Skip to main content

Effects of Dietary Supplements on Adaptations to Endurance Training

Abstract

Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Adapted from [22, 27, 33, 35, 37]

Fig. 4

Adapted from [53, 60]

References

  1. 1.

    Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29(3):218–22.

    CAS  PubMed  Google Scholar 

  2. 2.

    Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8. https://doi.org/10.1152/jappl.1984.56.4.831.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    CAS  PubMed  Google Scholar 

  4. 4.

    Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(23):4795–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91.

    PubMed  Google Scholar 

  6. 6.

    Rothschild J, Earnest CP. Dietary manipulations concurrent to endurance training. J Funct Morphol Kinesiol. 2018;3(3):41.

    Google Scholar 

  7. 7.

    Knapik JJ, Steelman RA, Hoedebecke SS, Austin KG, Farina EK, Lieberman HR. Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016;46(1):103–23.

    PubMed  Google Scholar 

  8. 8.

    Lancha Junior AH, Painelli Vde S, Saunders B, Artioli GG. Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Med. 2015;45(Suppl 1):S71–81. https://doi.org/10.1007/s40279-015-0397-5.

    Article  PubMed  Google Scholar 

  9. 9.

    Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. beta-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658–69. https://doi.org/10.1136/bjsports-2016-096396.

    Article  PubMed  Google Scholar 

  10. 10.

    Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MCL, et al. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1):43.

    PubMed Central  Google Scholar 

  11. 11.

    Jones AM. Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review. Appl Physiol Nutr Metab. 2014;39(9):1019–28. https://doi.org/10.1139/apnm-2014-0036.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Peeling P, Binnie MJ, Goods PSR, Sim M, Burke LM. Evidence-based supplements for the enhancement of athletic performance. Int J Sport Nutr Exerc Metab. 2018;28(2):178–87. https://doi.org/10.1123/ijsnem.2017-0343.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240. https://doi.org/10.3389/fphys.2017.00240.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Nikolaidis MG, Kerksick CM, Lamprecht M, McAnulty SR. Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxid Med Cell Longev. 2012;2012:707941. https://doi.org/10.1155/2012/707941.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gibala MJ, Gillen JB, Percival ME. Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Med. 2014;44(Suppl 2):S127–37. https://doi.org/10.1007/s40279-014-0259-6.

    Article  PubMed  Google Scholar 

  16. 16.

    McNaughton LR, Gough L, Deb S, Bentley D, Sparks SA. Recent developments in the use of sodium bicarbonate as an ergogenic aid. Curr Sports Med Rep. 2016;15(4):233–44.

    PubMed  Google Scholar 

  17. 17.

    Hayashi T, Shigetomi T, Ueda M, Kaneda T, Matsumoto T, Tokuno H, et al. Effects of ammonium chloride on membrane currents of acinar cells dispersed from the rat parotid gland. Pflug Arch. 1992;420(3–4):297–301.

    CAS  Google Scholar 

  18. 18.

    Stathopoulou K, Gaitanaki C, Beis I. Extracellular pH changes activate the p38-MAPK signalling pathway in the amphibian heart. J Exp Biol. 2006;209(Pt 7):1344–54. https://doi.org/10.1242/jeb.02134.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Genders AJ, Martin SD, McGee SL, Bishop DJ. A physiological drop in pH decreases mitochondrial respiration, and HDAC and Akt signaling, in L6 myocytes. Am J Physiol Cell Physiol. 2019;316(3):C404–14. https://doi.org/10.1152/ajpcell.00214.2018.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C, et al. Regulation of mTORC1 signaling by pH. PLoS One. 2011;6(6):e21549. https://doi.org/10.1371/journal.pone.0021549.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhao L, Cui L, Jiang X, Zhang J, Zhu M, Jia J, et al. Extracellular pH regulates autophagy via the AMPK–ULK1 pathway in rat cardiomyocytes. FEBS Lett. 2016;590(18):3202–12. https://doi.org/10.1002/1873-3468.12359.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Edge MT, Pilegaard H, Hawke E, Leikis M, Lopez-Villalobos N, et al. Ammonium chloride ingestion attenuates exercise-Induced mRNA levels in human muscle. PLoS One. 2015;10(12):e0141317. https://doi.org/10.1371/journal.pone.0141317.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Correia-Oliveira CR, Kiss MAPDM. Induced metabolic acidosis by ammonium chloride: action mechanisms, dose and effects on athletic performance. J Phys Educ. 2017. https://doi.org/10.4025/jphyseduc.v28i1.2860.

    Article  Google Scholar 

  24. 24.

    Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21(10):2602–12. https://doi.org/10.1096/fj.07-8174com.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Preobrazenski N, Bonafiglia JT, Nelms MW, Lu S, Robins L, LeBlanc C, et al. Does blood lactate predict the chronic adaptive response to training: a comparison of traditional and talk test prescription methods. Appl Physiol Nutr Metab. 2018;44(2):179–86.

    PubMed  Google Scholar 

  26. 26.

    Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab. 2000;278(2):E316–29. https://doi.org/10.1152/ajpendo.2000.278.2.E316.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Percival ME, Martin BJ, Gillen JB, Skelly LE, MacInnis MJ, Green AE, et al. Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle. J Appl Physiol. 2015;119(11):1303–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, et al. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol. 2014;99(5):782–91.

    CAS  PubMed  Google Scholar 

  29. 29.

    Burke LM, Pyne DB. Bicarbonate loading to enhance training and competitive performance. Int J Sports Physiol Perform. 2007;2(1):93–7.

    PubMed  Google Scholar 

  30. 30.

    Jones RL, Stellingwerff T, Artioli GG, Saunders B, Cooper S, Sale C. Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. Int J Sport Nutr Exerc Metab. 2016;26(5):445–53. https://doi.org/10.1123/ijsnem.2015-0286.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Froio de Araujo Dias G, da Eira Silva V, de Salles Painelli V, Sale C, Giannini Artioli G, Gualano B, et al. (In)consistencies in responses to sodium bicarbonate supplementation: a randomised, repeated measures, counterbalanced and double-blind study. PLoS One. 2015;10(11):e0143086. https://doi.org/10.1371/journal.pone.0143086.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gough LA, Deb SK, Sparks AS, McNaughton LR. The reproducibility of blood acid base responses in male collegiate athletes following individualised doses of sodium bicarbonate: a randomised controlled crossover study. Sports Med. 2017;47(10):2117–27. https://doi.org/10.1007/s40279-017-0699-x.

    Article  PubMed  Google Scholar 

  33. 33.

    Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol. 2006;101(3):918–25.

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang J, Qiu J, Yi L, Hou Z, Benardot D, Cao W. Effect of sodium bicarbonate ingestion during 6 weeks of HIIT on anaerobic performance of college students. J Int Soc Sports Nutr. 2019;16(1):18. https://doi.org/10.1186/s12970-019-0285-8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hawke E, Hammarström D, Sahlin K, Tonkonogi M. Does six-weeks of high-intensity cycle training with induced changes in acid-base balance lead to mitochondrial adaptations? J Sci Cycl. 2014;3(2):82.

    Google Scholar 

  36. 36.

    Driller MW, Gregory JR, Williams AD, Fell JW. The effects of chronic sodium bicarbonate ingestion and interval training in highly trained rowers. Int J Sport Nutr Exerc Metab. 2013;23(1):40–7.

    CAS  PubMed  Google Scholar 

  37. 37.

    Bishop DJ, Thomas C, Moore-Morris T, Tonkonogi M, Sahlin K, Mercier J. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats. Am J Physiol Endocrinol Metab. 2010;299(2):E225–33.

    CAS  PubMed  Google Scholar 

  38. 38.

    Thomas C, Bishop D, Moore-Morris T, Mercier J. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. Am J Physiol Endocrinol Metab. 2007;293(4):E916–22.

    CAS  PubMed  Google Scholar 

  39. 39.

    Lundby C, Montero D, Joyner M. Biology of VO2max: looking under the physiology lamp. J Acta Physiologica. 2017;220(2):218–28.

    CAS  Google Scholar 

  40. 40.

    Stellingwerff T, Anwander H, Egger A, Buehler T, Kreis R, Decombaz J, et al. Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids. 2012;42(6):2461–72.

    CAS  PubMed  Google Scholar 

  41. 41.

    Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, et al. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32(3):381–6. https://doi.org/10.1007/s00726-006-0474-z.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Hoffman JR, Ratamess NA, Faigenbaum AD, Ross R, Kang J, Stout JR, et al. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res. 2008;28(1):31–5. https://doi.org/10.1016/j.nutres.2007.11.004.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Baguet A, Koppo K, Pottier A, Derave W. β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol. 2010;108(3):495–503.

    CAS  PubMed  Google Scholar 

  44. 44.

    Gross M, Boesch C, Bolliger CS, Norman B, Gustafsson T, Hoppeler H, et al. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur J Appl Physiol. 2014;114(2):221–34. https://doi.org/10.1007/s00421-013-2767-8.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Glenn J, Gray M, Stewart R, Moyen N, Kavouras S, DiBrezzo R, et al. Incremental effects of 28 days of beta-alanine supplementation on high-intensity cycling performance and blood lactate in masters female cyclists. Amino Acids. 2015;47(12):2593–600.

    CAS  PubMed  Google Scholar 

  46. 46.

    Begum G, Cunliffe A, Leveritt M. Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab. 2005;15(5):493–514.

    CAS  PubMed  Google Scholar 

  47. 47.

    Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–45. https://doi.org/10.1152/physrev.00039.2012.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Hoetker D, Chung W, Zhang D, Zhao J, Schmidtke VK, Riggs DW, et al. Exercise alters and beta-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. J Appl Physiol (1985). 2018. https://doi.org/10.1152/japplphysiol.00007.2018.

    Article  Google Scholar 

  49. 49.

    Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers. J Appl Physiol. 2011;112(5):728–36.

    PubMed  Google Scholar 

  50. 50.

    Hannah R, Stannard RL, Minshull C, Artioli GG, Harris RC, Sale C. β-Alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity. J Appl Physiol. 2014;118(5):604–12.

    PubMed  Google Scholar 

  51. 51.

    Turcotte LP, Abbott MJ. Contraction-induced signaling: evidence of convergent cascades in the regulation of muscle fatty acid metabolism. Can J Physiol Pharmacol. 2012;90(11):1419–33. https://doi.org/10.1139/y2012-124.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Schnuck JK, Sunderland KL, Kuennen MR, Vaughan RA. Characterization of the metabolic effect of β-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle. J Exerc Nutr Biochem. 2016;20(2):34.

    Google Scholar 

  53. 53.

    Bellinger PM, Minahan CL. Additive benefits of beta-alanine supplementation and sprint-interval training. Med Sci Sports Exerc. 2016;48(12):2417–25. https://doi.org/10.1249/MSS.0000000000001050.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Walter AA, Smith AE, Kendall KL, Stout JR, Cramer JT. Six weeks of high-intensity interval training with and without β-alanine supplementation for improving cardiovascular fitness in women. J Strength Cond Res. 2010;24(5):1199–207.

    PubMed  Google Scholar 

  55. 55.

    Cochran AJ, Percival ME, Thompson S, Gillen JB, MacInnis MJ, Potter MA, et al. β-Alanine supplementation does not augment the skeletal muscle adaptive response to 6 weeks of sprint interval training. Int J Sport Nutr Exerc Metab. 2015;25(6):541–9.

    PubMed  Google Scholar 

  56. 56.

    Wang R, Fukuda DH, Hoffman JR, La Monica MB, Starling TM, Stout JR, et al. Distinct effects of repeated-sprint training in normobaric hypoxia and beta-alanine supplementation. J Am Coll Nutr. 2018. https://doi.org/10.1080/07315724.2018.1475269.

    Article  PubMed  Google Scholar 

  57. 57.

    Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, et al. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009;6:5. https://doi.org/10.1186/1550-2783-6-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Santana JO, de Freitas MC, Dos Santos DM, Rossi FE, Lira FS, Rosa-Neto JC, et al. Beta-alanine supplementation improved 10-km running time trial in physically active adults. Front Physiol. 2018;9:1105. https://doi.org/10.3389/fphys.2018.01105.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Howe ST, Bellinger PM, Driller MW, Shing CM, Fell JW. The effect of beta-alanine supplementation on isokinetic force and cycling performance in highly trained cyclists. Int J Sport Nutr Exerc Metab. 2013;23(6):562–70.

    CAS  PubMed  Google Scholar 

  60. 60.

    Bellinger PM, Minahan CL. Metabolic consequences of β-alanine supplementation during exhaustive supramaximal cycling and 4000-m time-trial performance. Appl Physiol Nutr Metab. 2016;41(8):864–71.

    CAS  PubMed  Google Scholar 

  61. 61.

    Bellinger PM, Howe ST, Shing CM, Fell JW. Effect of combined beta-alanine and sodium bicarbonate supplementation on cycling performance. Med Sci Sports Exerc. 2012;44(8):1545–51. https://doi.org/10.1249/MSS.0b013e31824cc08d.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Hobson RM, Saunders B, Ball G, Harris R, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43(1):25–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Church DD, Hoffman JR, Varanoske AN, Wang R, Baker KM, La Monica MB, et al. Comparison of two beta-alanine dosing protocols on muscle carnosine elevations. J Am Coll Nutr. 2017;36(8):608–16. https://doi.org/10.1080/07315724.2017.1335250.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9(4):627–32. https://doi.org/10.1123/ijspp.2013-0295.

    Article  PubMed  Google Scholar 

  65. 65.

    Naderi A, Earnest CP, Lowery RP, Wilson JM, Willems ME. Co-ingestion of nutritional ergogenic aids and high-intensity exercise performance. Sports Med. 2016;46(10):1407–18. https://doi.org/10.1007/s40279-016-0525-x.

    Article  PubMed  Google Scholar 

  66. 66.

    Painelli VS, Roschel H, Jesus F, Sale C, Harris RC, Solis MY, et al. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Appl Physiol Nutr Metab. 2013;38(5):525–32. https://doi.org/10.1139/apnm-2012-0286.

    CAS  Article  Google Scholar 

  67. 67.

    Danaher J, Gerber T, Wellard RM, Stathis CG. The effect of beta-alanine and NaHCO3 co-ingestion on buffering capacity and exercise performance with high-intensity exercise in healthy males. Eur J Appl Physiol. 2014;114(8):1715–24. https://doi.org/10.1007/s00421-014-2895-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Sale C, Saunders B, Hudson S, Wise JA, Harris RC, Sunderland CD. Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med Sci Sports Exerc. 2011;43(10):1972–8. https://doi.org/10.1249/MSS.0b013e3182188501.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37(3):395–400.

    CAS  PubMed  Google Scholar 

  70. 70.

    Rimer EG, Peterson LR, Coggan AR, Martin JC. Acute dietary nitrate supplementation increases maximal cycling power in athletes. Int J Sports Physiol Perform. 2016;11(6):715.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13(2):149–59. https://doi.org/10.1016/j.cmet.2011.01.004.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol (1985). 2010;109(1):135–48. https://doi.org/10.1152/japplphysiol.00046.2010.

    CAS  Article  Google Scholar 

  73. 73.

    Hernandez A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, et al. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590(15):3575–83. https://doi.org/10.1113/jphysiol.2012.232777.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Clementi E, Nisoli E. Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2005;142(2):102–10. https://doi.org/10.1016/j.cbpb.2005.04.022.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Thompson C, Wylie LJ, Blackwell JR, Fulford J, Black MI, Kelly J, et al. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J Appl Physiol (1985). 2017;122(3):642–52. https://doi.org/10.1152/japplphysiol.00909.2016.

    CAS  Article  Google Scholar 

  76. 76.

    Martins KJ, St-Louis M, Murdoch GK, MacLean IM, McDonald P, Dixon WT, et al. Nitric oxide synthase inhibition prevents activity-induced calcineurin–NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions. J Physiol. 2012;590(6):1427–42. https://doi.org/10.1113/jphysiol.2011.223370.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    De Smet S, Van Thienen R, Deldicque L, James R, Sale C, Bishop DJ, et al. Nitrate intake promotes shift in muscle fiber type composition during sprint interval training in hypoxia. Front Physiol. 2016;7:233. https://doi.org/10.3389/fphys.2016.00233.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Whitfield J, Ludzki A, Heigenhauser GJ, Senden JM, Verdijk LB, van Loon LJ, et al. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle. J Physiol. 2016;594(2):421–35. https://doi.org/10.1113/JP270844.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;588(10):1779–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Peeling P, Cox GR, Bullock N, Burke LM. Beetroot juice improves on-water 500 M time-trial performance, and laboratory-based paddling economy in national and international-level kayak athletes. Int J Sport Nutr Exerc Metab. 2015;25(3):278–84. https://doi.org/10.1123/ijsnem.2014-0110.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Croitoru MD, Fülöp I, Fogarasi E, Muntean D-L. Is nitrate a good biomarker of the nitric oxide status?/Este ionul nitrat un bun biomarker al producţiei endogene de monoxid de azot? Rev Rom Med Lab. 2015;23(1):127–35.

    Google Scholar 

  82. 82.

    Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, et al. Beetroot juice and exercise: pharmacodynamic and dose–response relationships. J Appl Physiol (1985). 2013;115(3):325–36. https://doi.org/10.1152/japplphysiol.00372.2013.

    CAS  Article  Google Scholar 

  83. 83.

    Puype J, Ramaekers M, Van Thienen R, Deldicque L, Hespel P. No effect of dietary nitrate supplementation on endurance training in hypoxia. Scand J Med Sci Sports. 2015;25(2):234–41.

    CAS  PubMed  Google Scholar 

  84. 84.

    Muggeridge DJ, Sculthorpe N, James PE, Easton C. The effects of dietary nitrate supplementation on the adaptations to sprint interval training in previously untrained males. J Sci Med Sport. 2017;20(1):92–7. https://doi.org/10.1016/j.jsams.2016.04.014.

    Article  PubMed  Google Scholar 

  85. 85.

    Thompson C, Vanhatalo A, Kadach S, Wylie LJ, Fulford J, Ferguson SK, et al. Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training. J Appl Physiol. 2018;124(6):1519–28.

    CAS  PubMed  Google Scholar 

  86. 86.

    Santana J, Madureira D, de Franca E, Rossi F, Rodrigues B, Fukushima A, et al. Nitrate supplementation combined with a running training program improved time-trial performance in recreationally trained runners. Sports (Basel). 2019. https://doi.org/10.3390/sports7050120.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Finkel A, Röhrich MA, Maassen N, Lützow M, Blau LS, Hanff E, et al. Long-term effects of NO3− on the relationship between oxygen uptake and power after 3 weeks of supplemented HIHV training. J Appl Physiol. 2018. https://doi.org/10.1152/japplphysiol.00176.2018.

    Article  PubMed  Google Scholar 

  88. 88.

    Jonvik KL, Nyakayiru J, Pinckaers PJ, Senden JM, van Loon LJ, Verdijk LB. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J Nutr. 2016;146(5):986–93. https://doi.org/10.3945/jn.116.229807.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Wootton-Beard PC, Ryan L. Combined use of multiple methodologies for the measurement of total antioxidant capacity in UK commercially available vegetable juices. Plant Foods Hum Nutr. 2012;67(2):142–7.

    CAS  PubMed  Google Scholar 

  90. 90.

    Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermiotadis G, Kelly J, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113(7):1673–84. https://doi.org/10.1007/s00421-013-2589-8.

    Article  PubMed  Google Scholar 

  91. 91.

    Bergh U, Thorstensson A, Sjodin B, Hulten B, Piehl K, Karlsson J. Maximal oxygen uptake and muscle fiber types in trained and untrained humans. Med Sci Sports. 1978;10(3):151–4.

    CAS  PubMed  Google Scholar 

  92. 92.

    Foster C, Costill DL, Daniels JT, Fink WJ. Skeletal muscle enzyme activity, fiber composition and VO2max in relation to distance running performance. Eur J Appl Physiol Occup Physiol. 1978;39(2):73–80.

    CAS  PubMed  Google Scholar 

  93. 93.

    Sahl RE, Morville T, Kraunsoe R, Dela F, Helge JW, Larsen S. Variation in mitochondrial respiratory capacity and myosin heavy chain composition in repeated muscle biopsies. Anal Biochem. 2018;556:119–24. https://doi.org/10.1016/j.ab.2018.06.029.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Roberts LD, Ashmore T, McNally BD, Murfitt SA, Fernandez BO, Feelisch M, et al. Inorganic nitrate mimics exercise-stimulated muscular fiber-type switching and myokine and γ-aminobutyric acid release. Diabetes. 2017;66(3):674–88.

    CAS  PubMed  Google Scholar 

  95. 95.

    Wylie LJ, Ortiz de Zevallos J, Isidore T, Nyman L, Vanhatalo A, Bailey SJ, et al. Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: acute vs. chronic supplementation. Nitric Oxide. 2016;57:30–9. https://doi.org/10.1016/j.niox.2016.04.004.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Piknova B, Park JW, Swanson KM, Dey S, Noguchi CT, Schechter AN. Skeletal muscle as an endogenous nitrate reservoir. Nitric Oxide. 2015;47:10–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Coggan AR, Broadstreet SR, Mikhalkova D, Bole I, Leibowitz JL, Kadkhodayan A, et al. Dietary nitrate-induced increases in human muscle power: high versus low responders. Physiol Rep. 2018. https://doi.org/10.14814/phy2.13575.

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kent GL, Dawson B, Cox GR, Abbiss CR, Smith KJ, Croft KD, et al. Effect of dietary nitrate supplementation on thermoregulatory and cardiovascular responses to submaximal cycling in the heat. Eur J Appl Physiol. 2018;118(3):657–68. https://doi.org/10.1007/s00421-018-3809-z.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Jones AM, Ferguson SK, Bailey SJ, Vanhatalo A, Poole DC. Fiber type-specific effects of dietary nitrate. Exerc Sport Sci Rev. 2016;44(2):53–60. https://doi.org/10.1249/JES.0000000000000074.

    Article  PubMed  Google Scholar 

  100. 100.

    Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7–8):916–22. https://doi.org/10.1016/j.nut.2015.02.005.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Moopanar TR, Allen DG. Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 C. J Physiol. 2005;564(1):189–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Gomez-Cabrera M-C, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.

    CAS  PubMed  Google Scholar 

  103. 103.

    Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol. 2005;567(Pt 1):113–20. https://doi.org/10.1113/jphysiol.2004.080564.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol. 2009;296(1):C116–23.

    CAS  PubMed  Google Scholar 

  105. 105.

    Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594(18):5135–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Slattery KM, Dascombe B, Wallace LK, Bentley DJ, Coutts AJ. Effect of N-acetylcysteine on cycling performance after intensified training. Med Sci Sports Exerc. 2014;46(6):1114–23. https://doi.org/10.1249/MSS.0000000000000222.

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, et al. N-acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576(Pt 1):279–88. https://doi.org/10.1113/jphysiol.2006.115352.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Gómez-Cabrera M-C, Pallardó FV, Sastre J, Viña J, García-del-Moral L. Allopurinol and markers of muscle damage among participants in the Tour de France. JAMA. 2003;289(19):2503–4.

    PubMed  Google Scholar 

  109. 109.

    Ichinose T, Nomura S, Someya Y, Akimoto S, Tachiyashiki K, Imaizumi K. Effect of endurance training supplemented with green tea extract on substrate metabolism during exercise in humans. Scand J Med Sci Sports. 2011;21(4):598–605. https://doi.org/10.1111/j.1600-0838.2009.01077.x.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187–95. https://doi.org/10.1074/jbc.M501250200.

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med. 2015;86:37–46.

    CAS  PubMed  Google Scholar 

  112. 112.

    Tappel A. Vitamin E as the biological lipid antioxidant. Vitam Horm. 1962;20:493–510. https://doi.org/10.1016/S0083-6729(08)60732-3.

    CAS  Article  Google Scholar 

  113. 113.

    Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J-H, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003;22(1):18–35.

    CAS  PubMed  Google Scholar 

  114. 114.

    Sharman IM, Down MG, Sen RN. The effects of vitamin E and training on physiological function and athletic performance in adolescent swimmers. Br J Nutr. 1971;26(2):265–76.

    CAS  PubMed  Google Scholar 

  115. 115.

    Lawrence JD, Bower RC, Riehl WP, Smith JL. Effects of alpha-tocopherol acetate on the swimming endurance of trained swimmers. Am J Clin Nutr. 1975;28(3):205–8. https://doi.org/10.1093/ajcn/28.3.205.

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Rokitzki L, Logemann E, Huber G, Keck E, Keul J. alpha-Tocopherol supplementation in racing cyclists during extreme endurance training. Int J Sport Nutr. 1994;4(3):253–64.

    CAS  PubMed  Google Scholar 

  117. 117.

    Oostenbrug G, Mensink R, Hardeman M, De Vries T, Brouns F, Hornstra G. Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E. J Appl Physiol. 1997;83(3):746–52.

    CAS  PubMed  Google Scholar 

  118. 118.

    Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9. https://doi.org/10.1093/ajcn/87.1.142.

    CAS  Article  PubMed  Google Scholar 

  119. 119.

    Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14(2):160–8. https://doi.org/10.1080/17461391.2013.785597.

    Article  PubMed  Google Scholar 

  120. 120.

    Roberts LA, Beattie K, Close GL, Morton JP. Vitamin C consumption does not impair training-induced improvements in exercise performance. Int J Sports Physiol Perform. 2011;6(1):58–69.

    PubMed  Google Scholar 

  121. 121.

    Bryant RJ, Ryder J, Martino P, Kim J, Craig BW. Effects of vitamin E and C supplementation either alone or in combination on exercise-induced lipid peroxidation in trained cyclists. J Strength Cond Res. 2003;17(4):792–800.

    PubMed  Google Scholar 

  122. 122.

    Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592(8):1887–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Yfanti C, Akerström T, Nielsen S, Nielsen AR, Mounier R, Mortensen OH, et al. Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc. 2010;42(7):1388–95.

    CAS  PubMed  Google Scholar 

  124. 124.

    Yfanti C, Nielsen AR, Akerstrom T, Nielsen S, Rose AJ, Richter EA, et al. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. Am J Physiol Endocrinol Metab. 2011;300(5):E761–70. https://doi.org/10.1152/ajpendo.00207.2010.

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, et al. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med. 2015;89:852–62.

    CAS  PubMed  Google Scholar 

  126. 126.

    Cumming KT, Raastad T, Holden G, Bastani NE, Schneeberger D, Paronetto MP, et al. Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training. Physiol Rep. 2014;1:1. https://doi.org/10.14814/phy2.12142.

    CAS  Article  Google Scholar 

  127. 127.

    Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106(21):8665–70. https://doi.org/10.1073/pnas.0903485106.

    Article  PubMed  Google Scholar 

  128. 128.

    Venditti P, Napolitano G, Barone D, Di Meo S. Vitamin E supplementation modifies adaptive responses to training in rat skeletal muscle. Free Radic Res. 2014;48(10):1179–89. https://doi.org/10.3109/10715762.2014.937341.

    CAS  Article  PubMed  Google Scholar 

  129. 129.

    Meier P, Renga M, Hoppeler H, Baum O. The impact of antioxidant supplements and endurance exercise on genes of the carbohydrate and lipid metabolism in skeletal muscle of mice. Cell Biochem Funct. 2013;31(1):51–9. https://doi.org/10.1002/cbf.2859.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2011;43(6):1017–24. https://doi.org/10.1249/MSS.0b013e318203afa3.

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Higashida K, Kim SH, Higuchi M, Holloszy JO, Han DH. Normal adaptations to exercise despite protection against oxidative stress. Am J Physiol Endocrinol Metab. 2011;301(5):E779–84. https://doi.org/10.1152/ajpendo.00655.2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Kim JC, Park GD, Kim SH. Inhibition of oxidative stress by antioxidant supplementation does not limit muscle mitochondrial biogenesis or endurance capacity in rats. J Nutr Sci Vitaminol (Tokyo). 2017;63(5):277–83.

    CAS  PubMed  Google Scholar 

  133. 133.

    Abadi A, Crane JD, Ogborn D, Hettinga B, Akhtar M, Stokl A, et al. Supplementation with alpha-lipoic acid, CoQ10, and vitamin E augments running performance and mitochondrial function in female mice. PLoS One. 2013;8(4):e60722. https://doi.org/10.1371/journal.pone.0060722.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Asha Devi S, Prathima S, Subramanyam MV. Dietary vitamin E and physical exercise: I. Altered endurance capacity and plasma lipid profile in ageing rats. Exp Gerontol. 2003;38(3):285–90.

    CAS  PubMed  Google Scholar 

  135. 135.

    Abbott MJ, Edelman AM, Turcotte LP. CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2009;297(6):R1724–32.

    PubMed  Google Scholar 

  136. 136.

    Turcotte LP, Raney MA, Todd MK. ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol Scand. 2005;184(2):131–9. https://doi.org/10.1111/j.1365-201X.2005.01445.x.

    CAS  Article  PubMed  Google Scholar 

  137. 137.

    Nieman DC, Henson DA, McAnulty SR, McAnulty LS, Morrow JD, Ahmed A, et al. Vitamin E and immunity after the Kona Triathlon World Championship. Med Sci Sports Exerc. 2004;36(8):1328–35.

    CAS  PubMed  Google Scholar 

  138. 138.

    Teixeira VH, Valente HF, Casal SI, Marques AF, Moreira PA. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. Med Sci Sports Exerc. 2009;41(9):1752–60.

    CAS  PubMed  Google Scholar 

  139. 139.

    Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol. 2017;12:540–8. https://doi.org/10.1016/j.redox.2017.03.022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, et al. Going retro: oxidative stress biomarkers in modern redox biology. Free Radic Biol Med. 2016;98:2–12. https://doi.org/10.1016/j.freeradbiomed.2016.02.005.

    CAS  Article  PubMed  Google Scholar 

  141. 141.

    Forman HJ, Augusto O, Brigelius-Flohe R, Dennery PA, Kalyanaraman B, Ischiropoulos H, et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med. 2015;78:233–5.

    CAS  PubMed  Google Scholar 

  142. 142.

    Somerville V, Bringans C, Braakhuis A. Polyphenols and performance: a systematic review and meta-analysis. Sports Med. 2017;47(8):1589–99. https://doi.org/10.1007/s40279-017-0675-5.

    Article  PubMed  Google Scholar 

  143. 143.

    Kulkarni SS, Canto C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–23. https://doi.org/10.1016/j.bbadis.2014.10.005.

    CAS  Article  PubMed  Google Scholar 

  144. 144.

    Jiang Q, Cheng X, Cui Y, Xia Q, Yan X, Zhang M, et al. Resveratrol regulates skeletal muscle fibers switching through the AdipoR1–AMPK–PGC–1α pathway. Food Funct. 2019;10:3334–43.

    CAS  PubMed  Google Scholar 

  145. 145.

    Gliemann L, Schmidt JF, Olesen J, Bienso RS, Peronard SL, Grandjean SU, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(20):5047–59. https://doi.org/10.1113/jphysiol.2013.258061.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592(8):1873–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Scribbans TD, Ma JK, Edgett BA, Vorobej KA, Mitchell AS, Zelt JG, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39(11):1305–13.

    CAS  PubMed  Google Scholar 

  148. 148.

    Skrobuk P, von Kraemer S, Semenova MM, Zitting A, Koistinen HA. Acute exposure to resveratrol inhibits AMPK activity in human skeletal muscle cells. Diabetologia. 2012;55(11):3051–60. https://doi.org/10.1007/s00125-012-2691-1.

    CAS  Article  PubMed  Google Scholar 

  149. 149.

    Hart N, Sarga L, Csende Z, Koltai E, Koch LG, Britton SL, et al. Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food Chem Toxicol. 2013;61:53–9. https://doi.org/10.1016/j.fct.2013.01.051.

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Hart N, Sarga L, Csende Z, Koch LG, Britton SL, Davies KJ, et al. Resveratrol attenuates exercise-induced adaptive responses in rats selectively bred for low running performance. Dose Response. 2014;12(1):57–71. https://doi.org/10.2203/dose-response.13-010.Radak.

    CAS  Article  PubMed  Google Scholar 

  151. 151.

    Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr. 2013;4(2):129–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1550–6. https://doi.org/10.1152/ajpregu.00752.2005.

    CAS  Article  PubMed  Google Scholar 

  153. 153.

    Kuo Y-C, Lin J-C, Bernard JR, Liao Y-H. Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl Physiol Nutr Metab. 2015;40(10):990–6.

    CAS  PubMed  Google Scholar 

  154. 154.

    van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304.

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol. 2005;288(3):R708–15. https://doi.org/10.1152/ajpregu.00693.2004.

    CAS  Article  PubMed  Google Scholar 

  156. 156.

    Dong ZX, Wan L, Wang RJ, Shi YQ, Liu GZ, Zheng SJ, et al. (−)-Epicatechin suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cell Physiol Biochem. 2017;41(5):2004–15. https://doi.org/10.1159/000475396.

    CAS  Article  PubMed  Google Scholar 

  157. 157.

    Schwarz NA, Blahnik ZJ, Prahadeeswaran S, McKinley-Barnard SK, Holden SL, Waldhelm A. (−)-Epicatechin supplementation inhibits aerobic adaptations to cycling exercise in humans. Front Nutr. 2018;5:132. https://doi.org/10.3389/fnut.2018.00132.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Lee I, Hüttemann M, Kruger A, Bollig-Fischer A, Malek MH. (−)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43.

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Wadley GD, Nicolas MA, Hiam D, McConell GK. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training. Am J Physiol Endocrinol Metab. 2013;304(8):E853–62.

    CAS  PubMed  Google Scholar 

  160. 160.

    Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018. https://doi.org/10.1007/s40279-018-0939-8.

    Article  PubMed  Google Scholar 

  161. 161.

    Lane SC, Areta JL, Bird SR, Coffey VG, Burke LM, Desbrow B, et al. Caffeine ingestion and cycling power output in a low or normal muscle glycogen state. Med Sci Sports Exerc. 2013;45(8):1577–84.

    CAS  PubMed  Google Scholar 

  162. 162.

    Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920–7. https://doi.org/10.1080/02640414.2016.1241421.

    Article  PubMed  Google Scholar 

  163. 163.

    Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (1985). 2017;123(1):213–20. https://doi.org/10.1152/japplphysiol.00260.2017.

    CAS  Article  Google Scholar 

  164. 164.

    Graham-Paulson T, Perret C, Goosey-Tolfrey V. Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients. 2016. https://doi.org/10.3390/nu8070393.

    Article  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS One. 2019;14(1):e0210275. https://doi.org/10.1371/journal.pone.0210275.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Fredholm BB. Astra award lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol. 1995;76(2):93–101.

    CAS  PubMed  Google Scholar 

  167. 167.

    Cole KJ, Costill DL, Starling RD, Goodpaster BH, Trappe SW, Fink WJ. Effect of caffeine ingestion on perception of effort and subsequent work production. Int J Sport Nutr. 1996;6(1):14–23.

    PubMed  Google Scholar 

  168. 168.

    Yeo SE, Jentjens RL, Wallis GA, Jeukendrup AE. Caffeine increases exogenous carbohydrate oxidation during exercise. J Appl Physiol (1985). 2005;99(3):844–50. https://doi.org/10.1152/japplphysiol.00170.2005.

    CAS  Article  Google Scholar 

  169. 169.

    Van Nieuwenhoven MA, Brummer RM, Brouns F. Gastrointestinal function during exercise: comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol (1985). 2000;89(3):1079–85. https://doi.org/10.1152/jappl.2000.89.3.1079.

    Article  Google Scholar 

  170. 170.

    Park S, Scheffler T, Rossie S, Gerrard D. AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. Cell Calcium. 2013;53(3):217–23.

    CAS  PubMed  Google Scholar 

  171. 171.

    Ale-Agha N, Goy C, Jakobs P, Spyridopoulos I, Gonnissen S, Dyballa-Rukes N, et al. CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system—new mode of action for caffeine. PLoS Biol. 2018;16(6):e2004408.

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 2018;48(8):1809–28. https://doi.org/10.1007/s40279-018-0936-y.

    Article  PubMed  Google Scholar 

  173. 173.

    Malek MH, Housh TJ, Coburn JW, Beck TW, Schmidt RJ, Housh DJ, et al. Effects of eight weeks of caffeine supplementation and endurance training on aerobic fitness and body composition. J Strength Cond Res. 2006;20(4):751–5. https://doi.org/10.1519/R-18345.1.

    Article  PubMed  Google Scholar 

  174. 174.

    Vieira JM, Carvalho FB, Gutierres JM, Soares MSP, Oliveira PS, Rubin MA, et al. Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and Na(+)–K(+)-ATPase activities and reduction of anxiolytic like-behaviour in rats. Redox Rep. 2017;22(6):493–500. https://doi.org/10.1080/13510002.2017.1322739.

    CAS  Article  PubMed  Google Scholar 

  175. 175.

    Boyett JC, Giersch GE, Womack CJ, Saunders MJ, Hughey CA, Daley HM, et al. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients. 2016;8(10):639.

    PubMed Central  Google Scholar 

  176. 176.

    Temple JL, Ziegler AM. Gender differences in subjective and physiological responses to caffeine and the role of steroid hormones. J Caffeine Res. 2011;1(1):41–8. https://doi.org/10.1089/jcr.2011.0005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018. https://doi.org/10.1249/MSS.0000000000001596.

    Article  PubMed  Google Scholar 

  178. 178.

    Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(Suppl 2):S175–84. https://doi.org/10.1007/s40279-014-0257-8.

    Article  PubMed  Google Scholar 

  179. 179.

    Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18. https://doi.org/10.1186/s12970-017-0173-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83(3):367–74.

    CAS  PubMed  Google Scholar 

  181. 181.

    Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5 Pt 1):E821–6. https://doi.org/10.1152/ajpendo.1996.271.5.E821.

    CAS  Article  PubMed  Google Scholar 

  182. 182.

    Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40(5):1271–96. https://doi.org/10.1007/s00726-011-0877-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z, et al. Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem. 1996;241(3):909–15.

    CAS  PubMed  Google Scholar 

  184. 184.

    Rahimi R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond Res. 2011;25(12):3448–55. https://doi.org/10.1519/JSC.0b013e3182162f2b.

    Article  PubMed  Google Scholar 

  185. 185.

    Tomcik KA, Camera DM, Bone JL, Ross ML, Jeacocke NA, Tachtsis B, et al. Effects of creatine and carbohydrate loading on cycling time trial performance. Med Sci Sports Exerc. 2018;50(1):141–50. https://doi.org/10.1249/MSS.0000000000001401.

    CAS  Article  PubMed  Google Scholar 

  186. 186.

    Kendall KL, Smith AE, Graef JL, Fukuda DH, Moon JR, Beck TW, et al. Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men. J Strength Cond Res. 2009;23(6):1663–9. https://doi.org/10.1519/JSC.0b013e3181b1fd1f.

    Article  PubMed  Google Scholar 

  187. 187.

    Graef JL, Smith AE, Kendall KL, Fukuda DH, Moon JR, Beck TW, et al. The effects of four weeks of creatine supplementation and high-intensity interval training on cardiorespiratory fitness: a randomized controlled trial. J Int Soc Sports Nutr. 2009;6:18. https://doi.org/10.1186/1550-2783-6-18.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Forbes SC, Sletten N, Durrer C, Myette-Côté É, Candow D, Little JP. Creatine Monohydrate supplementation does not augment fitness, performance, or body composition adaptations in response to four weeks of high-intensity interval training in young females. Int J Sport Nutr Exerc Metab. 2017;27(3):285–92.

    CAS  PubMed  Google Scholar 

  189. 189.

    McCracken M, Ainsworth B, Hackney AC. Effects of the menstrual cycle phase on the blood lactate responses to exercise. Eur J Appl Physiol Occup Physiol. 1994;69(2):174–5.

    CAS  PubMed  Google Scholar 

  190. 190.

    Chwalbinska-Moneta J. Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int J Sport Nutr Exerc Metab. 2003;13(2):173–83.

    CAS  PubMed  Google Scholar 

  191. 191.

    Nelson AG, Day R, Glickman-Weiss EL, Hegsted M, Kokkonen J, Sampson B. Creatine supplementation alters the response to a graded cycle ergometer test. Eur J Appl Physiol. 2000;83(1):89–94. https://doi.org/10.1007/s004210000244.

    CAS  Article  PubMed  Google Scholar 

  192. 192.

    Maughan RJ. Contamination of dietary supplements and positive drug tests in sport. J Sports Sci. 2005;23(9):883–9. https://doi.org/10.1080/02640410400023258.

    CAS  Article  PubMed  Google Scholar 

  193. 193.

    Shill DD, Southern WM, Willingham TB, Lansford KA, McCully KK, Jenkins NT. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. J Physiol. 2016;594(23):7005–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Polley KR, Jenkins N, O’Connor P, McCully K. Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity. Appl Physiol Nutr Metab. 2016;41(1):26–32. https://doi.org/10.1139/apnm-2015-0370.

    CAS  Article  PubMed  Google Scholar 

  195. 195.

    Dolinsky VW, Jones KE, Sidhu RS, Haykowsky M, Czubryt MP, Gordon T, et al. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. J Physiol. 2012;590(11):2783–99. https://doi.org/10.1113/jphysiol.2012.230490.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Kan NW, Ho CS, Chiu YS, Huang WC, Chen PY, Tung YT, et al. Effects of resveratrol supplementation and exercise training on exercise performance in middle-aged mice. Molecules. 2016. https://doi.org/10.3390/molecules21050661.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Rothschild.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Jeffrey Rothschild and David Bishop declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rothschild, J.A., Bishop, D.J. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 50, 25–53 (2020). https://doi.org/10.1007/s40279-019-01185-8

Download citation