Resistance Priming to Enhance Neuromuscular Performance in Sport: Evidence, Potential Mechanisms and Directions for Future Research

Abstract

Recent scientific evidence supports the use of a low-volume strength–power ‘resistance priming’ session prior to sporting competition in an effort to enhance neuromuscular performance. Though research evidence relating to this strategy is presently limited, it has been shown to be effective in improving various measures of neuromuscular performance within 48 h. Post-activation potentiation strategies have previously been shown to enhance strength–power performance within 20 min of completing maximal or near-maximal resistance exercise. Comparably, a delayed potentiation effect has been demonstrated following ‘resistance priming’ at various times between 1 and 48 h in upper- and lower-body performance measures. This may have significant implications for a range of athletes when preparing for competition. Various exercise protocols have been shown to improve upper- and lower-body neuromuscular performance measures in this period. In particular, high-intensity resistance exercise through high loading (≥ 85% 1 repetition maximum) or ballistic exercise at lower loads appears to be an effective stimulus for this strategy. Although current research has identified the benefits of resistance priming to some physical qualities, many questions remain over the application of this type of session, as well as the effects that it may have on a range of specific sporting activities. The aims of this brief review are to assess the current literature examining the acute effects (1–48 h) of resistance exercise on neuromuscular performance and discuss potential mechanisms of action as well as provide directions for future research.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Baker D. The effects of an in-season of concurrent training on the maintenance of maximal strength and power in professional and college-aged rugby league football players. J Strength Cond Res. 2001;15(2):172–7.

    CAS  PubMed  Google Scholar 

  2. 2.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–49.

    Article  PubMed  Google Scholar 

  3. 3.

    Young WB. Transfer of strength and power training to sports performance. Int J Sport Physiol. 2006;1(2):74. https://doi.org/10.1123/ijspp.1.2.74.

    Article  Google Scholar 

  4. 4.

    McGuigan M, Wright G, Fleck SJ. Strength training for athletes: does it really help sports performance? Int J Sport Physiol Perform. 2012;7(1):2–5. https://doi.org/10.1123/ijspp.7.1.2.

    Article  Google Scholar 

  5. 5.

    Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86(5):1527–33. https://doi.org/10.1152/jappl.1999.86.5.1527.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Baker D, Nance S. The relation between running speed and measures of strength and power in professional rugby league players. J Strength Cond Res. 1999;13(3):230–5. https://doi.org/10.1519/00124278-199908000-00009.

    Article  Google Scholar 

  7. 7.

    Stone MH, Moir G, Glaister M, Sanders R. How much strength is necessary? Phys Ther Sport. 2002;3(2):88–96. https://doi.org/10.1054/ptsp.2001.0102.

    Article  Google Scholar 

  8. 8.

    Baker D. Applying the in-season periodization of strength and power training to football. Strength Cond J. 1998;20(2):18–27.

    Article  Google Scholar 

  9. 9.

    Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138–43.

    Article  PubMed  Google Scholar 

  10. 10.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231–40. https://doi.org/10.1007/s40279-015-0415-7.

    Article  PubMed  Google Scholar 

  11. 11.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147–66. https://doi.org/10.2165/00007256-200939020-00004.

    Article  PubMed  Google Scholar 

  12. 12.

    Cook CJ, Kilduff LP, Crewther BT, Beaven M, West DJ. Morning based strength training improves afternoon physical performance in rugby union players. J Sci Med Sport. 2014;17(3):317–21. https://doi.org/10.1016/j.jsams.2013.04.016.

    Article  PubMed  Google Scholar 

  13. 13.

    Tsoukos A, Veligekas P, Brown LE, Terzis G, Bogdanis GC. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J Strength Cond Res. 2018;32(3):643–50. https://doi.org/10.1519/JSC.0000000000001812.

    Article  PubMed  Google Scholar 

  14. 14.

    Saez Saez de Villarreal E, Gonzalez-Badillo JJ, Izquierdo M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur J Appl Physiol. 2007;100(4):393–401. https://doi.org/10.1007/s00421-007-0440-9.

    Article  PubMed  Google Scholar 

  15. 15.

    Ekstrand LG, Battaglini CL, McMurray RG, Shields EW. Assessing explosive power production using the backward overhead shot throw and the effects of morning resistance exercise on afternoon performance. J Strength Cond Res. 2013;27(1):101–6. https://doi.org/10.1519/JSC.0b013e3182510886.

    Article  PubMed  Google Scholar 

  16. 16.

    Raastad T, Hallén J. Recovery of skeletal muscle contractility after high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82(3):206–14. https://doi.org/10.1007/s004210050673.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Seitz LB, de Villarreal ES, Haff GG. The temporal profile of postactivation potentiation is related to strength level. J Strength Cond Res. 2014;28(3):706–15. https://doi.org/10.1519/JSC.0b013e3182a73ea3.

    Article  PubMed  Google Scholar 

  18. 18.

    Seitz LB, Mina MA, Haff GG. A sled push stimulus potentiates subsequent 20-m sprint performance. J Sci Med Sport. 2017;20(8):781–5. https://doi.org/10.1016/j.jsams.2016.12.074.

    Article  PubMed  Google Scholar 

  19. 19.

    Kilduff LP, Bevan HR, Kingsley MI, Owen NJ, Bennett MA, Bunce PJ, et al. Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res. 2007;21(4):1134–8. https://doi.org/10.1519/R-20996.1.

    Article  PubMed  Google Scholar 

  20. 20.

    Kilduff LP, Owen N, Bevan H, Bennett M, Kingsley MI, Cunningham D. Influence of recovery time on post-activation potentiation in professional rugby players. J Sports Sci. 2008;26(8):795–802. https://doi.org/10.1080/02640410701784517.

    Article  PubMed  Google Scholar 

  21. 21.

    Crewther TB, Cook JC, Lowe ET, Weatherby PR, Gill PN. The effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players. J Strength Cond Res. 2011;25(1):32–9. https://doi.org/10.1519/JSC.0b013e3181b6045c.

    Article  PubMed  Google Scholar 

  22. 22.

    Chiu LZ, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL. Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res. 2003;17(4):671–7.

    PubMed  Google Scholar 

  23. 23.

    Esformes IJ, Cameron MN, Bampouras MT. Postactivation potentiation following different modes of exercise. J Strength Cond Res. 2010;24(7):1911–6. https://doi.org/10.1519/JSC.0b013e3181dc47f8.

    Article  PubMed  Google Scholar 

  24. 24.

    Crewther BT, Kilduff LP, Cook CJ, Middleton MK, Bunce PJ, Yang GZ. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res. 2011;25(12):3319–25. https://doi.org/10.1519/JSC.0b013e318215f560.

    Article  PubMed  Google Scholar 

  25. 25.

    Tsimachidis C, Patikas D, Galazoulas C, Bassa E, Kotzamanidis C. The post-activation potentiation effect on sprint performance after combined resistance/sprint training in junior basketball players. J Sports Sci. 2013;31(10):1117–24. https://doi.org/10.1080/02640414.2013.771817.

    Article  PubMed  Google Scholar 

  26. 26.

    Fry AC, Stone MH, Thrush JT, Fleck SJ. Precompetition training sessions enhance competitive performance of high anxiety junior weightlifters. J Strength Cond Res. 1995;9(1):37–42.

    Google Scholar 

  27. 27.

    Mason BR, Argus CK, Norcott B, Ball NB. Resistance training priming activity improves upper-body power output in rugby players: implications for game day performance. J Strength Cond Res. 2017;31(4):913–20. https://doi.org/10.1519/JSC.0000000000001552.

    Article  PubMed  Google Scholar 

  28. 28.

    Russell M, King A, Bracken RM, Cook CJ, Giroud T, Kilduff LR. A comparison of different modes of morning priming exercise on afternoon performance. Int J Sport Physiol. 2016;11(6):763–7. https://doi.org/10.1123/ijspp.2015-0508.

    Article  Google Scholar 

  29. 29.

    Gill N. Coach’s insight: priming. In: Joyce D, Lewindon D, editors. High-performance training for sports. Champaign: Human Kinetics; 2014. p. 308.

    Google Scholar 

  30. 30.

    Mujika I, Padilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35(7):1182–7. https://doi.org/10.1249/01.mss.0000074448.73931.11.

    Article  PubMed  Google Scholar 

  31. 31.

    Swinton AP, Lloyd LR, Keogh DJW, Agouris DI, Stewart DA. A biomechanical comparison of the traditional squat, powerlifting squat, and box squat. J Strength Cond Res. 2012;26(7):1805–16. https://doi.org/10.1519/JSC.0b013e3182577067.

    Article  PubMed  Google Scholar 

  32. 32.

    Grgic J, Mikulic P. Tapering practices of croatian open-class powerlifting champions. J Strength Cond Res. 2017;31(9):2371–8. https://doi.org/10.1519/jsc.0000000000001699.

    Article  PubMed  Google Scholar 

  33. 33.

    Argus KC, Gill DN, Keogh WJ, Hopkins GW, Beaven MC. Changes in strength, power, and steroid hormones during a professional rugby union competition. J Strength Cond Res. 2009;23(5):1583–92. https://doi.org/10.1519/JSC.0b013e3181a392d9.

    Article  PubMed  Google Scholar 

  34. 34.

    Komi PV. Stretch-shortening cycle. In: Komi PV, editor. Strength and power in sport. London: Blackwell Science Ltd; 1992. p. 169–79.

    Google Scholar 

  35. 35.

    McCaulley GO, McBride JM, Cormie P, Hudson MB, Nuzzo JL, Quindry JC, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sanchez-Medina L, Ribas J, Lopez-Lopez C, Mora-Custodio R, et al. Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med. 2016;37(4):295–304. https://doi.org/10.1055/s-0035-1564254.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Howatson G, Brandon R, Hunter AM. The response to and recovery from maximum-strength and -power training in elite track and field athletes. Int J Sport Physiol. 2016;11(3):356–62. https://doi.org/10.1123/ijspp.2015-0235.

    Article  Google Scholar 

  38. 38.

    McGowan CJ, Pyne DB, Thompson KG, Raglin JS, Rattray B. Morning exercise: enhancement of afternoon sprint-swimming performance. Int J Sport Physiol. 2017;12(5):605–11.

    Google Scholar 

  39. 39.

    Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):88–90.

    Article  Google Scholar 

  40. 40.

    Haff GG. Quantifying workloads in resistance training: a brief review. Strength Cond J. 2010;10:31–40.

    Google Scholar 

  41. 41.

    Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed methods training strategy. Strength Cond J. 1994;16(5):20–31.

    Article  Google Scholar 

  42. 42.

    Zatsiorsky VM, Kraemer WJ. Science and practice of strength training. Champaign: Human Kinetics; 2006. p. 161.

    Google Scholar 

  43. 43.

    Rassier DE, Macintosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res. 2000;33(5):499–508.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Banister EW. Modeling elite athletic performance. In: MacDougall JD, Wenger HA, Green HJ, editors. Physiological testing of the high-performance athlete. Champaign: Human Kinetics; 1991. p. 403–24.

    Google Scholar 

  45. 45.

    Wilson JM, Duncan NM, Marin PJ, Brown LE, Loenneke JP, Wilson SM, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854–9. https://doi.org/10.1519/JSC.0b013e31825c2bdb.

    Article  PubMed  Google Scholar 

  46. 46.

    Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol (1985). 2000;88(6):2131–7. https://doi.org/10.1152/jappl.2000.88.6.2131.

    Article  CAS  Google Scholar 

  47. 47.

    Latella C, Teo W-P, Harris D, Major B, VanderWesthuizen D, Hendy AM. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur J Appl Physiol. 2017;117(11):2211–24.

    Article  PubMed  Google Scholar 

  48. 48.

    West DJ, Dietzig BM, Bracken RM, Cunningham DJ, Crewther BT, Cook CJ, et al. Influence of post-warm-up recovery time on swim performance in international swimmers. J Sci Med Sport. 2013;16(2):172–6. https://doi.org/10.1016/j.jsams.2012.06.002.

    Article  PubMed  Google Scholar 

  49. 49.

    Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35(7):585–95.

    Article  PubMed  Google Scholar 

  50. 50.

    Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol. 2005;99(3):986–94.

    Article  PubMed  Google Scholar 

  51. 51.

    Kilduff LP, Finn CV, Baker JS, Cook CJ, West DJ. Preconditioning strategies to enhance physical performance on the day of competition. Int J Sport Physiol. 2013;8(6):677–81. https://doi.org/10.1123/ijspp.8.6.677.

    Article  Google Scholar 

  52. 52.

    Crewther TB, Cook JC, Gaviglio MC, Kilduff PL, Drawer PS. Baseline strength can influence the ability of salivary free testosterone to predict squat and sprinting performance. J Strength Cond Res. 2012;26(1):261–8. https://doi.org/10.1519/JSC.0b013e3182185158.

    Article  PubMed  Google Scholar 

  53. 53.

    Crewther BT, Carruthers J, Kilduff LP, Sanctuary CE, Cook CJ. Temporal associations between individual changes in hormones, training motivation and physical performance in elite and non-elite trained men. Biol Sport. 2016;33(3):215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Fry AC, Lohnes CA. Acute testosterone and cortisol responses to high power resistance exercise. Hum Physiol. 2010;36(4):457–61.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter W. Harrison.

Ethics declarations

Funding

This research was supported by an Australian Government Research Training Program Scholarship and by the Queensland Academy of Sport’s Sport Performance Innovation and Knowledge Excellence Unit.

Conflict of interest

Peter Harrison, Lachlan James, Mike McGuigan, David Jenkins and Vincent Kelly declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrison, P.W., James, L.P., McGuigan, M.R. et al. Resistance Priming to Enhance Neuromuscular Performance in Sport: Evidence, Potential Mechanisms and Directions for Future Research. Sports Med 49, 1499–1514 (2019). https://doi.org/10.1007/s40279-019-01136-3

Download citation