Skip to main content

An Examination and Critique of Current Methods to Determine Exercise Intensity

Abstract

Prescribing the frequency, duration, or volume of training is simple as these factors can be altered by manipulating the number of exercise sessions per week, the duration of each session, or the total work performed in a given time frame (e.g., per week). However, prescribing exercise intensity is complex and controversy exists regarding the reliability and validity of the methods used to determine and prescribe intensity. This controversy arises from the absence of an agreed framework for assessing the construct validity of different methods used to determine exercise intensity. In this review, we have evaluated the construct validity of different methods for prescribing exercise intensity based on their ability to provoke homeostatic disturbances (e.g., changes in oxygen uptake kinetics and blood lactate) consistent with the moderate, heavy, and severe domains of exercise. Methods for prescribing exercise intensity include a percentage of anchor measurements, such as maximal oxygen uptake (\({\dot{\text{V}}\text{O}}_{{{\text{2max}}}}\)), peak oxygen uptake (\({\dot{\text{V}}\text{O}}_{{{\text{2peak}}}}\)), maximum heart rate (HRmax), and maximum work rate (i.e., power or velocity—\({\dot{\text{W}}}_{{\max}}\) or \({\dot{\text{V}}}_{{\max}}\), respectively), derived from a graded exercise test (GXT). However, despite their common use, it is apparent that prescribing exercise intensity based on a fixed percentage of these maximal anchors has little merit for eliciting distinct or domain-specific homeostatic perturbations. Some have advocated using submaximal anchors, including the ventilatory threshold (VT), the gas exchange threshold (GET), the respiratory compensation point (RCP), the first and second lactate threshold (LT1 and LT2), the maximal lactate steady state (MLSS), critical power (CP), and critical speed (CS). There is some evidence to support the validity of LT1, GET, and VT to delineate the moderate and heavy domains of exercise. However, there is little evidence to support the validity of most commonly used methods, with exception of CP and CS, to delineate the heavy and severe domains of exercise. As acute responses to exercise are not always predictive of chronic adaptations, training studies are required to verify whether different methods to prescribe exercise will affect adaptations to training. Better ways to prescribe exercise intensity should help sport scientists, researchers, clinicians, and coaches to design more effective training programs to achieve greater improvements in health and athletic performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

source of energy is derived via oxidative phosphorylation. The blood lactate concentration during heavy exercise increases above baseline and then attains a steady state. In contrast, the blood lactate during severe exercise continues to rise above baseline with an absence of a steady state

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    \({\dot{\text{V}}\text{O}}_{{{\text{2max}}}}\): refers to the maximal oxygen uptake value from an 8- to 12-min GXT confirmed via a verification exhaustive bout (VEB); \({{\dot{\text{V}}\text{O}}}_{{{\text{2peak}}}}\): refers to the peak oxygen uptake value from a < 8- or > 12-min GXT or a \({\dot{\text{V}}\text{O}}_{{2}}\) value not confirmed via a VEB [14].

  2. 2.

    The extreme domain is a supramaximal domain and defined as an intensity too extreme to permit attainment of \({\dot{\text{V}}\text{O}}_{{{\text{2max}}}}\) prior to fatigue. Methods to appropriately demarcate the extreme domain are beyond the scope of this review and will not be discussed.

References

  1. 1.

    MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915–30.

    CAS  PubMed  Google Scholar 

  2. 2.

    Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43(7):613–25.

    PubMed  Google Scholar 

  3. 3.

    Pettitt R, Clark I, Ebner S, Sedgeman D, Murray S. Gas exchange threshold and VO2max testing for athletes: an update. J Strength Cond Res. 2013;27(2):549–55.

    PubMed  Google Scholar 

  4. 4.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):1876–90.

    PubMed  Google Scholar 

  5. 5.

    Beneke R. Methodological aspects of maximal lactate steady state—implications for performance testing. Eur J Appl Physiol. 2003;89(1):95–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Pettitt R, Jamnick N, Clark I. 3-min all-out exercise test for running. Int J Sports Med. 2012;33(06):426–31.

    CAS  PubMed  Google Scholar 

  7. 7.

    Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548.

    PubMed  Google Scholar 

  8. 8.

    Lansley K, Dimenna F, Bailey S, Jones A. A ‘new’method to normalise exercise intensity. Int J Sports Med. 2011;32(07):535–41.

    CAS  PubMed  Google Scholar 

  9. 9.

    Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Camic CL, Lewis RW Jr, et al. The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport. 2013;84(2):232–8.

    PubMed  Google Scholar 

  10. 10.

    Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):1197–203.

    CAS  PubMed  Google Scholar 

  11. 11.

    Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214–26.

    CAS  PubMed  Google Scholar 

  12. 12.

    Smith CG, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85(1):19–26.

    CAS  PubMed  Google Scholar 

  13. 13.

    Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):e14098.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS ONE. 2018;13(7):e0199794.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    ACSM. ACSM's guidelines for exercise testing and prescription. 9th edn. Lippincott Williams & Wilkins, Philadelphia; 2013.

  16. 16.

    Coombes J, Skinner T. ESSA’s Student Manual for Health, Exercise and Sport Assessment. 2014.

  17. 17.

    Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56.

    PubMed  Google Scholar 

  18. 18.

    Bourdon P. Blood lactate transition thresholds: concepts and controversies. Physiological Tests for Elite Athletes. 2000.

  19. 19.

    Hofmann P, Tschakert G. Intensity-and duration-based options to regulate endurance training. Front Physiol. 2017;8:337.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Stoggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015 27:6.

    Google Scholar 

  21. 21.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91.

    PubMed  Google Scholar 

  22. 22.

    Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21(3):943–9.

    PubMed  Google Scholar 

  23. 23.

    Seiler S, Tønnessen E. Sportscience sportsci. org. Sportscience. 2009;13:32–533.

    Google Scholar 

  24. 24.

    Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci. 2007;7(2):63–79.

    Google Scholar 

  25. 25.

    Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, et al. The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):4407–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972;33(3):351–6.

    CAS  PubMed  Google Scholar 

  27. 27.

    Xu F, Rhodes EC. Oxygen uptake kinetics during exercise. Sports Med. 1999;27(5):313–27.

    CAS  PubMed  Google Scholar 

  28. 28.

    Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24(1):35–70.

    CAS  PubMed  Google Scholar 

  29. 29.

    Barstow TJ, Casaburi R, Wasserman K. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate. J Appl Physiol. 1993;75(2):755–62.

    CAS  PubMed  Google Scholar 

  30. 30.

    Jorfeldt L, Juhlin-Dannfelt A, Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol. 1978;44(3):350–2.

    CAS  PubMed  Google Scholar 

  31. 31.

    Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev. 1997;77(2):321–58.

    CAS  PubMed  Google Scholar 

  32. 32.

    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol-Regul Integr Comp Physiol. 2004;287(3):R502–R516516.

    CAS  PubMed  Google Scholar 

  33. 33.

    Stanley WC, Gertz EW, Wisneski JA, Morris DL, Neese RA, Brooks GA. Systemic lactate kinetics during graded exercise in man. Am J Physiol-Endocrinol Metab. 1985;249(6):E595–E602.

    CAS  Google Scholar 

  34. 34.

    Nielsen HB, Febbraio MA, Ott P, Krustrup P, Secher NH. Hepatic lactate uptake versus leg lactate output during exercise in humans. J Appl Physiol. 2007;103(4):1227–333.

    CAS  PubMed  Google Scholar 

  35. 35.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):1265–79.

    CAS  PubMed  Google Scholar 

  36. 36.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol-Regul Integr Comp Physiol. 2008;294(2):R585–R593593.

    CAS  PubMed  Google Scholar 

  37. 37.

    Iannetta D, Inglis EC, Fullerton C, Passfield L, Murias JM. Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scand J Med Sci Sports. 2018;28(12):2481–93.

    PubMed  Google Scholar 

  38. 38.

    Keir D, Pogliaghi S, Murias I. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2375–8.

    PubMed  Google Scholar 

  39. 39.

    Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015 47(9):1932–40.

    PubMed  Google Scholar 

  40. 40.

    Chen Z-P, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes. 2003;52(9):2205–12.

    CAS  PubMed  Google Scholar 

  41. 41.

    Jones AM, Wilkerson DP, Fulford J. Muscle [phosphocreatine] dynamics following the onset of exercise in humans: the influence of baseline work-rate. J Physiol. 2008;586(3):889–98.

    CAS  PubMed  Google Scholar 

  42. 42.

    Flück M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol. 2006;209(12):2239–48.

    PubMed  Google Scholar 

  43. 43.

    Perry CG, Hawley JA. Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges. Cold Spring Harb Perspect Med. 2018;8(9):a029686.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(23):4795–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21(10):2602–12.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kitaoka Y, Takeda K, Tamura Y, Hatta H. Lactate administration increases mRNA expression of PGC-1α and UCP3 in mouse skeletal muscle. Appl Physiol Nutr Metab. 2016;41(6):695–8.

    CAS  PubMed  Google Scholar 

  47. 47.

    Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    CAS  PubMed  Google Scholar 

  48. 48.

    Hollidge-Horvat M, Parolin M, Wong D, Jones N, Heigenhauser G. Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. Am J Physiol-Endocrinol Metab. 1999;277(4):E647–E658658.

    CAS  Google Scholar 

  49. 49.

    Hollidge-Horvat M, Parolin M, Wong D, Jones N, Heigenhauser G. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol-Endocrinol Metab. 2000;278(2):E316–E329329.

    CAS  PubMed  Google Scholar 

  50. 50.

    Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Physiol-Regul Integr Comp Physiol. 1998;275(2):R418–R425425.

    CAS  Google Scholar 

  51. 51.

    Özyener F, Rossiter H, Ward S, Whipp B. Influence of exercise intensity on the on-and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol. 2001;533(3):891–902.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Roston WL, Whipp BJ, Davis JA, Cunningham DA, Effros RM, Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis. 1987;135(5):1080–4.

    CAS  PubMed  Google Scholar 

  53. 53.

    Rossiter H, Ward S, Kowalchuk J, Howe F, Griffiths J, Whipp B. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on-and off-transients of moderate-and high-intensity exercise in humans. J. Physiol. 2002;541(3):991–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Saltin B, Karlsson J. Muscle glycogen utilization during work of different intensities. Muscle metabolism during exercise. New York: Springer; 1971. p. 289–299.

    Google Scholar 

  55. 55.

    Messonnier LA, Emhoff C-AW, Fattor JA, Horning MA, Carlson TJ, Brooks GA. Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol. 2013;114(11):1593–602.

    CAS  PubMed  Google Scholar 

  56. 56.

    Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh STJ, et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol. 2017;122(3):446–59.

    CAS  PubMed  Google Scholar 

  57. 57.

    Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 2018 48(8):1809–28.

    PubMed  Google Scholar 

  58. 58.

    Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465–72.

    CAS  PubMed  Google Scholar 

  59. 59.

    Chwalbinska-Moneta J, Robergs RA, Costill DL, Fink WJ. Threshold for muscle lactate accumulation during progressive exercise. J Appl Physiol. 1989;66(6):2710–6.

    CAS  PubMed  Google Scholar 

  60. 60.

    Green H, Hughson R, Orr G, Ranney D. Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol. 1983;54(4):1032–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh ST, et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol. 2016;122(3):446–59.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Meyer T, Gabriel HH, Kindermann W. Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc. 1999;31(9):1342–5.

    CAS  PubMed  Google Scholar 

  63. 63.

    Vollaard NB, Constantin-Teodosiu D, Fredriksson K, Rooyackers O, Jansson E, Greenhaff PL, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106(5):1479–86.

    PubMed  Google Scholar 

  64. 64.

    Scharhag-Rosenberger F, Meyer T, Gäßler N, Faude O, Kindermann W. Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. J Sci Med Sport. 2010;13(1):74–9.

    PubMed  Google Scholar 

  65. 65.

    Katch V, Weltman A, Sady S, Freedson P. Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol. 1978;39(4):219–27.

    CAS  Google Scholar 

  66. 66.

    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Sprint-interval but not continuous exercise increases PGC-1α protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle. Sci Rep. 2017;7:44227.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fiorenza M, Gunnarsson TP, Hostrup M, Iaia F, Schena F, Pilegaard H, et al. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol. 2018;596(14):2823–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Caiozzo VJ, Davis JA, Ellis JF, Azus JL, Vandagriff R, Prietto C, et al. A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol. 1982;53(5):1184–9.

    CAS  PubMed  Google Scholar 

  69. 69.

    Beaver W, Wasserman K, Whipp B. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.

    CAS  PubMed  Google Scholar 

  70. 70.

    Whipp BJ, Davis JA, Wasserman K. Ventilatory control of the ‘isocapnic buffering’region in rapidly-incremental exercise. Respir Physiol. 1989;76(3):357–67.

    CAS  PubMed  Google Scholar 

  71. 71.

    Cheng B, Kuipers H, Snyder A, Keizer H, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med. 1992;13(7):518–22.

    CAS  PubMed  Google Scholar 

  72. 72.

    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30(8):1270–5.

    CAS  PubMed  Google Scholar 

  73. 73.

    Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;03(6):117–30.

    Google Scholar 

  74. 74.

    Machado FA, Nakamura FY, Moraes SMFD. Influence of regression model and incremental test protocol on the relationship between lactate threshold using the maximal-deviation method and performance in female runners. J Sports Sci. 2012;30(12):1267–74.

    PubMed  Google Scholar 

  75. 75.

    Santos-Concejero J, Tucker R, Granados C, Irazusta J, Bidaurrazaga-Letona I, Zabala-Lili J, et al. Influence of regression model and initial intensity of an incremental test on the relationship between the lactate threshold estimated by the maximal-deviation method and running performance. J Sports Sci. 2014;32(9):853–9.

    PubMed  Google Scholar 

  76. 76.

    Rusko H, Luhtanen P, Rahkila P, Viitasalo J, Rehunen S, Härkönen M. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol. 1986;55(2):181–6.

    CAS  Google Scholar 

  77. 77.

    Skinner JS, McLellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport. 1980;51(1):234–48.

    CAS  PubMed  Google Scholar 

  78. 78.

    Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):1995–2003.

    PubMed  Google Scholar 

  79. 79.

    Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(3):329–38.

    Google Scholar 

  80. 80.

    Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50.

    CAS  PubMed  Google Scholar 

  81. 81.

    Whipp B, Huntsman D, Storer T, Lamarra N, Wasserman K. A constant which determines the duration of tolerance to high-intensity work. Federation Proceedings; 1982: Federation Amer Soc Exp Biol; 1982. p. 1591–2.

  82. 82.

    Fukuba Y, Whipp BJ. A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol. 1999;87(2):853–61.

    CAS  PubMed  Google Scholar 

  83. 83.

    Rossiter H, Ward S, Doyle V, Howe F, Griffiths J, Whipp B. Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. J Physiol. 1999;518(3):921–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Barstow TJ, Buchthal S, Zanconato S, Cooper D. Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J Appl Physiol. 1994;77(4):1742–9.

    CAS  PubMed  Google Scholar 

  85. 85.

    Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28(3):560–80.

    CAS  PubMed  Google Scholar 

  86. 86.

    Gollnick P, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):2046–62.

    PubMed  Google Scholar 

  88. 88.

    Jones AM, Poole DC, Grassi B, Christensen PM. The slow component of VO2 kinetics: mechanistic bases and practical applications: Healthy Learning; 2010.

  89. 89.

    Katz A, Sahlin K. Regulation of lactic acid production during exercise. J Appl Physiol. 1988;65(2):509–18.

    CAS  PubMed  Google Scholar 

  90. 90.

    Katz A, Sahlin K. Role of oxygen in regulation of glycolysis and lactate production in human skeletal muscle. Exerc Sport Sci Rev. 1990;18(1):1–28.

    CAS  PubMed  Google Scholar 

  91. 91.

    Sahlin K, Katz A, Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem J. 1987;245(2):551–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Billat V, Sirvent P, Lepretre P-M, Koralsztein JP. Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance-runners. Pflügers Archiv. 2004;447(6):875–83.

    CAS  PubMed  Google Scholar 

  93. 93.

    Gollnick P, Armstrong R, Sembrowich W, Shepherd R, Saltin B. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol. 1973;34(5):615–8.

    CAS  PubMed  Google Scholar 

  94. 94.

    Zoladz JA, Majerczak J, Grassi B, Szkutnik Z, Korostyński M, Gołda S, et al. Mechanisms of attenuation of pulmonary V’O2 slow component in humans after prolonged endurance training. PLoS One. 2016;11(4):e0154135.

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Caputo F, Mello M, Denadai B. Oxygen uptake kinetics and time to exhaustion in cycling and running: a comparison between trained and untrained subjects. Arch Physiol Biochem. 2003;111(5):461–6.

    CAS  PubMed  Google Scholar 

  96. 96.

    Emhoff C-AW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Direct and indirect lactate oxidation in trained and untrained men. J Appl Physiol. 2013;115(6):829–38.

    CAS  PubMed  Google Scholar 

  97. 97.

    Jones AM, Poole DC. Oxygen uptake kinetics in sport, exercise and medicine. London: Routledge; 2013.

    Google Scholar 

  98. 98.

    Baldwin J, Snow RJ, Febbraio MA. Effect of training status and relative exercise intensity on physiological responses in men. Med Sci Sports Exerc. 2000;32(9):1648–54.

    CAS  PubMed  Google Scholar 

  99. 99.

    Koppo K, Bouckaert J, Jones AM. Effects of training status and exercise intensity on phase II VO2 kinetics. Med Sci Sports Exerc. 2004;36(2):225–32.

    PubMed  Google Scholar 

  100. 100.

    Carter H, Jones AM, Barstow TJ, Burnley M, Williams C, Doust JH. Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol. 2000;89(5):1744–52.

    CAS  PubMed  Google Scholar 

  101. 101.

    Granata C, Jamnick NA, Bishop DJ. Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med. 2018;48(7):1541–59.

    PubMed  Google Scholar 

  102. 102.

    Baldwin J, Snow RJ, Carey MF, Febbraio MA. Muscle IMP accumulation during fatiguing submaximal exercise in endurance trained and untrained men. Am J Physiol-Regul Integr Comp Physiol. 1999;277(1):R295–R300.

    CAS  Google Scholar 

  103. 103.

    Gass G, McLellan T, Gass E. Effects of prolonged exercise at a similar percentage of maximal oxygen consumption in trained and untrained subjects. Eur J Appl Physiol. 1991;63(6):430–5.

    CAS  Google Scholar 

  104. 104.

    Sedgeman D, Dalleck L, Clark IE, Jamnick N, Pettitt R. Analysis of square-wave bouts to verify VO2max. Int J Sports Med. 2013;34(12):1058–62.

    CAS  PubMed  Google Scholar 

  105. 105.

    Pettitt RW, Jamnick NA. Commentary on “Measurement of the maximum oxygen uptake V̇o2max: V̇o2peak is no longer acceptable”. J Appl Physiol. 2017;123(3):696.

    PubMed  Google Scholar 

  106. 106.

    Poole DC, Jones AM. Measurement of the maximum oxygen uptake V̇O2max: V̇O2peak is no longer acceptable. J Appl Physiol. 2017;122(4):997–1002.

    CAS  PubMed  Google Scholar 

  107. 107.

    Jamnick NA, By S, Pettitt CD, Pettitt RW. Comparison of the YMCA and a custom submaximal exercise test for determining VO2max. Med Sci Sports Exerc. 2016 48(2):254–9.

    PubMed  Google Scholar 

  108. 108.

    Kirkeberg J, Dalleck L, Kamphoff C, Pettitt R. Validity of 3 protocols for verifying VO2max. Int J Sports Med. 2011;32(04):266–70.

    CAS  PubMed  Google Scholar 

  109. 109.

    Pettitt RW, Placek AM, Clark IE, Jamnick NA, Murray SR. Sensitivity of prescribing high-intensity, interval training using the critical power concept. Int J Exerc Sci. 2015;8(3):1.

    Google Scholar 

  110. 110.

    Clark IE, Murray SR, Pettitt RW. Alternative procedures for the three-minute all-out exercise test. J Strength Cond Res. 2013;27(8):2104–12.

    PubMed  Google Scholar 

  111. 111.

    Dicks ND, Jamnick NA, Murray SR, Pettitt RW. Load determination for the 3-minute all-out exercise test for cycle ergometry. Int J Sports Physiol Perform. 2016;11(2):197–203.

    PubMed  Google Scholar 

  112. 112.

    Aunola S, Rusko H. Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol. 1984;53(3):260–6.

    CAS  Google Scholar 

  113. 113.

    LourenÇo TF, Martins LEB, Tessutti LS, Brenzikofer R, Macedo DV. Reproducibility of an incremental treadmill VO2max test with gas exchange analysis for runners. J Strength Cond. Res. 2011;25(7):1994–9.

    PubMed  Google Scholar 

  114. 114.

    Wisén AG, Wohlfart B. A refined technique for determining the respiratory gas exchange responses to anaerobic metabolism during progressive exercise–repeatability in a group of healthy men. Clin Physiol Funct Imaging. 2004;24(1):1–9.

    PubMed  Google Scholar 

  115. 115.

    Weltman A, Snead D, Stein P, Seip R, Schurrer R, Rutt R, et al. Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. Int J Sports Med. 1990;11(01):26–322.

    CAS  PubMed  Google Scholar 

  116. 116.

    Yoon B-K, Kravitz L, Robergs R. VO2max, protocol duration, and the vo2 plateau. Med Sci Sport Exerc. 2007;39(7):1186–92.

    Google Scholar 

  117. 117.

    Bishop D, Jenkins DG, Mackinnon LT. The effect of stage duration on the calculation of peak VO2 during cycle ergometry. J Sci Med Sport. 1998;1(3):171–8.

    CAS  PubMed  Google Scholar 

  118. 118.

    Bentley DJ, McNaughton LR. Comparison of Wpeak, VO2peak and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance. J Sci Med Sport. 2003;6(4):422–35.

    CAS  PubMed  Google Scholar 

  119. 119.

    Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis. Sports Med. 2007;37(7):575–86.

    PubMed  Google Scholar 

  120. 120.

    Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;588(10):1779–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Coyle EF, Coggan AR, Hopper M, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):2622–30.

    CAS  PubMed  Google Scholar 

  122. 122.

    Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol. 1985;58(4):1115–21.

    CAS  PubMed  Google Scholar 

  123. 123.

    Zoladz JA, Duda K, Majerczak J. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans. Eur J Appl Physiol. 1998;77(5):445–51.

    CAS  Google Scholar 

  124. 124.

    Zoladz JA, Rademaker A, Sargeant AJ. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans. J Physiol. 1995;488(Pt 1):211.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Boone J, Bourgois J. The oxygen uptake response to incremental ramp exercise. Sports Med. 2012;42(6):511–26.

    PubMed  Google Scholar 

  126. 126.

    Keir DA, Benson AP, Love LK, Robertson TC, Rossiter HB, Kowalchuk JM. Influence of muscle metabolic heterogeneity in determining the V̇O2p kinetic response to ramp-incremental exercise. J Appl Physiol. 2016;120(5):503–13.

    CAS  PubMed  Google Scholar 

  127. 127.

    Iannetta D, Inglis EC, Mattu AT, Fontana FY, Pogliaghi S, Keir DA, et al. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sports Exerc. 2020;52(2):466–73.

    PubMed  Google Scholar 

  128. 128.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211–34.

    CAS  PubMed  Google Scholar 

  129. 129.

    Morton RH. Why peak power is higher at the end of steeper ramps: An explanation based on the “critical power” concept. J Sports Sci. 2011;29(3):307–9.

    PubMed  Google Scholar 

  130. 130.

    Poole DC, Jones AM. Reply to Pettitt and Jamnick’s letter in reference to: Measurement of the maximum oxygen uptake V̇O2max: V̇O2peak is no longer acceptable. J Appl Physiol. 2017;123(3):697.

    PubMed  Google Scholar 

  131. 131.

    Adami A, Sivieri A, Moia C, Perini R, Ferretti G. Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption. Eur J Appl Physiol. 2013;113(10):2647–53.

    PubMed  Google Scholar 

  132. 132.

    Bentley D, McNaughton L, Batterham A. Prolonged stage duration during incremental cycle exercise: effects on the lactate threshold and onset of blood lactate accumulation. Eur J Appl Physiol. 2001;85(3–4):351–7.

    CAS  PubMed  Google Scholar 

  133. 133.

    Amann M, Subudhi A, Foster C. Influence of testing protocol on ventilatory thresholds and cycling performance. Med Sci Sports Exerc. 2004;36(4):613–22.

    PubMed  Google Scholar 

  134. 134.

    Bishop DJ, Botella J, Genders AJ, Lee MJ, Saner NJ, Kuang J, et al. High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. Physiology. 2018;34(1):56–70.

    Google Scholar 

  135. 135.

    Jensen K, Johansen L. Reproducibility and validity of physiological parameters measured in cyclists riding on racing bikes placed on a stationary magnetic brake. Scand J Med Sci Sports. 1998;8(1):1–6.

    CAS  PubMed  Google Scholar 

  136. 136.

    Weston SB, Gabbett TJ. Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. J Sci Med Sport. 2001;4(3):357–66.

    CAS  PubMed  Google Scholar 

  137. 137.

    Lamberts RP, Swart J, Woolrich RW, Noakes TD, Lambert MI. Measurement error associated with performance testing in well-trained cyclists: application to the precision of monitoring changes in training status. Int Sportmed J. 2009;10(1):33–44.

    Google Scholar 

  138. 138.

    Cunha F, Midgley A, Monteiro W, Farinatti P. Influence of cardiopulmonary exercise testing protocol and resting VO2 assessment on% HRmax, %HRR, %VO2max and %VO2R relationships. Int J Sports Med. 2010;31(5):319–26.

    CAS  PubMed  Google Scholar 

  139. 139.

    Machado FA, Kravchychyn ACP, Peserico CS, da Silva DF, Mezzaroba PV. Effect of stage duration on maximal heart rate and post-exercise blood lactate concentration during incremental treadmill tests. J Sci Med Sport. 2013;16(3):276–80.

    PubMed  Google Scholar 

  140. 140.

    Santos ALd, Silva SC, Farinatti PdTV, Monteiro WD. Peak heart rate responses in maximum laboratory and field tests. Revista Brasileira de Medicina do Esporte. 2005;11(3):177–80.

    Google Scholar 

  141. 141.

    Coutinho C, Watson A, Brickson S, Sanfilippo J. Maximal heart rate differs between laboratory and field conditions among female athletes. J Hum Sport Exerc. 2017;12(2).

  142. 142.

    Semin K, Stahlnecker AC IV, Heelan K, Brown GA, Shaw BS, Shaw I. Discrepancy between training, competition and laboratory measures of maximum heart rate in NCAA division 2 distance runners. J Sports Sci Med. 2008;7(4):455.

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Pettitt RW, Symons JD, Taylor JE, Eisenman PA, White AT. Adjustment for gas exchange threshold enhances precision of heart rate-derived VO2 estimates during heavy exercise. Appl Physiol Nutr Metab. 2007;33(1):68–74.

    Google Scholar 

  144. 144.

    Wasserman K, Whipp BJ, Koyl S, Beaver W. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236–43.

    CAS  PubMed  Google Scholar 

  145. 145.

    Stoggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014 4:5.

    Google Scholar 

  146. 146.

    Jones A, Burnley M, Vanhatalo A. Aerobic Exercise Performance: Kinanthropometry and Exercise Physiology 4th ed. London; 2018.

  147. 147.

    Bell C, Paterson DH, Kowalchuk JM, Padilla J, Cunningham DA. A comparison of modelling techniques used to characterise oxygen uptake kinetics during the on-transient of exercise. Exp Physiol. 2001;86(05):667–76.

    CAS  PubMed  Google Scholar 

  148. 148.

    Faude O, Kindermann W, Meyer T. Lactate threshold concepts. Sports Med. 2009;39(6):469–90.

    PubMed  Google Scholar 

  149. 149.

    Hering GO, Hennig EM, Riehle HJ, Stepan J. A lactate kinetics method for assessing the maximal lactate steady state workload. Front Physiol. 2018;9(310):310.

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Billat VL, Sirvent P, Py G, Koralsztein J-P, Mercier J. The concept of maximal lactate steady state. Sports Med. 2003;33(6):407–26.

    PubMed  Google Scholar 

  151. 151.

    Pallarés JG, Morán-Navarro R, Ortega JF, Fernández-Elías VE, Mora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS One. 2016;11(9):e0163389.

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Morton RH, Stannard SR, Kay B. Low reproducibility of many lactate markers during incremental cycle exercise. Br J Sports Med. 2012;46(1):64–9.

    PubMed  Google Scholar 

  153. 153.

    Cerezuela-Espejo V, Courel-Ibáñez J, Morán-Navarro R, Martínez-Cava A, Pallarés JG. The relationship between lactate and ventilatory thresholds in runners: validity and reliability of exercise test performance parameters. Front Physiol. 2018;9(1320):1–10.

    Google Scholar 

  154. 154.

    Seiler S, Jøranson K, Olesen B, Hetlelid K. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83.

    CAS  PubMed  Google Scholar 

  155. 155.

    Davis JA, Rozenek R, DeCicco DM, Carizzi MT, Pham PH. Comparison of three methods for detection of the lactate threshold. Clin Physiol Funct Imaging. 2007;27(6):381–4.

    CAS  PubMed  Google Scholar 

  156. 156.

    Denadai B, Figueira T, Favaro O, Gonçalves M. Effect of the aerobic capacity on the validity of the anaerobic threshold for determination of the maximal lactate steady state in cycling. Braz J Med Biol Res. 2004;37(10):1551–6.

    CAS  PubMed  Google Scholar 

  157. 157.

    Czuba M, Zając A, Cholewa J, Poprzęcki S, Waśkiewicz Z, Mikołajec K. Lactate threshold (D-max method) and maximal lactate steady state in cyclists. J Hum Kinet. 2009;21:49–56.

    Google Scholar 

  158. 158.

    Grossl T, De Lucas RD, De Souza KM, Antonacci Guglielmo LG. Maximal lactate steady-state and anaerobic thresholds from different methods in cyclists. Eur J Sport Sci. 2012;12(2):161–7.

    Google Scholar 

  159. 159.

    Bourdon PC, Woolford SM, Buckley JD. Effects of varying the step duration on the determination of lactate thresholds in elite rowers. Int J Sports Physiol Perform. 2018;13(6):687–93.

    PubMed  Google Scholar 

  160. 160.

    Aldrich J. Correlations genuine and spurious in Pearson and Yule. Stat Sci. 1995;10(4):364–76.

    Google Scholar 

  161. 161.

    Hanneman SK. Design, analysis and interpretation of method-comparison studies. AACN Adv Critical Care. 2008;19(2):223.

    Google Scholar 

  162. 162.

    Hauser T, Adam J, Schulz H. Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med. 2014;35(6):517–21.

    CAS  PubMed  Google Scholar 

  163. 163.

    Chalmers S, Esterman A, Eston R, Norton K. Standardization of the Dmax method for calculating the second lactate threshold. Int J Sports Physiol Perform. 2015 10(7):921–6.

    PubMed  Google Scholar 

  164. 164.

    Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol. 1979;42(1):25–34.

    CAS  Google Scholar 

  165. 165.

    Hauser T, Bartsch D, Baumgärtel L, Schulz H. Reliability of maximal lactate-steady-state. Int J Sports Med. 2013;34(3):196–9.

    CAS  PubMed  Google Scholar 

  166. 166.

    Marwood S, Goulding RP, Roche DM. Determining the upper limit of the metabolic steady state. Med Sci Sports Exerc. 2019 51(3):602.

    PubMed  Google Scholar 

  167. 167.

    Baron B, Noakes TD, Dekerle J, Moullan F, Robin S, Matran R, et al. Why does exercise terminate at the maximal lactate steady state intensity? Br J Sports Med. 2008;42(10):828–33.

    CAS  PubMed  Google Scholar 

  168. 168.

    De Lucas R, De Souza K, Costa V, Grossl T, Guglielmo L. Time to exhaustion at and above critical power in trained cyclists: the relationship between heavy and severe intensity domains. Sci Sports. 2013;28(1):e9–e14.

    Google Scholar 

  169. 169.

    Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, et al. Responses during exhaustive exercise at critical power determined from the 3-min all-out test. J Sports Sci. 2013;31(5):537–45.

    PubMed  Google Scholar 

  170. 170.

    Foxdal P, Sjödin A, Sjödin B. Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise. Int J Sports Med. 1996;17(05):360–5.

    CAS  PubMed  Google Scholar 

  171. 171.

    Stainsby WN, Brooks GA. Control of lactic acid metabolism in contracting muscles and during exercise. Exerc Sport Sci Rev. 1990;18(1):29–64.

    CAS  PubMed  Google Scholar 

  172. 172.

    Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985;17(1):22–34.

    CAS  PubMed  Google Scholar 

  173. 173.

    Weatherwax RM, Harris NK, Kilding AE, Dalleck LC. Incidence of VO2max responders to personalized versus standardized exercise prescription. Med Sci Sports Exerc. 2019;51(4):681–91.

    PubMed  Google Scholar 

  174. 174.

    Wolpern AE, Burgos DJ, Janot JM, Dalleck LC. Is a threshold-based model a superior method to the relative percent concept for establishing individual exercise intensity? a randomized controlled trial. BMC Sports Sci Med Rehabil. 2015;7(1):1.

    Google Scholar 

  175. 175.

    Davis J, Caiozzo V, Lamarra N, Ellis J, Vandagriff R, Prietto C, et al. Does the gas exchange anaerobic threshold occur at a fixed blood lactate concentration of 2 or 4 mM? Int J Sports Med. 1983;4(2):89–93.

    CAS  PubMed  Google Scholar 

  176. 176.

    Gaskill SE, Ruby BC, Walker AJ, Sanchez OA, Serfass RC, Leon AS. Validity and reliability of combining three methods to determine ventilatory threshold. Med Sci Sports Exerc. 2001;33(11):1841–8.

    CAS  PubMed  Google Scholar 

  177. 177.

    Simon J, Young JL, Blood DK, Segal KR, Case RB, Gutin B. Plasma lactate and ventilation thresholds in trained and untrained cyclists. J Appl Physiol. 1986;60(3):777–81.

    CAS  PubMed  Google Scholar 

  178. 178.

    Von Duvillard S, LeMura L, Bacharach D, Di Vico P. Determination of lactate threshold by respiratory gas exchange measures and blood lactate levels during incremental load work. J Manipulative Physiol Ther. 1993;16(5):312–8.

    Google Scholar 

  179. 179.

    McLellan T. Ventilatory and plasma lactate response with different exercise protocols: a comparison of methods. Int J Sports Med. 1985;6(1):30–5.

    CAS  PubMed  Google Scholar 

  180. 180.

    Thomas V, Costes F, Chatagnon M, Pouilly J-P, Busso T. A comparison of lactate indices during ramp exercise using modelling techniques and conventional methods. J Sports Sci. 2008;26(13):1387–95.

    PubMed  Google Scholar 

  181. 181.

    Péronnet F, Aguilaniu B. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal. Respir Physiol Neurobiol. 2006;150(1):4–18.

    PubMed  Google Scholar 

  182. 182.

    Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. AM J Cardiol. 1964;14(6):844–52.

    CAS  PubMed  Google Scholar 

  183. 183.

    Posner JD, Gorman KM, Klein HS, Cline CJ. Ventilatory threshold: measurement and variation with age. J Appl Physiol. 1987;63(4):1519–25.

    CAS  PubMed  Google Scholar 

  184. 184.

    Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sports Exerc. 2017;49(7):1452–60.

    PubMed  Google Scholar 

  185. 185.

    Wasserman K, Stringer W, Casaburi R, Koike A, Cooper C. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol. 1994;83:1–12.

    CAS  PubMed  Google Scholar 

  186. 186.

    Santos EL, Giannella-Neto A. Comparison of computerized methods for detecting the ventilatory thresholds. Eur J Appl Physiol. 2004;93(3):315–24.

    PubMed  Google Scholar 

  187. 187.

    Meyer T, Faude O, Scharhag J, Urhausen A, Kindermann W. Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? Br J Sports Med. 2004;38(5):622–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Weston S, Gray A, Schneider DA, Gass GC. Effect of ramp slope on ventilation thresholds and V O2peak in male cyclists. Int J Sports Med. 2002;23(01):22–7.

    CAS  PubMed  Google Scholar 

  189. 189.

    Scheuermann B, Kowalchuk J. Attenuated respiratory compensation during rapidly incremented ramp exercise. Respir Physiol. 1998;114(3):227–38.

    CAS  PubMed  Google Scholar 

  190. 190.

    Iannetta D, Azevedo RdA, Keir DA, Murias JM. Establishing the V̇O2 versus constant-work rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem. J Appl Physiol. 2019;127(6):1519–27.

    PubMed  Google Scholar 

  191. 191.

    Keir DA, Robertson TC, Benson AP, Rossiter HB, Kowalchuk JM. The influence of metabolic and circulatory heterogeneity on the expression of pulmonary oxygen uptake kinetics in humans. Exp Physiol. 2016;101(1):176–92.

    CAS  PubMed  Google Scholar 

  192. 192.

    Iannetta D, Murias JM, Keir DA. A simple method to quantify the VO2 mean response time of ramp-incremental exercise. Med Sci Sports Exerc. 2019;51(5):1080–6.

    PubMed  Google Scholar 

  193. 193.

    Broxterman R, Craig J, Richardson R. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2379–82.

    PubMed  Google Scholar 

  194. 194.

    Broxterman R, Ade C, Craig J, Wilcox S, Schlup S, Barstow T. The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci. 2015;15(7):631–9.

    CAS  PubMed  Google Scholar 

  195. 195.

    Jones AM, Vanhatalo A. The ‘Critical Power’Concept: Applications to sports performance with a focus on intermittent high-intensity exercise. Sports Medicine. 2017:1–14.

  196. 196.

    Bishop D, Jenkins DG, Howard A. The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med. 1998;19(02):125–9.

    CAS  PubMed  Google Scholar 

  197. 197.

    Busso T, Gimenez P, Chatagnon M. A comparison of modelling procedures used to estimate the power–exhaustion time relationship. Eur J Appl Physiol. 2010;108(2):257.

    PubMed  Google Scholar 

  198. 198.

    Maturana FM, Fontana FY, Pogliaghi S, Passfield L, Murias JM. Critical power: how different protocols and models affect its determination. J Sci Med Sport. 2018;21(7):742–7.

    Google Scholar 

  199. 199.

    Vandewalle H, Péerès G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4(4):268–89.

    CAS  PubMed  Google Scholar 

  200. 200.

    Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW Jr, Camic CL, et al. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J Strength Cond Res. 2014;28(3):592–600.

    PubMed  Google Scholar 

  201. 201.

    Jones AM, Wilkerson D, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18(5):615–26.

    CAS  PubMed  Google Scholar 

  202. 202.

    Laursen PB, Francis GT, Abbiss CR, Newton MJ, Nosaka K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):1374–9.

    PubMed  Google Scholar 

  203. 203.

    Muniz-Pumares D, Karsten B, Triska C, Glaister M. Methodological approaches and related challenges associated with the determination of critical power and curvature constant. J Strength Cond Res. 2019 33(2):584–96.

    PubMed  Google Scholar 

  204. 204.

    Puchowicz MJ, Mizelman E, Yogev A, Koehle MS, Townsend NE, Clarke DC. The critical power model as a potential tool for anti-doping. Front Physiol. 2018;9:643.

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Vanhatalo A, Fulford J, DiMenna FJ, Jones AM. Influence of hyperoxia on muscle metabolic responses and the power–duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol. 2010;95(4):528–40.

    CAS  PubMed  Google Scholar 

  206. 206.

    Triska C, Tschan H, Tazreiter G, Nimmerichter A. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. 2015;36(13):1063–8.

    CAS  PubMed  Google Scholar 

  207. 207.

    Karsten B, Jobson SA, Hopker J, Passfield L, Beedie C. The 3-min test does not provide a valid measure of critical power using the SRM isokinetic mode. Int J Sports Med. 2014;35(04):304–9.

    CAS  PubMed  Google Scholar 

  208. 208.

    Housh DJ, Housh TJ, Bauge SM. A methodological consideration for the determination of critical power and anaerobic work capacity. Res Q Exerc Sport. 1990;61(4):406–9.

    CAS  PubMed  Google Scholar 

  209. 209.

    Simpson LP, Kordi M. Comparison of critical power and W′ derived from 2 or 3 maximal tests. Int J Sports Physiol Perform. 2017;12(6):825–30.

    PubMed  Google Scholar 

  210. 210.

    Triska C, Karsten B, Beedie C, Koller-Zeisler B, Nimmerichter A, Tschan H. Different durations within the method of best practice affect the parameters of the speed–duration relationship. Eur J Sport Sci. 2018;18(3):332–40.

    PubMed  Google Scholar 

  211. 211.

    Bosquet L, Duchene A, Lecot F, Dupont G, Leger L. Vmax estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction. Eur J Appl Physiol. 2006;97(1):34.

    PubMed  Google Scholar 

  212. 212.

    Bull AJ, Housh TJ, Johnson GO, Perry SR. Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc. 2000;32(2):526–30.

    CAS  PubMed  Google Scholar 

  213. 213.

    Bull AJ, Housh TJ, Johnson GO, Rana SR. Physiological responses at five estimates of critical velocity. Eur J Appl Physiol. 2008;102(6):711–20.

    PubMed  Google Scholar 

  214. 214.

    Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc. 1995;27(10):1430–8.

    CAS  PubMed  Google Scholar 

  215. 215.

    Housh TJ, Cramer JT, Bull AJ, Johnson GO, Housh DJ. The effect of mathematical modeling on critical velocity. Eur J Appl Physiol. 2001;84(5):469–75.

    CAS  PubMed  Google Scholar 

  216. 216.

    Sawyer BJ, Morton RH, Womack CJ, Gaesser GA. VO2max may not be reached during exercise to exhaustion above critical power. Med Sci Sports Exerc. 2012;44(8):1533–8.

    PubMed  Google Scholar 

  217. 217.

    Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. In J Sports Physiol Perform. 2014;9(6):931–5.

    Google Scholar 

  218. 218.

    Black MI, Jones AM, Bailey SJ, Vanhatalo A. Self-pacing increases critical power and improves performance during severe-intensity exercise. Appl Physiol Nutr Metab. 2015;40(7):662–70.

    PubMed  Google Scholar 

  219. 219.

    Gaesser G, Wilson L. Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. Int J Sports Med. 1988;9(06):417–21.

    CAS  PubMed  Google Scholar 

  220. 220.

    Hopkins W. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15.

    CAS  PubMed  Google Scholar 

  221. 221.

    Johnson TM, Sexton PJ, Placek AM, Murray SR, Pettitt RW. Reliability analysis of the 3-min all-out exercise test for cycle ergometry. Med Sci Sports Exerc. 2011;43(12):2375–80.

    PubMed  Google Scholar 

  222. 222.

    Wright J, Bruce-Low S, Jobson SA. The reliability and validity of the 3-min all-out cycling critical power test. Int J Sports Med. 2017;38(06):462–7.

    PubMed  Google Scholar 

  223. 223.

    Bergstrom HC, Housh TJ, Zuniga JM, Camic CL, Traylor DA, Schmidt RJ, et al. A new single work bout test to estimate critical power and anaerobic work capacity. J Strength Cond Res. 2012;26(3):656–63.

    PubMed  Google Scholar 

  224. 224.

    Daniel M-P, Bettina K, Christoph T, Mark G. Authors' response. J Strength Cond Res. 2019;33(8):e225–e22626.

    PubMed  Google Scholar 

  225. 225.

    Pettitt RW, Jamnick NA, Kramer M, Dicks ND. A different perspective of the 3-minute all-out exercise test. J Strength Cond Res. 2019;33(8):e223–e22424.

    PubMed  Google Scholar 

  226. 226.

    Hartman ME, Ekkekakis P, Dicks ND, Pettitt RW. Dynamics of pleasure–displeasure at the limit of exercise tolerance: conceptualizing the sense of exertional physical fatigue as an affective response. J Exp Biol. 2019;222(3):jeb186585.

    PubMed  Google Scholar 

  227. 227.

    Burnley M, Vanhatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol. 2012;113(2):215–23.

    PubMed  Google Scholar 

  228. 228.

    Casaburi R, Storer TW, Ben-Dov I, Wasserman K. Effect of endurance training on possible determinants of VO2 during heavy exercise. J Appl Physiol. 1987;62(1):199–207.

    CAS  PubMed  Google Scholar 

  229. 229.

    Karvonen MJ. The effects of training on heart rate: a longitudinal study. Annales Medicinae Experimentalis Et Biologiae Fenniae. 1957;35:307–15.

    CAS  PubMed  Google Scholar 

  230. 230.

    Davis JA, Convertino VA. A comparison of heart rate methods for predicting endurance training intensity. Med Sci Sports. 1975;7(4):295–8.

    CAS  PubMed  Google Scholar 

  231. 231.

    McGinley C, Bishop DJ. Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can influence interpretation of adaptations to training. Exp Physiol. 2016;101(12):1565–80.

    CAS  PubMed  Google Scholar 

  232. 232.

    McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol. 2016;121(6):1290–305.

    CAS  PubMed  Google Scholar 

  233. 233.

    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 2015;30(2):959–70.

    PubMed  Google Scholar 

  234. 234.

    Jones L, Tiller NB, Karageorghis CI. Psychophysiological effects of music on acute recovery from high-intensity interval training. Physiol Behav. 2017;170:106–14.

    CAS  PubMed  Google Scholar 

  235. 235.

    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016;30(10):3413–23.

    CAS  PubMed  Google Scholar 

  236. 236.

    Bailey SJ, Wilkerson DP, DiMenna FJ, Jones AM. Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol. 2009;106(6):1875–87.

    CAS  PubMed  Google Scholar 

  237. 237.

    Burnley M, Jones AM, Carter H, Doust JH. Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise. J Appl Physiol. 2000;89(4):1387–96.

    CAS  PubMed  Google Scholar 

  238. 238.

    Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol. 1996;80(1):99–107.

    CAS  PubMed  Google Scholar 

  239. 239.

    Wilkerson DP, Berger NJ, Jones AM. Influence of hyperoxia on pulmonary O2 uptake kinetics following the onset of exercise in humans. Respir Physiol Neurobiol. 2006;153(1):92–106.

    CAS  PubMed  Google Scholar 

  240. 240.

    Granata C, Oliveira RSF, Little JP, Bishop DJ. Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein content of PGC-1α and p53 in human skeletal muscle. Am J Physiol-Endocrinol Metab. 2020;318(2):E224–E23636.

    CAS  PubMed  Google Scholar 

  241. 241.

    Faude O, Hecksteden A, Hammes D, Schumacher F, Besenius E, Sperlich B, et al. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Appl Physiol Nutr Metab. 2016;42(2):142–7.

    PubMed  Google Scholar 

  242. 242.

    Saunders PU, Pyne DB, Telford RD, Hawley JA. Reliability and variability of running economy in elite distance runners. Med Sci Sports Exerc. 2004;36(11):1972–6.

    PubMed  Google Scholar 

  243. 243.

    Compher C, Frankenfield D, Keim N, Roth-Yousey L, Group EAW. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903.

    Google Scholar 

  244. 244.

    Stanforth PR, Gagnon J, Rice T, Bouchard C, Leon AS, Rao D, et al. Reproducibility of resting blood pressure and heart rate measurements: the HERITAGE Family Study. Ann Epidemiol. 2000;10(5):271–7.

    CAS  PubMed  Google Scholar 

  245. 245.

    da Cunha FA, Farinatti PDTV, Midgley AW. Methodological and practical application issues in exercise prescription using the heart rate reserve and oxygen uptake reserve methods. J Sci Med Sport. 2011;14(1):46–57.

    PubMed  Google Scholar 

  246. 246.

    Cunha FA, Midgley AW, Monteiro WD, Campos FK, Farinatti PT. The relationship between oxygen uptake reserve and heart rate reserve is affected by intensity and duration during aerobic exercise at constant work rate. Appl Physiol Nutr Metab. 2011;36(6):839–47.

    PubMed  Google Scholar 

  247. 247.

    Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, et al. Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners. Int J Sports Med. 1990;11(03):218–22.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Nicholas Jamnick and David Bishop conceived the article. Nicholas Jamnick conducted the literature search and wrote the original manuscript draft. All authors critically revised and contributed to the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicholas A. Jamnick.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this manuscript.

Conflict of interest

Dr. Nicholas Jamnick, Prof Robert W. Pettitt, Dr. Cesare Granata, Prof. David Pyne, and Prof. David Bishop declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamnick, N.A., Pettitt, R.W., Granata, C. et al. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med 50, 1729–1756 (2020). https://doi.org/10.1007/s40279-020-01322-8

Download citation