Skip to main content

Fluid Balance and Hydration Considerations for Women: Review and Future Directions

Abstract

Although it is well understood that dehydration can have a major impact on exercise performance and thermoregulatory physiology, the potential for interactions between female sex hormone influences and the impact of dehydration on these variables is poorly understood. Female reproductive hormonal profiles over the course of the menstrual cycle have significant influences on thermoregulatory and volume regulatory physiology. Increased insight into the interactions among dehydration and menstrual cycle hormonal influences may have important implications for safety, nutritional recommendations, as well as optimal mental and physical performance. The purpose of this review is to summarize what is known in this area and highlight the areas that will be important for future work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

adapted from Stachenfeld [64]

References

  1. 1.

    Wilson MM, Morley JE. Impaired cognitive function and mental performance in mild dehydration. Eur J Clin Nutr. 2003;57(Suppl 2):S24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Armstrong LE, Ganio MS, Casa DJ, Lee EC, McDermott BP, Klau JF, et al. Mild dehydration affects mood in healthy young women. J Nutr. 2012;142(2):382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ganio MS, Armstrong LE, Casa DJ, McDermott BP, Lee EC, Yamamoto LM, et al. Mild dehydration impairs cognitive performance and mood of men. Br J Nutr. 2011;106(10):1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bardis CN, Kavouras SA, Arnaoutis G, Panagiotakos DB, Sidossis LS. Mild dehydration and cycling performance during 5-kilometer hill climbing. J Athletic Train. 2013;48(6):741–7.

    Article  Google Scholar 

  5. 5.

    Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol. 2014;4(1):257–85.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Perrier ET. Shifting focus: from hydration for performance to hydration for health. Ann Nutr Metab. 2017;70(Suppl 1):4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kavouras SA. Hydration, dehydration, underhydration, optimal hydration: are we barking up the wrong tree? Eur J Nutr. 2019;58(2):421–3.

    Article  Google Scholar 

  8. 8.

    Cotter JD, Thornton SN, Lee JK, Laursen PB. Are we being drowned in hydration advice? Thirsty for more? Extrem Physiol Med. 2014;3(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ganio MS, Casa DJ, Armstrong LE, Maresh CM. Evidence-based approach to lingering hydration questions. Clin Sports Med. 2007;26(1):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Stephenson LA, Kolka MA. Menstrual cycle phase and time of day alter reference signal controlling arm blood flow and sweating. J Appl Physiol. 1985;249 (2):R186–R191.

    CAS  Google Scholar 

  11. 11.

    Kolka MA, Stephenson LA. Control of sweating during the human menstrual cycle. Eur J Appl Physiol Occup Physiol. 1989;58(8):890–5.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Stephenson LA, Kolka MA. Esophageal temperature threshold for sweating decreases before ovulation in premenopausal women. J Appl Physiol. 1999;86(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Kolka MA, Stephenson LA. Effect of luteal phase elevation in core temperature on forearm blood flow during exercise. J Appl Physiol. 1997;82(4):1079–83.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Stachenfeld NS, Keefe DL. Estrogen effects on osmotic regulation of AVP and fluid balance. Am J Physiol Endocrinol Metab. 2002;283(4):E711–21.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Carpenter AJ, Nunneley SA. Endogenous hormones subtly alter women’s response to heat stress. J Appl Physiol (1985). 1988;65(5):2313–7.

    Article  CAS  Google Scholar 

  16. 16.

    Constantini NW, Dubnov G, Lebrun CM. The menstrual cycle and sport performance. Clin Sports Med. 2005;24(2):e51–82 (xiii–xiv).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Baker FC, Driver HS. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 2007;8(6):613–22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chen AW, Filsinger E. Mood across the menstrual cycle and number of menstrual symptoms reported: a cross-sectional study. Can J Psychiatry. 1987;32(6):429–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Driver HS, Dijk DJ, Werth E, Biedermann K, Borbely AA. Sleep and the sleep electroencephalogram across the menstrual cycle in young healthy women. J Clin Endocrinol Metab. 1996;81(2):728–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Owen JA Jr. Physiology of the menstrual cycle. Am J Clin Nutr. 1975;28:333–8.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Sherman BM, Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Investig. 1975;55:699–706.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Stachenfeld NS, DiPietro L, Kokoszka CA, Silva C, Keefe DL, Nadel ER. Physiological variability of fluid-regulation hormones in young women. J Appl Physiol (1985). 1999;86(3):1092–6.

    Article  CAS  Google Scholar 

  23. 23.

    Volpe SL, Poule KA, Bland EG. Estimation of prepractice hydration status of National Collegiate Athletic Association Division I athletes. J Athletic Train. 2009;44(6):624–9.

    Article  Google Scholar 

  24. 24.

    Dalvit-McPhillips SP. The effect of the human menstrual cycle on nutrient intake. Physiol Behav. 1983;31(2):209–12.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Charkoudian N, Johnson JM. Female reproductive hormones and thermoregulatory control of skin blood flow. Exerc Sport Sci Rev. 2000;28(3):108–12.

    CAS  PubMed  Google Scholar 

  26. 26.

    Oian P, Tollan A, Fadnes HO, Noddeland H, Maltau JM. Transcapillary fluid dynamics during the menstrual cycle. Am J Obstet Gynecol. 1987;156(4):952–5.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Stachenfeld NS, Keefe DL, Palter SF. Estrogen and progesterone effects on transcapillary fluid dynamics. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1319–29.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Ganong W. Review of medical physiology. 22nd ed. San Francisco: Appleton and Lange; 2005.

    Google Scholar 

  29. 29.

    Nose H, Mack GW, Shi XR, Nadel ER. Shift in body fluid compartments after dehydration in humans. J Appl Physiol (1985). 1988;65(1):318–24.

    Article  CAS  Google Scholar 

  30. 30.

    Armstrong LE. Assessing hydration status: the elusive gold standard. J Am Coll Nutr. 2007;26(5 Suppl):575S–84S.

    Article  Google Scholar 

  31. 31.

    James LJ, Moss J, Henry J, Papadopoulou C, Mears SA. Hypohydration impairs endurance performance: a blinded study. Physiol Rep. 2017;5(12):e13315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Goulet ED. Effect of exercise-induced dehydration on endurance performance: evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med. 2013;47(11):679–86.

    Article  Google Scholar 

  33. 33.

    Cheuvront SN, Carter R 3rd, Haymes EM, Sawka MN. No effect of moderate hypohydration or hyperthermia on anaerobic exercise performance. Med Sci Sports Exerc. 2006;38(6):1093–7.

    Article  Google Scholar 

  34. 34.

    Cheuvront SN, Carter R 3rd, Sawka MN. Fluid balance and endurance exercise performance. Curr Sports Med Rep. 2003;2(4):202–8.

    Article  Google Scholar 

  35. 35.

    Coyle EF, Gonzalez-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29(2):88–92.

    CAS  PubMed  Google Scholar 

  36. 36.

    Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol (1985). 2010;109(6):1989–95.

    Article  Google Scholar 

  37. 37.

    Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and human performance: impact of environment and physiological mechanisms. Sports Med. 2015;45(S1):S51–60.

    Article  Google Scholar 

  38. 38.

    Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(23):5963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hausswirth C, Le Meur Y. Physiological and nutritional aspects of post-exercise recovery: specific recommendations for female athletes. Sports Med. 2011;41(10):861–82.

    Article  Google Scholar 

  40. 40.

    Janse DEJXA, Thompson MW, Chuter VH, Silk LN, Thom JM. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med Sci Sports Exerc. 2012;44(11):2190–8.

    Article  Google Scholar 

  41. 41.

    Jonge XAKJd. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33(11):833–51.

    Article  Google Scholar 

  42. 42.

    Lebrun CM, McKenzie DC, Prior JC, Taunton JE. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc. 1995;27(3):437–44.

    Article  CAS  Google Scholar 

  43. 43.

    Huggins RA, Martschinske JL, Applegate K, Armstrong LE, Casa DJ. Influence of dehydration on internal body temperature changes during exercise in the heat: a meta-analysis. Medicine and science in sports and exercise; 2012 2012: Lippincott Williams & Wilkins 530 Walnut ST, Philadelphia, PA 19106-3621 USA; 2012. p. 791.

  44. 44.

    Lopez RM, Casa DJ, Jensen KA, DeMartini JK, Pagnotta KD, Ruiz RC, et al. Examining the influence of hydration status on physiological responses and running speed during trail running in the heat with controlled exercise intensity. J Strength Cond Res. 2011;25(11):2944–54.

    Article  Google Scholar 

  45. 45.

    Casa DJ, Stearns RL, Lopez RM, Ganio MS, McDermott BP, Walker Yeargin S, et al. Influence of hydration on physiological function and performance during trail running in the heat. J Athletic Train. 2010;45(2):147–56.

    Article  Google Scholar 

  46. 46.

    Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.

    Article  Google Scholar 

  47. 47.

    Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athletic Train. 2015;50(9):986–1000.

    Article  Google Scholar 

  48. 48.

    McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, et al. National Athletic Trainers’ Association position statement: fluid replacement for the physically active. J Athletic Train. 2017;52(9):877–95.

    Article  Google Scholar 

  49. 49.

    Sawka MN, Montain SJ, Latzka WA. Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):679–90.

    Article  CAS  Google Scholar 

  50. 50.

    Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol (1985). 1992;73(4):1340–50.

    Article  CAS  Google Scholar 

  51. 51.

    Sawka M, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol. 1985;59(5):1394–401

    Article  CAS  Google Scholar 

  52. 52.

    Montain SJ, Coyle EF. Influence of the timing of fluid ingestion on temperature regulation during exercise. J Appl Physiol (1985). 1993;75(2):688–95.

    Article  CAS  Google Scholar 

  53. 53.

    Sawka MN, Toner MM, Francesconi RP, Pandolf KB. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):1147–53.

    CAS  PubMed  Google Scholar 

  54. 54.

    Kolka MA, Stephenson LA. Resetting the thermoregulatory set-point by endogenous estradiol or progesterone in women. Ann N Y Acad Sci. 1997;15(813):204–6.

    Article  Google Scholar 

  55. 55.

    Pivarnik JM, Marichal CJ, Spillman T, Morrow JR Jr. Menstrual cycle phase affects temperature regulation during endurance exercise. J Appl Physiol (1985). 1992;72(2):543–8.

    Article  CAS  Google Scholar 

  56. 56.

    Gifford RM, Todisco T, Stacey M, Fujisawa T, Allerhand M, Woods DR, et al. Risk of heat illness in men and women: a systematic review and meta-analysis. Environ Res. 2018;25(171):24–35.

    Google Scholar 

  57. 57.

    Marsh SA, Jenkins DG. Physiological responses to the menstrual cycle: implications for the development of heat illness in female athletes. Sports Med. 2002;32(10):601–14.

    Article  Google Scholar 

  58. 58.

    Kolka MA, Stephenson LA. Exercise thermoregulation after prolonged wakefulness. J Appl Physiol (1985). 1988;64(4):1575–9.

    Article  CAS  Google Scholar 

  59. 59.

    Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol (1985). 2000;88(5):1643–9.

    Article  CAS  Google Scholar 

  60. 60.

    Charkoudian N, Johnson JM. Modification of active cutaneous vasodilation by oral contraceptive hormones. J Appl Physiol (1985). 1997;83(6):2012–8.

    Article  CAS  Google Scholar 

  61. 61.

    Charkoudian N, Stephens DP, Pirkle KC, Kosiba WA, Johnson JM. Influence of female reproductive hormones on local thermal control of skin blood flow. J Appl Physiol (1985). 1999;87(5):1719–23.

    Article  CAS  Google Scholar 

  62. 62.

    Stephenson LA, Kolka MA. Menstrual cycle phase and time of day alter reference signal controlling arm blood flow and sweating. Am J Physiol. 1985;249(2 Pt 2):R186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kavanaugh ML, Jerman J. Contraceptive method use in the United States: trends and characteristics between 2008, 2012 and 2014. Contraception. 2018;97(1):14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Stachenfeld NS, Taylor HS. Challenges and methodology for testing young healthy women in physiological studies. Am J Physiol Endocrinol Metab. 2014;306(8):E849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Stachenfeld NS. Sex hormone effects on body fluid regulation. Exerc Sport Sci Rev. 2008;36(3):152–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Stachenfeld NS, Silva C, Keefe DL, Kokoszka CA, Nadel ER. Effects of oral contraceptives on body fluid regulation. J Appl Physiol (1985). 1999;87(3):1016–25.

    Article  CAS  Google Scholar 

  67. 67.

    Rogers SM, Baker MA. Thermoregulation during exercise in women who are taking oral contraceptives. Eur J Appl Physiol Occup Physiol. 1997;75(1):34–8.

    Article  CAS  Google Scholar 

  68. 68.

    Charkoudian N, Johnson JM. Altered reflex control of cutaneous circulation by female sex steroids is independent of prostaglandins. J Appl Physiol. 1999;276(5):H1634–H1640.

    CAS  Google Scholar 

  69. 69.

    Minahan C, Melnikoff M, Quinn K, Larsen B. Response of women using oral contraception to exercise in the heat. Eur J Appl Physiol. 2017;117(7):1383–91.

    Article  Google Scholar 

  70. 70.

    Robertson GL. Abnormalities of thirst regulation. Kidney Int. 1984;25(2):460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bolignano D, Cabassi A, Fiaccadori E, Ghigo E, Pasquali R, Peracino A, et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med. 2014;52(10):1447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Forsling ML, Stromberg P, Akerlund M. Effect of ovarian steroids on vasopressin secretion. J Endocr. 1982;95:147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Forsling ML, Akerlund M, Stromberg P. Variations in plasma concentrations of vasopressin during the menstrual cycle. J Endocrinol. 1981;89(2):263–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Vokes TJ, Weiss NM, Schreiber J, Gaskill MB, Robertson GL. Osmoregulation of thirst and vasopressin during normal menstrual cycle. Am J Physiol. 1988;254(4 Pt 2):R641–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Szmuilowicz ED, Adler GK, Williams JS, Green DE, Yao TM, Hopkins PN, et al. Relationship between aldosterone and progesterone in the human menstrual cycle. J Clin Endocrinol Metab. 2006;91(10):3981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Spruce BA, Baylis PH, Burd J, Watson MJ. Variation in osmoregulation of arginine vasopressin during the human menstrual cycle. Clin Endocrinol (Oxf). 1985;22(1):37–42.

    Article  CAS  Google Scholar 

  77. 77.

    White CP, Hitchcock CL, Vigna YM, Prior JC. Fluid retention over the menstrual cycle: 1-year data from the prospective ovulation cohort. Obstet Gynecol Int. 2011;2011:138451.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Shirreffs SM. Conference on “Multidisciplinary approaches to nutritional problems”. Symposium on “Performance, exercise and health”. Hydration, fluids and performance. Proc Nutr Soc. 2009;68(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Patel AV, Mihalik JP, Notebaert AJ, Guskiewicz KM, Prentice WE. Neuropsychological performance, postural stability, and symptoms after dehydration. J Athletic Train. 2007;42(1):66–75.

    CAS  Google Scholar 

  80. 80.

    Szinnai G, Schachinger H, Arnaud MJ, Linder L, Keller U. Effect of water deprivation on cognitive-motor performance in healthy men and women. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Goodman SPJ, Moreland AT, Marino FE. The effect of active hypohydration on cognitive function: a systematic review and meta-analysis. Physiol Behav. 2019;15(204):297–308.

    Article  CAS  Google Scholar 

  82. 82.

    Lieberman HR. Hydration and cognition: a critical review and recommendations for future research. J Am Coll Nutr. 2007;26(sup5):555S–61S.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Amin Z, Canli T, Epperson CN. Effect of estrogen-serotonin interactions on mood and cognition. Behav Cogn Neurosci Rev. 2005;4(1):43–58.

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    May RR. Mood shifts and the menstrual cycle. J Psychosom Res. 1976;20(2):125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Joffe H, Cohen LS. Estrogen, serotonin, and mood disturbance: where is the therapeutic bridge? Soc Biol Psychiatry. 1998;44(9):798–811.

    Article  CAS  Google Scholar 

  86. 86.

    Wendt D, Loon LJCv, Lichtenbelt WDvM. Thermoregulation during exercise in the heat. Sports Med. 2007;37(8):669–82.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Armstrong LE, Curtis WC, Hubbard RW, Francesconi RP, Moore R, Askew EW. Symptomatic hyponatremia during prolonged exercise in heat. Med Sci Sports Exerc. 1993;25(5):543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Rondon-Berrios H, Agaba EI, Tzamaloukas AH. Hyponatremia: pathophysiology, classification, manifestations and management. Int Urol Nephrol. 2014;46(11):2153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Sims ST, Rehrer NJ, Bell ML, Cotter JD. Preexercise sodium loading aids fluid balance and endurance for women exercising in the heat. J Appl Physiol (1985). 2007;103(2):534–41.

    Article  CAS  Google Scholar 

  90. 90.

    Wagner DR. Hyperhydrating with glycerol: implications for athletic performance. J Am Diet Assoc. 1999;99:207–12.

    Article  CAS  PubMed  Google Scholar 

  91. 91.

    Hitchens S, Martin DT, Burke L, Yates K, Fallon K, Hahn A, et al. Glycerol hyperhydration imiproves cycle time trial performance in hot humid conditions. Eur J Appl Physiol. 1999;80(5):494–501.

    Article  Google Scholar 

  92. 92.

    Montner P, Stark DM, Riedesel ML, Murata G, Robergs R, Timms M, et al. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med. 1996;17(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Murray R, Eddy DE, Paul GL, Seifert JG, Halaby GA. Physiological responses to glycerol ingestion during exercise. J Appl Physiol (1985). 1991;71(1):144–9.

    Article  CAS  Google Scholar 

  94. 94.

    Savoie FA, Dion T, Asselin A, Goulet ED. Sodium-induced hyperhydration decreases urine output and improves fluid balance compared with glycerol- and water-induced hyperhydration. Appl Physiol Nutr Metab. 2015;40(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Goulet EDB, De La Flore A, Savoie FA, Gosselin J. Salt + glycerol-induced hyperhydration enhances fluid retention more than salt- or glycerol-induced hyperhydration. Int J Sport Nutr Exerc Metab. 2018;28(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Casa DJ, Armstrong LE, Hillman SK, Montain SJ, Reiff RV, Rich BS, et al. National athletic trainers’ association position statement: fluid replacement for athletes. J Athletic Train. 2000;35(2):212–24.

    CAS  Google Scholar 

  97. 97.

    Armstrong LE, Johnson EC, Bergeron MF. COUNTERVIEW: is drinking to thirst adequate to appropriately maintain hydration status during prolonged endurance exercise? No. Wilderness Environ Med. 2016;27(2):195–8.

    Article  PubMed  Google Scholar 

  98. 98.

    Hoffman MD, Cotter JD, Goulet ED, Laursen PB. REBUTTAL from “Yes”. Wilderness Environ Med. 2016;27(2):198–200.

    Article  PubMed  Google Scholar 

  99. 99.

    Hoffman MD, Cotter JD, Goulet ED, Laursen PB. VIEW: is drinking to thirst adequate to appropriately maintain hydration status during prolonged endurance exercise? Yes. Wilderness Environ Med. 2016;27(2):192–5.

    Article  PubMed  Google Scholar 

  100. 100.

    Kenefick RW. Drinking strategies: planned drinking versus drinking to thirst. Sports Med. 2018;48(Suppl 1):31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Dion T, Savole FA, Asselin A, Garlepy C, Goulet EDB. Half-marathon running performance is not improved by a rate of fluid intake above that dictated by thirst sensation in trained distance runners. Eur J Appl Physiol. 2013;113:3011–20.

    Article  PubMed  Google Scholar 

  102. 102.

    Speedy DB, Noakes TD, Schneider C. Exercise-associated hyponatremia: a review. Emerg Med (Fremantle). 2001;13(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  103. 103.

    Hawkins RC. Age and gender as risk factors for hyponatremia and hypernatremia. Clin Chim Acta. 2003;337(1–2):169–72.

    Article  CAS  PubMed  Google Scholar 

  104. 104.

    Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5.

    Article  CAS  PubMed  Google Scholar 

  105. 105.

    Armstrong LE, Johnson EC, Munoz CX, Swokla B, Le Bellego L, Jimenez L, et al. Hydration biomarkers and dietary fluid consumption of women. J Acad Nutr Diet. 2012;112(7):1056–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabrielle E. W. Giersch.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Gabrielle E. W. Giersch has received funded travel to Hydration for Health in 2018 and 2019 by Danone Nutricia. Nisha Charkoudian has no conflicts of interest to declare. Rebecca L. Stearns has received royalties from Jones and Bartlett Learning. Douglas J. Casa has served as expert witness, received consulting honorarium from Clif Bar, Sports Innovation Labs and the National Football League, received funding from Gatorade, and royalties from Jones & Bartlett Learning, Lippincott Williams & Wilkins, Springer, and UpToDate. Gabrielle E. W. Giersch, Rebecca L. Stearns, and Douglas J. Casa are employees for the Korey Stringer Institute at the University of Connecticut.

Disclaimer

The views, opinions, and/or findings contained in this article are those of the authors and should not be construed as an official United States Department of the Army position, or decision, unless so designated by other official documentation. Approved for public release; distribution unlimited.Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giersch, G.E.W., Charkoudian, N., Stearns, R.L. et al. Fluid Balance and Hydration Considerations for Women: Review and Future Directions. Sports Med 50, 253–261 (2020). https://doi.org/10.1007/s40279-019-01206-6

Download citation