillo A, Ayarra R, Nakamura FY. Effects of two different volume-equated weekly distributed short-term plyometric training programs on futsal players’ physical performance. J Strength Cond Res. 2017;31(7):1787–94.

    PubMed  Article  Google Scholar 

  108. Brumitt J, Heiderscheit BC, Manske RC, Niemuth P, Mattocks A, Rauh MJ. The lower-extremity functional test and lower-quadrant injury in ncaa division iii athletes: a descriptive and epidemiologic report. J Sport Rehabil. 2016;25(3):219–26.

    PubMed  Article  Google Scholar 

  109. Granacher U, Lesinski M, Büsch D, Muehlbauer T, Prieske O, Puta C, et al. Effects of resistance training in youth athletes on muscular fitness and athletic performance: a conceptual model for long-term athlete development. Front Physiol. 2016;7(MAY).

  110. Asadi A, Arazi H, Ramirez-Campillo R, Moran J, Izquierdo M. Influence of maturation stage on agility performance gains after plyometric training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(9):2609–17.

    PubMed  Article  Google Scholar 

  111. Oliver JL, Rumpf MC. Speed development in youths. In: Lloyd R, Oliver JL, editors. Strength and conditioning for young athletes: Science and application. London/New York: Routledge; 2014. p. 80–93.

    Google Scholar 

  112. Oliver JL, Lloyd RS, Rumpf MC. Developing speed throughout childhood and adolescence: the role of growth, maturation and training. Strength Cond J. 2013;35(3):42–8.

    Article  Google Scholar 

  113. Ramirez-Campillo R, Alvarez C, Gentil P, Moran J, Garcia-Pinillos F, Alonso-Martinez AM, et al. Inter-individual variability in responses to 7 weeks of plyometric jump training in male youth soccer players. Front Physiol. 2018;9:1156.

    PubMed  PubMed Central  Article  Google Scholar 

  114. Faigenbaum AD, Lloyd RS, MacDonald J, Myer GD. Citius, Altius, Fortius: beneficial effects of resistance training for young athletes: narrative review. Br J Sports Med. 2016;50(1):3–7.

    PubMed  Article  Google Scholar 

  115. Lloyd RS, Radnor JM, De Ste Croix MBA, Cronin JB, Oliver JL. Changes in sprint and jump performances after traditional, plyometric, and combined resistance training in male youth pre- and post-peak height velocity. J Strength Cond Res. 2016;30(5):1239–47.

    PubMed  Article  Google Scholar 

  116. Lesinski M, Prieske O, Granacher U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis. Br J Sports Med. 2016;50(13):781–95.

    PubMed  Article  Google Scholar 

  117. Ramirez-Campillo R, Moran J, Drury B, Williams M, Keogh JW, Chaabene H, et al. Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. J Strength Cond Res. 2019 Feb 6.

  118. Nesser TW, Latin RW, Berg K, Prentice E. Physiological determinants of 40-meter sprint performance in young male athletes. J Strength Cond Res. 1996;10(4):263–7.

    Google Scholar 

  119. Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921–30.

    PubMed  Article  Google Scholar 

  120. Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med. 2013;47(Suppl 1):i17–21.

    PubMed  Article  Google Scholar 

  121. Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):1402–12.

    CAS  PubMed  Article  Google Scholar 

  122. Bobbert MF, Huijing PA, van Ingen Schenau GJ. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc. 1987;19(4):339–46.

  123. Bobbert MF, Huijing PA, van Ingen Schenau GJ. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc. 1987;19(4):332–8.

  124. Dello Iacono A, Martone D, Milic M, Padulo J. Vertical- vs. horizontal-oriented drop jump training: chronic effects on explosive performances of elite handball players. J Strength Cond Res. 2017;31(4):921–31.

  125. Rossler R, Donath L, Bizzini M, Faude O. A new injury prevention programme for children’s football–FIFA 11 + Kids–can improve motor performance: a cluster-randomised controlled trial. J Sports Sci. 2016;34(6):549–56.

    CAS  PubMed  Article  Google Scholar 

  126. Choi SJ. Cellular mechanism of eccentric-induced muscle injury and its relationship with sarcomere heterogeneity. J Exerc Rehabil. 2014;10(4):200–4.

    PubMed  PubMed Central  Article  Google Scholar 

  127. Fransz DP, Huurnink A, Kingma I, de Boode VA, Heyligers IC, van Dieen JH. Performance on a single-legged drop-jump landing test is related to increased risk of lateral ankle sprains among male elite soccer players: a 3-year prospective cohort study. Am J Sports Med. 2018;46(14):3454–62.

    PubMed  PubMed Central  Article  Google Scholar 

  128. Mujika I. Tapering and peaking for optimal performance: Human Kinetics; 2009.

  129. Ramirez-Campillo R, Pereira LA, Andrade D, Méndez-Rebolledo G, de la Fuente CI, Castro-Sepulveda M, et al. Tapering strategies applied to plyometric jump training: a systematic review with meta-analysis of randomized-controlled trials. J Sports Med Phys Fitness. 2020 Jul 16.

  130. de Villarreal ESS, González-Badillo JJ, Izquierdo M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J Strength Cond Res. 2008;22(3):715–25.

    PubMed  Article  Google Scholar 

  131. de Villarreal ESS, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22.

    Article  Google Scholar 

  132. Brumitt J, Wilson V, Ellis N, Petersen J, Zita CJ, Reyes J. Preseason lower extremity functional test scores are not associated with lower quadrant injury - A validation study with normative data on 395 division III athletes. Int J Sports Phys Ther. 20;13(3):410–21.

  133. Abt G, Boreham C, Davison G, Jackson R, Nevill A, Wallace E, et al. Power, precision, and sample size estimation in sport and exercise science research. J Sport Sci. 2020:1–3.

  134. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ramirez-Campillo.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Rodrigo Ramirez-Campillo, Daniel Castillo, Javier Raya-González, Jason Moran, Eduardo Sáez de Villarreal and Rhodri Lloyd declare that they have no conflicts of interest relevant to the content of this review.

Authorship Contributions

RRC, DC and JRG wrote the first draft of the manuscript. RRC, DC and JRG collected data. RRC and JM analyzed and interpreted the data. ESV and RD revised the original manuscript. All authors read and approved the final manuscript.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Campillo, R., Castillo, D., Raya-González, J. et al. Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-analysis. Sports Med 50, 2125–2143 (2020). https://doi.org/10.1007/s40279-020-01337-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01337-1