Skip to main content
Log in

Association Between Muscular Strength and Bone Health from Children to Young Adults: A Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Osteoporosis is a major worldwide health concern. The acquisition of bone mass during growth decreases the risk of osteoporosis later in life. Muscular strength is an important and modifiable factor to improve bone development in this period.

Objective

The aim of this review was to summarize the relationship between muscular strength and bone health.

Methods

Cross-sectional data from studies addressing this association from childhood to young adulthood were systematically searched. The DerSimonian and Laird method was used to compute pooled estimates of effect size and respective 95% CI. The meta-analyses were conducted separately for upper limbs or lower limbs muscular strength and for bone regions. Additionally, a regression model was used to estimate the influence of determinants such as age, lean mass, fat mass, height, weight and cardiorespiratory fitness in this association.

Results

Thirty-nine published studies were included in the systematic review. The pooled effect size for the association of upper limbs muscular strength with upper limbs, spine and total body BMD ranged from 0.70 to 1.07 and with upper limbs, spine and total body BMC ranged from 1.84 to 1.30. The pooled effect size for the association of lower limbs muscular strength with lower limbs, spine and total body BMD ranged from 0.54 to 0.88 and with lower limbs, spine and total body BMC ranged between 0.81 and 0.71. All reported pooled effect size estimates were statistically significant.

Conclusion

This systematic review and meta-analysis supports that muscular strength should be considered as a useful skeletal health marker during development and a target outcome for interventions aimed at improving bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this review are available on reasonable request from the corresponding author (Vicente Martínez-Vizcaíno).

References

  1. Rizzoli R, Bonjour JP, Ferrari SL. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001;26(2):79–94.

    Article  CAS  PubMed  Google Scholar 

  2. Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Joint Bone Spine. 2010;77:S107–12.

    Article  PubMed  Google Scholar 

  3. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.

    Article  PubMed  Google Scholar 

  4. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39.

    Article  PubMed  Google Scholar 

  5. Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15(4):263–73.

    Article  PubMed  Google Scholar 

  6. Zemel B. Bone mineral accretion and its relationship to growth, sexual maturation and body composition during childhood and adolescence. World Rev Nutr Diet. 2013;106:39–45.

    PubMed  Google Scholar 

  7. Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547–55.

    Article  CAS  PubMed  Google Scholar 

  8. Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone. 2004;35(4):965–72.

    Article  CAS  PubMed  Google Scholar 

  9. Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc. 2000;32(5):911–7.

    Article  CAS  PubMed  Google Scholar 

  10. Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50(3):309–14.

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz JR, Castro-Piñero J, España-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518–24.

    Article  PubMed  Google Scholar 

  12. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23.

    Article  PubMed  Google Scholar 

  13. Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1–11.

    Article  CAS  Google Scholar 

  14. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  15. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;01(4):1.

    Article  Google Scholar 

  16. Higgins JPT GS. Selecting studies and collecting data. Cochrane Handbook of Systematic Reviews of Interventions, Version 5.1.0. Cochrane Collaboration. 2011;www.cochrane-handbook.org. Accessed Mar 2011.

  17. Teegarden D, Proulx WR, Martin BR, Zhao J, McCabe GP, Lyle RM, et al. Peak bone mass in young women. J Bone Miner Res. 1995;10(5):711–5.

    Article  CAS  PubMed  Google Scholar 

  18. Maksud FAN, Kakehasi AM, Guimaraes M, Machado CJ, Barbosa AJA. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis. Braz J Med Biol Res. 2017;50(6):e5977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105–14.

    Article  PubMed  Google Scholar 

  20. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  21. Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001;323(7304):101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Afghani A, Xie B, Wiswell RA, Gong J, Li Y, Anderson Johnson C. Bone mass of asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc. 2003;35(5):720–9.

    Article  PubMed  Google Scholar 

  23. Alfredson H, Nordstrom P, Lorentzon R. Total and regional bone mass in female soccer players. Calcif Tissue Int. 1996;59(6):438–42.

    Article  CAS  PubMed  Google Scholar 

  24. Alfredson H, Nordstrom P, Lorentzon R. Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females. Calcif Tissue Int. 1997;60(4):338–42.

    Article  CAS  PubMed  Google Scholar 

  25. Al Rassy N, Bakouny Z, Matta J, Frenn F, Maalouf G, Rizkallah M, et al. The relationships between bone variables and physical fitness across the BMI spectrum in young adult women. J Bone Miner Metab. 2019;37(3):520–8.

    Article  PubMed  Google Scholar 

  26. Chan DC, Lee WT, Lo DH, Leung JC, Kwok AW, Leung PC. Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporos Int. 2008;19(10):1485–95.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng JC, Leung SS, Lee WT, Lau JT, Maffulli N, Cheung AY, et al. Determinants of axial and peripheral bone mass in Chinese adolescents. Arch Dis Child. 1998;78(6):524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duncan CS, Blimkie CJ, Cowell CT, Burke S, Briody JN, Giles-Howman R. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc. 2002;34(2):286–94.

    Article  PubMed  Google Scholar 

  29. Eickhoff JA, Molczyk L, Gallagher JC, De Jong S. Influence of isotonic, isometric and isokinetic muscle strength on bone mineral density of the spine and femur in young women. Bone Miner. 1993;20(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  30. Emslander HC, Sinaki M, Muhs JM, Chao EY, Wahner HW, Bryant SC, et al. Bone mass and muscle strength in female college athletes (runners and swimmers). In: Mayo clinic proceedings. Elsevier, Amsterdam; 1998. p 1151–60.

    Article  CAS  PubMed  Google Scholar 

  31. Ginty F, Rennie KL, Mills L, Stear S, Jones S, Prentice A. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Bone. 2005;36(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  32. Gracia-Marco L, Vicente-Rodriguez G, Casajus JA, Molnar D, Castillo MJ, Moreno LA. Effect of fitness and physical activity on bone mass in adolescents: the HELENA Study. Eur J Appl Physiol. 2011;111(11):2671–80.

    Article  CAS  PubMed  Google Scholar 

  33. Gruodyte R, Jurimae J, Saar M, Maasalu M, Jurimae T. Relationships between areal bone mineral density and jumping height in pubertal girls with different physical activity patterns. J Sports Med Phys Fitness. 2009;49(4):474–9.

    CAS  PubMed  Google Scholar 

  34. Gruodytė R, Jürimäe T. Bone mineral density and jumping height in pre-menarcheal and post-menarcheal physically active girls. Balt J Sport Health Sci. 2011;3(82):3–8.

    Google Scholar 

  35. Guimaraes BR, Pimenta LD, Massini DA, Dos Santos D, Siqueira L, Simionato AR, et al. Muscle strength and regional lean body mass influence on mineral bone health in young male adults. PLoS One. 2018;13(1):e0191769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guimarães BR, Pimenta LD, Massini DA, Santos DD, Siqueira LODC, Simionato AR, et al. Muscular strength and regional lean mass influence bone mineral health among young females. Rev Bras Med Esporte. 2018;24(3):186–91.

    Article  Google Scholar 

  37. Kardinaal AF, Hoorneman G, Vaananen K, Charles P, Ando S, Maggiolini M, et al. Determinants of bone mass and bone geometry in adolescent and young adult women. Calcif Tissue Int. 2000;66(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  38. Khawaja A, Sabbagh P, Prioux J, Zunquin G, Baquet G, Maalouf G, et al. Does muscular power predict bone mineral density in young adults? J Clin Densitom. 2019;22(3):311–20.

    Article  PubMed  Google Scholar 

  39. Madsen KL, Adams WC, Van ML. Effects of physical activity, body weight and composition, and muscular strength on bone density in young women. Med Sci Sports Exerc. 1998;30(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  40. Miller LE, Nickols-Richardson SM, Wootten DF, Ramp WK, Herbert WG. Relationships among bone mineral density, body composition, and isokinetic strength in young women. Calcif Tissue Int. 2004;74(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  41. Naka H, Iki M, Morita A, Ikeda Y. Effects of pubertal development, height, weight, and grip strength on the bone mineral density of the lumbar spine and hip in peripubertal Japanese children: Kyoto kids increase density in the skeleton study (Kyoto KIDS study). J Bone Miner Metab. 2005;23(6):463–9.

    Article  PubMed  Google Scholar 

  42. Nordstrom P, Thorsen K, Nordstrom G, Bergstrom E, Lorentzon R. Bone mass, muscle strength, and different body constitutional parameters in adolescent boys with a low or moderate exercise level. Bone. 1995;17(4):351–6.

    Article  CAS  PubMed  Google Scholar 

  43. Nordström P, Nordström G, Thorsen K, Lorentzon R. Local bone mineral density, muscle strength, and exercise in adolescent boys: a comparative study of two groups with different muscle strength and exercise levels. Calcif Tissue Int. 1996;58(6):402–8.

    Article  PubMed  Google Scholar 

  44. Nordstrom P, Nordstrom G, Lorentzon R. Correlation of bone density to strength and physical activity in young men with a low or moderate level of physical activity. Calcif Tissue Int. 1997;60(4):332–7.

    Article  CAS  PubMed  Google Scholar 

  45. Pettersson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int. 1999;64(6):490–8.

    Article  CAS  PubMed  Google Scholar 

  46. Pettersson U, Alfredson H, Nordström P, Henriksson-Larsén K, Lorentzon R. Bone mass in female cross-country skiers: relationship between muscle strength and different BMD sites. Calcif Tissue Int. 2000;67(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  47. Rebai H, Zarrouk N, Ghroubi S, Sellami M, Ayedi F, Baklouti S, et al. Long-term basketball playing enhances bone mass and isokinetic muscle strength. Isokinet Exerc Sci. 2012;20(3):221–7.

    Article  Google Scholar 

  48. Ribom E, Ljunggren O, Piehl-Aulin K, Ljunghall S, Bratteby LE, Samuelson G, et al. Muscle strength correlates with total body bone mineral density in young women but not in men. Scand J Med Sci Sports. 2004;14(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sandstrom P, Jonsson P, Lorentzon R, Thorsen K. Bone mineral density and muscle strength in female ice hockey players. Int J Sports Med. 2000;21(7):524–8.

    Article  CAS  PubMed  Google Scholar 

  50. Seabra A, Marques E, Brito J, Krustrup P, Abreu S, Oliveira J, et al. Muscle strength and soccer practice as major determinants of bone mineral density in adolescents. Joint Bone Spine. 2012;79(4):403–8.

    Article  PubMed  Google Scholar 

  51. Snow-Harter C, Bouxsein M, Lewis B, Charette S, Weinstein P, Marcus R. Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res. 1990;5(6):589–95.

    Article  CAS  PubMed  Google Scholar 

  52. Soderman K, Bergstrom E, Lorentzon R, Alfredson H. Bone mass and muscle strength in young female soccer players. Calcif Tissue Int. 2000;67(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  53. Sutter T, Toumi H, Valery A, El Hage R, Pinti A, Lespessailles E. Relationships between muscle mass, strength and regional bone mineral density in young men. PLoS One. 2019;14(3):e0213681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taaffe DR, Marcus R. The muscle strength and bone density relationship in young women: dependence on exercise status. J Sports Med Phys Fitness. 2004;44(1):98–103.

    CAS  PubMed  Google Scholar 

  55. Torres-Costoso A, Gracia-Marco L, Sanchez-Lopez M, Garcia-Prieto JC, Garcia-Hermoso A, Diez-Fernandez A, et al. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: a mediation analysis. J Sports Sci. 2015;33(8):817–30.

    Article  PubMed  Google Scholar 

  56. Ubago-Guisado E, Vlachopoulos D, Ferreira de Moraes AC, Torres-Costoso A, Wilkinson K, Metcalf B, et al. Lean mass explains the association between muscular fitness and bone outcomes in 13-year-old boys. Acta Paediatr. 2017;106(10):1658–65.

    Article  PubMed  Google Scholar 

  57. Valdimarsson O, Kristinsson JO, Stefansson SO, Valdimarsson S, Sigurdsson G. Lean mass and physical activity as predictors of bone mineral density in 16-20-year old women. J Intern Med. 1999;245(5):489–96.

    Article  CAS  PubMed  Google Scholar 

  58. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet J. High femoral bone mineral density accretion in prepubertal soccer players. J Med Sci Sports. 2004;36(10):1789–95.

    Google Scholar 

  59. Whittington J, Schoen E, Labounty L, Hamdy R, Ramsey M, Stone M, et al. Bone mineral density and content of collegiate throwers: Influence of maximum strength. J Sports Med Phys Fitness. 2009;49(4):464.

    CAS  PubMed  Google Scholar 

  60. Witzke KA, Snow CM. Lean body mass and leg power best predict bone mineral density in adolescent girls. Med Sci Sports Exerc. 1999;31(11):1558–63.

    Article  CAS  PubMed  Google Scholar 

  61. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42.

    Article  PubMed  Google Scholar 

  62. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  63. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Artero EG, Espana-Romero V, Castro-Pinero J, Ruiz J, Jimenez-Pavon D, Aparicio V, et al. Criterion-related validity of field-based muscular fitness tests in youth. J Sports Med Phys Fitness. 2012;52(3):263–72.

    CAS  PubMed  Google Scholar 

  65. Saint-Maurice PF, Laurson K, Welk GJ, Eisenmann J, Gracia-Marco L, Artero EG, et al. Grip strength cutpoints for youth based on a clinically relevant bone health outcome. Arch Osteoporos. 2018;13(1):92.

    Article  PubMed  Google Scholar 

  66. Croix MBDS, Deighan MA, Armstrong N. Assessment and interpretation of isokinetic muscle strength during growth and maturation. Sports Med. 2003;33(10):727–43.

    Article  Google Scholar 

  67. Loomba-Albrecht LA, Styne DM. Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  68. Jackowski SA, Erlandson MC, Mirwald RL, Faulkner RA, Bailey DA, Kontulainen SA, et al. Effect of maturational timing on bone mineral content accrual from childhood to adulthood: evidence from 15 years of longitudinal data. Bone. 2011;48(5):1178–85.

    Article  PubMed  Google Scholar 

  69. Menkes A, Mazel S, Redmond RA, Koffler K, Libanati CR, Gundemberg CM, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol. 1993;74:2478–84.

    Article  CAS  PubMed  Google Scholar 

  70. Ploegmakers JJ, Hepping AM, Geertzen JH, Bulstra SK, Stevens M. Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother. 2013;59(4):255–61.

    Article  PubMed  Google Scholar 

  71. Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Hingle MD, Lee VR, et al. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone. 2018;113:144–50.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99.

    Article  PubMed  Google Scholar 

  73. Mueller D, Gandjour A. Cost effectiveness of ultrasound and bone densitometry for osteoporosis screening in post-menopausal women. Appl Health Econ Health Pol. 2008;6(2–3):113–35.

    Article  Google Scholar 

  74. Nayak S, Greenspan SL. Cost-effectiveness of osteoporosis screening strategies for men. J Bone Miner Res. 2016;31(6):1189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Si L, Winzenberg T, Chen M, Jiang Q, Neil A, Palmer A. Screening for osteoporosis in Chinese post-menopausal women: a health economic modelling study. Osteoporos Int. 2016;27(7):2259–69.

    Article  CAS  PubMed  Google Scholar 

  76. Taylor A, Konrad PT, Norman ME, Harcke HT. Total body bone mineral density in young children: influence of head bone mineral density. J Bone Miner Res. 1997;12(4):652–5.

    Article  CAS  PubMed  Google Scholar 

  77. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Martínez-Vizcaíno.

Ethics declarations

Conflict of interest

Ana Torres-Costoso, Purificación López-Muñoz, Celia Alvarez-Bueno, Iván Cavero-Redondo and Vicente Martínez-Vizcaíno declare that they have no conflict of interest.

Funding

The authors received no financial support for this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Costoso, A., López-Muñoz, P., Martínez-Vizcaíno, V. et al. Association Between Muscular Strength and Bone Health from Children to Young Adults: A Systematic Review and Meta-analysis. Sports Med 50, 1163–1190 (2020). https://doi.org/10.1007/s40279-020-01267-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01267-y

Navigation