Skip to main content
Log in

Exercise Frequency Determines Heart Rate Variability Gains in Older People: A Meta-Analysis and Meta-Regression

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Previous studies have suggested that exercise training improves cardiac autonomic drive in young and middle-aged adults. In this study, we discuss the benefits for the elderly.

Objectives

We aimed to establish whether exercise still increases heart rate variability (HRV) beyond the age of 60 years, and to identify which training factors influence HRV gains in this population.

Methods

Interventional controlled and non-controlled studies were selected from the PubMed, Ovid, Cochrane and Google Scholar databases. Only interventional endurance training protocols involving healthy subjects aged 60 years and over, and measuring at least one heart rate global or parasympathetic index, such as the standard deviation of the normal-to-normal intervals (SDNN), total frequency power (Ptot), root mean square of successive differences between adjacent NN intervals (RMSSD), or high frequency power (HF) before and after the training intervention, were included. HRV parameters were pooled separately from short-term and 24 h recordings for analysis. Risks of bias were assessed using the Methodological Index for Non-Randomized Studies and the Cochrane risk of bias tool. A random-effects model was used to determine effect sizes (Hedges’ g) for changes, and heterogeneity was assessed using Q and I statistics.

Results

Twelve studies, seven of which included a control group, including 218 and 111 subjects, respectively (mean age 69.0 ± 3.2 and 68.6 ± 2.5), were selected for meta-analysis. Including the 12 studies demonstrated homogeneous significant effect sizes for short-term (ST)-SDNN and 24 h-SDNN, with effect sizes of 0.366 (95% CI 0.185–547) and 0.442 (95% CI 0.144–0.740), respectively. Controlled study analysis demonstrated homogeneous significant effect sizes for 24 h-SDNN with g = 0.721 (95% CI 0.184–1.257), and 24 h-Ptot with g = 0.731 (95% CI 0.195–1.267). Meta-regression analyses revealed positive relationships between ST-SDNN effect sizes and training frequency (\({\text{Tau}}_{\text{res}}^{2}\) = 0.000; \(I_{\text{res}}^{2}\) = 0.000; p = 0.0462).

Conclusion

This meta-analysis demonstrates a positive effect of endurance-type exercise on autonomic regulation in older adults. However, the selected studies expressed some risks of bias. We conclude that chronic endurance exercise leads to HRV improvements in a linear frequency–response relationship, encouraging the promotion of high-frequency training programmes in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malik M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;1(2):151–81.

    Google Scholar 

  2. Dekker JM, Schouten EG, Klootwijk P, et al. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen study. Am J Epidemiol. 1997;145(10):899–908.

    Article  CAS  Google Scholar 

  3. Dekker JM, Crow RS, Folsom AR, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis risk in communities. Circulation. 2000;102(11):1239–44.

    Article  CAS  Google Scholar 

  4. Tsuji H, Larson MG, Venditti FJ, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94(11):2850–5.

    Article  CAS  Google Scholar 

  5. Hupin D, Edouard P, Gremeaux V, et al. Physical activity to reduce mortality risk. Eur Heart J. 2017;38(20):1534–7.

    Article  Google Scholar 

  6. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122–31.

    Article  Google Scholar 

  7. Kleiger RE, Miller JP, Bigger JT, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.

    Article  CAS  Google Scholar 

  8. Lampert R, Bremner JD, Su S, et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J. 2008;156(4):759.e1–7.

    Article  Google Scholar 

  9. Hamaad A, Lip GYH, MacFadyen RJ. Heart rate variability estimates of autonomic tone: relationship to mapping pathological and procedural stress responses in coronary disease. Ann Med. 2004;36(6):448–61.

    Article  Google Scholar 

  10. Soares-Miranda L, Sattelmair J, Chaves P, et al. Physical activity and heart rate variability in older adults: the cardiovascular health study. Circulation. 2014;129(21):2100–10.

    Article  Google Scholar 

  11. Kiviniemi AM, Tulppo MP, Eskelinen JJ, et al. Cardiac autonomic function and high-intensity interval training in middle-age men. Med Sci Sports Exerc. 2014;46(10):1960–7.

    Article  Google Scholar 

  12. Pichot V, Roche F, Denis C, et al. Interval training in elderly men increases both heart rate variability and baroreflex activity. Clin Auton Res. 2005;15(2):107–15.

    Article  Google Scholar 

  13. Madden KM, Levy WC, Stratton JK. Exercise training and heart rate variability in older adult female subjects. Clin Investig Med Med Clin Exp. 2006;29(1):20–8.

    Google Scholar 

  14. Levy WC, Cerqueira MD, Harp GD, et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol. 1998;82(10):1236–41.

    Article  CAS  Google Scholar 

  15. McKune AJ, Peters B, Ramklass SS, et al. Autonomic cardiac regulation, blood pressure and cardiorespiratory fitness responses to different training doses over a 12 week group program in the elderly. Arch Gerontol Geriatr. 2017;70:130–5.

    Article  CAS  Google Scholar 

  16. Chin A, Paw MJM, van Poppel MNM, Twisk JWR, et al. Once a week not enough, twice a week not feasible? Patient Educ Couns. 2006;63(1–2):205–14.

    Article  Google Scholar 

  17. Verheyden B, Eijnde BO, Beckers F, et al. Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55–75 years. J Sports Sci. 2006;24(11):1137–47.

    Article  Google Scholar 

  18. Sandercock GRH, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc. 2005;37(3):433–9.

    Article  Google Scholar 

  19. Albinet CT, Abou-Dest A, André N, et al. Executive functions improvement following a 5-month aquaerobics program in older adults: role of cardiac vagal control in inhibition performance. Biol Psychol. 2016;115:69–77.

    Article  Google Scholar 

  20. Filliau C, Younes M, Blanchard A-L, et al. Effect of “touch rugby” training on the cardiovascular autonomic control in sedentary subjects. Int J Sports Med. 2015;36(07):567–72.

    Article  CAS  Google Scholar 

  21. Wanderley FAC, Moreira A, Sokhatska O, et al. Differential responses of adiposity, inflammation and autonomic function to aerobic versus resistance training in older adults. Exp Gerontol. 2013;48(3):326–33.

    Article  CAS  Google Scholar 

  22. Karavirta L, Costa MD, Goldberger AL, et al. Heart rate dynamics after combined strength and endurance training in middle-aged women: heterogeneity of responses. PLoS One. 2013;8(8):e72664.

    Article  CAS  Google Scholar 

  23. Earnest CP, Blair SN, Church TS. Heart rate variability and exercise in aging women. J Womens Health. 2012;21(3):334–9.

    Article  Google Scholar 

  24. Cozza IC, Di Sacco THR, Mazon JH, et al. Physical exercise improves cardiac autonomic modulation in hypertensive patients independently of angiotensin-converting enzyme inhibitor treatment. Hypertens Res. 2012;35(1):82–7.

    Article  Google Scholar 

  25. Cornelissen VA, Goetschalckx K, Verheyden B, et al. Effect of endurance training on blood pressure regulation, biomarkers and the heart in subjects at a higher age: blood pressure regulation and the heart. Scand J Med Sci Sports. 2011;21(4):526–34.

    Article  CAS  Google Scholar 

  26. Cornelissen VA, Verheyden B, Aubert AE, et al. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J Hum Hypertens. 2010;24(3):175–82.

    Article  CAS  Google Scholar 

  27. Albinet CT, Boucard G, Bouquet CA, et al. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur J Appl Physiol. 2010;109(4):617–24.

    Article  Google Scholar 

  28. Collier SR, Kanaley JA, Carhart R Jr, et al. Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension. Acta Physiol. 2009;195(3):339–48.

    Article  CAS  Google Scholar 

  29. Earnest CP, Lavie CJ, Blair SN, et al. Heart rate variability characteristics in sedentary postmenopausal women following six months of exercise training: the DREW study. PLoS One. 2008;3(6):e2288.

    Article  Google Scholar 

  30. Audette JF, Jin YS, Newcomer R, et al. Tai chi versus brisk walking in elderly women. Age Ageing. 2006;35(4):388–93.

    Article  Google Scholar 

  31. Okazaki K. Dose-response relationship of endurance training for autonomic circulatory control in healthy seniors. J Appl Physiol. 2005;99(3):1041–9.

    Article  Google Scholar 

  32. Foster C, Wright G, Battista RA, et al. Training in the aging athlete. Curr Sports Med Rep. 2007;6(3):200–6.

    PubMed  Google Scholar 

  33. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  Google Scholar 

  34. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  Google Scholar 

  35. Slim K, Nini E, Forestier D, et al. Methodological Index for Non-Randomized Studies (MINORS): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–6.

    Article  Google Scholar 

  36. World Health Organization. Mental health of older adults. http://www.who.int/mediacentre/factsheets/fs381/en/. Accessed 22 Oct 2017.

  37. Tentolouris N, Argyrakopoulou G, Katsilambros N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromol Med. 2008;10(3):169–78.

    Article  CAS  Google Scholar 

  38. Buccelletti E, Gilardi E, Scaini E, et al. Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci. 2009;13(4):299–307.

    CAS  PubMed  Google Scholar 

  39. Licht CMM, Vreeburg SA, van Reedt Dortland AKB, et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. J Clin Endocrinol Metab. 2010;95(5):2458–66.

    Article  CAS  Google Scholar 

  40. Christensen JH. Cardiac autonomic dysfunction in hemodialysis patients assessed by heart rate variability. Miner Urol Nefrol. 2012;64(3):191–8.

    CAS  Google Scholar 

  41. Licht CMM, de Geus EJC, Penninx BWJH. Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(6):2484–93.

    Article  CAS  Google Scholar 

  42. Seibert E, Zohles K, Ulrich C, et al. Association between autonomic nervous dysfunction and cellular inflammation in end-stage renal disease. BMC Cardiovasc Disord. 2016;16(1):210.

    Article  Google Scholar 

  43. Antoine S, Vaidya G, Imam H, et al. Pathophysiologic mechanisms in heart failure: role of the sympathetic nervous system. Am J Med Sci. 2017;353(1):27–30.

    Article  Google Scholar 

  44. Ueno LM, Moritani T. Effects of long-term exercise training on cardiac autonomic nervous activities and baroreflex sensitivity. Eur J Appl Physiol. 2003;89(2):109–14.

    Article  Google Scholar 

  45. Weippert M, Kumar M, Kreuzfeld S, et al. Comparison of three mobile devices for measuring RR intervals and heart rate variability: polar S810i, Suunto t6 and an ambulatory ECG system. Eur J Appl Physiol. 2010;109(4):779–86.

    Article  Google Scholar 

  46. Furlan R, Piazza S, Dell’Orto S, et al. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res. 1993;27(3):482–8.

    Article  CAS  Google Scholar 

  47. Rajendra Acharya U, Kannathal N, Mei Hua L, et al. Study of heart rate variability signals at sitting and lying postures. J Bodyw Mov Ther. 2005;9(2):134–41.

    Article  Google Scholar 

  48. Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M. Heart rate variability: origins, methods, and interpretive caveats. Pyschophysiology. 1997;34(6):623–48.

    Article  CAS  Google Scholar 

  49. Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6(2):107–28.

    Article  Google Scholar 

  50. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988. p. 567.

    Google Scholar 

  51. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

    Article  CAS  Google Scholar 

  52. Schuit AJ, Van Amelsvoort LG, Verheij TC, et al. Exercise training and heart rate variability in older people. Med Sci Sports Exerc. 1999;31(6):816–21.

    Article  CAS  Google Scholar 

  53. Stein PK, Ehsani AA, Domitrovich PP, et al. Effect of exercise training on heart rate variability in healthy older adults. Am Heart J. 1999;138(3):567–76.

    Article  CAS  Google Scholar 

  54. Perini R, Fisher N, Veicsteinas A, et al. Aerobic training and cardiovascular responses at rest and during exercise in older men and women. Med Sci Sports Exerc. 2002;34(4):700–8.

    PubMed  Google Scholar 

  55. Gulli G, Cevese A, Cappelletto P, et al. Moderate aerobic training improves autonomic cardiovascular control in older women. Clin Auton Res. 2003;13(3):196–202.

    PubMed  Google Scholar 

  56. Carter JB, Banister EW, Blaber AP. The effect of age and gender on heart rate variability after endurance training. Med Sci Sports Exerc. 2003;35(8):1333–40.

    Article  Google Scholar 

  57. Cadore E. Strength and endurance training prescription in healthy and frail elderly. Aging Dis. 2014;5(3):183.

    Article  Google Scholar 

  58. Stein PK, Domitrovich PP, Hui N, et al. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol. 2005;16(9):954–9.

    Article  Google Scholar 

  59. Sharma V. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier. Open Cardiovasc Med J. 2009;3:110–23.

    Article  CAS  Google Scholar 

  60. Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.

    Article  CAS  Google Scholar 

  61. Nicolini P, Ciulla MM, Asmundis CD, et al. The prognostic value of heart rate variability in the elderly, changing the perspective: from sympathovagal balance to chaos theory: the prognostic value HRV in the elderly. Pacing Clin Electrophysiol. 2012;35(5):621–37.

    Article  Google Scholar 

  62. Kleiger RE, Bigger JT, Bosner MS, et al. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol. 1991;68(6):626–30.

    Article  CAS  Google Scholar 

  63. Herzig D, Asatryan B, Brugger N, et al. The association between endurance training and heart rate variability: the confounding role of heart rate. Front Physiol. 2018;9:756.

    Article  Google Scholar 

  64. Armstrong LE, VanHeest JL. The unknown mechanism of the overtraining syndrome. Sports Med. 2002;32(3):185–209.

    Article  Google Scholar 

  65. Kreider RB, O’Toole ML, Fry AC, et al. Overtraining in sport. Med Sci Sports Exerc. 1998;30(5):225.

    Article  Google Scholar 

  66. Fry RW, Morton AR, Keast D. Overtraining in athletes. An update. Sports Med. 1991;12(1):32–65.

    Article  CAS  Google Scholar 

  67. Banister EW. Modeling elite athletic performance. In: MacDougall JD, Wenger HA, Green HJ, editors. Physiological testing of the high-performance athlete. 2nd ed. Champaign: Human Kinetics; 1991. p. 403–25.

    Google Scholar 

  68. Tsuji H, Venditti FJ, Manders ES, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878–83.

    Article  CAS  Google Scholar 

  69. Huikuri HV, Mäkikallio TH, Airaksinen KE, et al. Power–law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation. 1998;97(20):2031–6.

    Article  CAS  Google Scholar 

  70. Almeida-Santos MA, Barreto-Filho JA, Oliveira JLM, et al. Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr. 2016;63:1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dominique Letourneau (President) and Rémi Poillerat and Marc Thillays (Heads of the Research, Innovation and Scientific Information Division) of the Avenir Foundation, as well as Paul Calmels and Jocelyn Dutil of the University Hospital of Saint-Etienne, for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Raffin.

Ethics declarations

Funding

This work was supported by the Mutualité Française Loire—Haute Loire Services de Soins et d’Accompagnement des Mutualistes (SSAM), the Paul Bennetot Foundation of the Mutuelle Assurance des Travailleurs MUTualistes (MATMUT; Paris), the Aide à la REcherche médicale de proximité (AIRE; Saint-Etienne), and the Foundation of Jean Monnet University (Saint-Etienne).

Conflict of interest

Jérémy Raffin, Jean-Claude Barthélémy, Caroline Dupré, Vincent Pichot, Mathieu Berger, Léonard Féasson, Thierry Busso, Antoine Da Costa, Alain Colvez, Claude Montuy-Coquard, Rémi Bouvier, Bienvenu Bongue, Frédéric Roche and David Hupin declare they have no conflicts of interest with regard to the content of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 111 kb)

Supplementary material 1 (DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffin, J., Barthélémy, JC., Dupré, C. et al. Exercise Frequency Determines Heart Rate Variability Gains in Older People: A Meta-Analysis and Meta-Regression. Sports Med 49, 719–729 (2019). https://doi.org/10.1007/s40279-019-01097-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01097-7

Navigation