The Influence of Caffeine Supplementation on Resistance Exercise: A Review

Abstract

This paper aims to critically evaluate and thoroughly discuss the evidence on the topic of caffeine supplementation when performing resistance exercise, as well as provide practical guidelines for the ingestion of caffeine prior to resistance exercise. Based on the current evidence, it seems that caffeine increases both maximal strength and muscular endurance. Furthermore, power appears to be enhanced with caffeine supplementation, although this effect might, to a certain extent, be caffeine dose- and external load-dependent. A reduction in rating of perceived exertion (RPE) might contribute to the performance-enhancing effects of caffeine supplementation as some studies have observed decreases in RPE coupled with increases in performance following caffeine ingestion. However, the same does not seem to be the case for pain perception as there is evidence showing acute increases in resistance exercise performance without any significant effects of caffeine ingestion on pain perception. Some studies have reported that caffeine ingestion did not affect exercise-induced muscle damage, but that it might reduce perceived resistance exercise-induced delayed-onset muscle soreness; however, this needs to be explored further. There is some evidence that caffeine ingestion, compared with a placebo, may lead to greater increases in the production of testosterone and cortisol following resistance exercise. However, given that the acute changes in hormone levels seem to be weakly correlated with hallmark adaptations to resistance exercise, such as hypertrophy and increased muscular strength, these findings are likely of questionable practical significance. Although not without contrasting findings, the available evidence suggests that caffeine ingestion can lead to acute increases in blood pressure (primarily systolic), and thus caution is needed regarding caffeine supplementation among individuals with high blood pressure. In the vast majority of studies, caffeine was administered in capsule or powder forms, and therefore the effects of alternative forms of caffeine, such as chewing gums or mouth rinses, on resistance exercise performance remain unclear. The emerging evidence suggests that coffee might be at least equally ergogenic as caffeine alone when the caffeine dose is matched. Doses in the range of 3–9 mg·kg−1 seem to be adequate for eliciting an ergogenic effect when administered 60 min pre-exercise. In general, caffeine seems to be safe when taken in the recommended doses. However, at doses as high as 9 mg·kg−1 or higher, side effects such as insomnia might be more pronounced. It remains unclear whether habituation reduces the ergogenic benefits of caffeine on resistance exercise as no evidence exists for this type of exercise. Caution is needed when extrapolating these conclusions to females as the vast majority of studies involved only male participants.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Fulgoni VL 3rd, Keast DR, Lieberman HR. Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. Am J Clin Nutr. 2015;101(5):1081–7.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Van Thuyne W, Roels K, Delbeke FT. Distribution of caffeine levels in urine in different sports in relation to doping control. Int J Sports Med. 2005;26(9):714–8.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Spriet LL. Caffeine and performance. Int J Sport Nutr. 1995;5:S84–99.

    Article  PubMed  Google Scholar 

  5. 5.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):1319–34.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39(10):813–32.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ganio MS, Klau JF, Casa DJ, et al. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23(1):315–24.

    Article  PubMed  Google Scholar 

  8. 8.

    Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24(1):257–65.

    Article  PubMed  Google Scholar 

  9. 9.

    Goldstein ER, Ziegenfuss T, Kalman D, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(2):175–84.

    Article  PubMed Central  Google Scholar 

  11. 11.

    Wickham KA, Spriet LL. Administration of caffeine in alternate forms. Sports Med. 2018;48(Suppl 1):79–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Carroll TJ, Riek S, Carson RG. Neural adaptations to resistance training: implications for movement control. Sports Med. 2001;31(12):829–40.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–49.

    Article  PubMed  Google Scholar 

  14. 14.

    Levinger I, Goodman C, Hare DL, et al. The reliability of the 1RM strength test for untrained middle-aged individuals. J Sci Med Sport. 2009;12(2):310–6.

    Article  PubMed  Google Scholar 

  15. 15.

    Suchomel TJ, Nimphius S, Bellon CR, et al. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765–85.

    Article  PubMed  Google Scholar 

  16. 16.

    Kell RT, Bell G, Quinney A. Musculoskeletal fitness, health outcomes and quality of life. Sports Med. 2001;31(12):863–73.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103–18.

    Article  PubMed  Google Scholar 

  18. 18.

    Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155–8.

    CAS  PubMed  Google Scholar 

  19. 19.

    McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Tarnopolsky MA. Effect of caffeine on the neuromuscular system-potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33(6):1284–9.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Bazzucchi I, Felici F, Montini M, et al. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve. 2011;43(6):839–44.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Tallis J, Duncan MJ, James RS. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br J Pharmacol. 2015;172(15):3703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tallis J, James RS, Cox VM, et al. The effect of physiological concentrations of caffeine on the power output of maximally and submaximally stimulated mouse EDL (fast) and soleus (slow) muscle. J Appl Physiol. 2012;112(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Mohr T, Van Soeren M, Graham TE, et al. Caffeine ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Physiol. 1998;85(3):979–85.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):69–78.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Grgic J, Mikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17(8):1029–36.

    Article  PubMed  Google Scholar 

  28. 28.

    Duncan MJ, Oxford SW. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J Sports Med Phys Fitness. 2012;52(3):280–5.

    CAS  PubMed  Google Scholar 

  29. 29.

    Duncan MJ, Stanley M, Parkhouse N, et al. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392–9.

    Article  PubMed  Google Scholar 

  30. 30.

    Astorino TA, Terzi MN, Roberson DW, et al. Effect of two doses of caffeine on muscular function during isokinetic exercise. Med Sci Sports Exerc. 2010;42(12):2205–10.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–85.

    Article  PubMed  Google Scholar 

  32. 32.

    Da Silva VL, Messias FR, Zanchi NE, et al. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J Sports Med Phys Fitness. 2015;55(5):383–9.

    PubMed  Google Scholar 

  33. 33.

    Green JM, Wickwire PJ, McLester JR, et al. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform. 2007;2(3):250–9.

    Article  PubMed  Google Scholar 

  34. 34.

    Hudson GM, Green JM, Bishop PA, et al. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res. 2008;22(6):1950–7.

    Article  PubMed  Google Scholar 

  35. 35.

    Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):412–29.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Woolf K, Bidwell WK, Carlson AG. Effect of caffeine as an ergogenic aid during anaerobic exercise performance in caffeine naïve collegiate football players. J Strength Cond Res. 2009;23(5):1363–9.

    Article  PubMed  Google Scholar 

  37. 37.

    Arazi H, Hoseinihaji M, Eghbali E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz J Pharm Sci. 2016;52(4):685–92.

    Article  CAS  Google Scholar 

  38. 38.

    Hurley CF, Hatfield DL, Riebe DA. The effect of caffeine ingestion on delayed onset muscle soreness. J Strength Cond Res. 2013;27(11):3101–9.

    PubMed  Google Scholar 

  39. 39.

    Laska EM, Sunshine A, Mueller F, et al. Caffeine as an analgesic adjuvant. JAMA. 1983;251(13):1711–8.

    Article  Google Scholar 

  40. 40.

    Cook DB, O’Connor PJ, Ray CA. Muscle pain perception and sympathetic nerve activity to exercise during opioid modulation. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1565–73.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Tallis J, Yavuz HCM. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Appl Physiol Nutr Metab. 2018;43(3):274–81.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Sabblah S, Dixon D, Bottoms L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp Exerc Physiol. 2015;11(2):89–94.

    Article  Google Scholar 

  43. 43.

    Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Goldstein E, Jacobs PL, Whitehurst M, et al. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Williams AD, Cribb PJ, Cooke MB, et al. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res. 2008;22(2):464–70.

    Article  PubMed  Google Scholar 

  46. 46.

    Grgic J, Trexler ET, Lazinica B, et al. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Tarnopolsky M, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol. 2000;89(5):1719–24.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Park ND, Maresca RD, McKibans KI, et al. Caffeine’s enhancement of maximal voluntary strength and activation in uninjured but not injured muscle. Int J Sport Nutr Exerc Metab. 2008;18(6):639–52.

    Article  PubMed  Google Scholar 

  49. 49.

    Warren GL, Park ND, Maresca RD, et al. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):1375–87.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253–67.

    Article  PubMed  Google Scholar 

  51. 51.

    Gandevia SC, McKenzie DK. Activation of human muscles at short muscle lengths during maximal static efforts. J Physiol. 1988;407:599–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Connelly DM, Rice CL, Roos MR, et al. Motor unit firing rates and contractile properties in tibialis anterior of young and old men. J Appl Physiol. 1999;87(2):843–52.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Kalmar JM, Cafarelli E. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. J Appl Physiol. 2006;100(6):1757–64.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Black CD, Waddell DE, Gonglach AR. Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47(6):1145–58.

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Grgic J, Pickering C. The effects of caffeine ingestion on isokinetic muscular strength: a meta-analysis. J Sci Med Sport. 2018. https://doi.org/10.1016/j.jsams.2018.08.016.

    Article  PubMed  Google Scholar 

  56. 56.

    Behrens M, Mau-Moeller A, Weippert M, et al. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci Rep. 2015;5:10209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Polito MD, Souza DA, Casonatto J, et al. Acute effect of caffeine consumption on isotonic muscular strength and endurance: a systematic review and meta-analysis. Sci Sport. 2016;31(3):119–28.

    Article  Google Scholar 

  58. 58.

    Bond V, Gresham K, McRae J, et al. Caffeine ingestion and isokinetic strength. Br J Sports Med. 1986;20(3):135–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Jacobs I, Pasternak H, Bell DG. Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc. 2003;35(6):987–94.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Kalmar JM, Del Balso C, Cafarelli E. Increased spinal excitability does not offset central activation failure. Exp Brain Res. 2006;173(3):446–57.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Cook C, Beaven CM, Kilduff LP, et al. Acute caffeine ingestion’s increase of voluntarily chosen resistance-training load after limited sleep. Int J Sport Nutr Exerc Metab. 2012;22(3):157–64.

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Pethick J, Winter SL, Burnley M. Caffeine ingestion attenuates fatigue-induced loss of muscle torque complexity. Med Sci Sports Exerc. 2018;50(2):236–45.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Lane JD, Steege JF, Rupp SL, et al. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol. 1992;43(5):543–6.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Nehlig A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384–411.

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Grgic J. Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci. 2018;18(2):219–25.

    Article  PubMed  Google Scholar 

  66. 66.

    Glaister M, Muniz-Pumares D, Patterson SD, et al. Caffeine supplementation and peak anaerobic power output. Eur J Sport Sci. 2015;15(5):400–6.

    Article  PubMed  Google Scholar 

  67. 67.

    Schneiker KT, Bishop D, Dawson B, et al. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med Sci Sports Exerc. 2006;38(3):578–85.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Mora-Rodríguez R, García Pallarés J, López-Samanes Á, et al. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One. 2012;7(4):e33807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Diaz-Lara FJ, Del Coso J, García JM, et al. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur J Sport Sci. 2016;16(8):1079–86.

    Article  PubMed  Google Scholar 

  70. 70.

    Pallarés JG, Fernández-Elías VE, Ortega JF, et al. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45(11):2184–92.

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Mora-Rodríguez R, Pallarés JG, López-Gullón JM, et al. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18(3):338–42.

    Article  PubMed  Google Scholar 

  72. 72.

    Vierck J, O’Reilly B, Hossner K, et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int. 2000;24(5):263–72.

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.

    CAS  PubMed  Google Scholar 

  74. 74.

    Isner-Horobeti M, Dufour SP, Vautravers P, et al. Eccentric exercise training: modalities, applications and perspectives. Sports Med. 2013;43(6):483–512.

    Article  PubMed  Google Scholar 

  75. 75.

    Astorino TA, Cottrell T, Talhami Lozano A, et al. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol Behav. 2012;106(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Maridakis V, O’Connor PJ, Dudley GA, et al. Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. J Pain. 2007;8(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Machado M, Koch AJ, Willardson JM, et al. Caffeine does not augment markers of muscle damage or leukocytosis following resistance exercise. Int J Sports Physiol Perform. 2010;5(1):18–26.

    Article  PubMed  Google Scholar 

  78. 78.

    Dudley GA, Czerkawski J, Meinrod A, et al. Efficacy of naproxen sodium for exercise-induced dysfunction muscle injury and soreness. Clin J Sport Med. 1997;7(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Green MS, Martin TD, Corona BT. Effect of caffeine supplementation on quadriceps performance following eccentric exercise. J Strength Cond Res. 2018;32(10):2863–71.

    Article  PubMed  Google Scholar 

  80. 80.

    Green MS, Doyle JA, Ingalls CP, et al. Adaptation of insulin-resistance indicators to a repeated bout of eccentric exercise in human skeletal muscle. Int J Sport Nutr Exerc Metab. 2010;20(3):181–90.

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Caldwell AR, Tucker MA, Butts CL, et al. Effect of caffeine on perceived soreness and functionality following an endurance cycling event. J Strength Cond Res. 2017;31(3):638–43.

    Article  PubMed  Google Scholar 

  82. 82.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

    Article  PubMed  Google Scholar 

  83. 83.

    West DWD, Phillips SM. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 2012;112(7):2693–702.

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Beaven CM, Hopkins WG, Hansen KT, et al. Dose effect of caffeine on testosterone and cortisol responses to resistance exercise. Int J Sport Nutr Exerc Metab. 2008;18(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Wu BH, Lin JC. Caffeine attenuates acute growth hormone response to a single bout of resistance exercise. J Sports Sci Med. 2010;9(2):262–9.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Wu BH. Dose effects of caffeine ingestion on acute hormonal responses to resistance exercise. J Sports Med Phys Fitness. 2015;55(10):1242–51.

    CAS  PubMed  Google Scholar 

  87. 87.

    Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9.

    Article  CAS  PubMed  Google Scholar 

  88. 88.

    Damas F, Phillips S, Vechin FC, et al. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med. 2015;45(6):801–7.

    Article  PubMed  Google Scholar 

  89. 89.

    McMahon LP, Yue W, Santen RJ, et al. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol Endocrinol. 2005;19(1):175–83.

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Miwa S, Sugimoto N, Yamamoto N, et al. Caffeine induces apoptosis of osteosarcoma cells by inhibiting AKT/mTOR/S6K, NF-κB and MAPK pathways. Anticancer Res. 2012;32(9):3643–9.

    CAS  PubMed  Google Scholar 

  91. 91.

    Moore TM, Mortensen XM, Ashby CK, et al. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy. Appl Physiol Nutr Metab. 2017;42(6):621–9.

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Bui S. The effects of caffeine intake on muscle protein synthesis and the change in lean mass following resistance exercise [doctoral dissertation]. College Station: Texas A&M University; 2015.

    Google Scholar 

  93. 93.

    Mosqueda-Garcia R, Tseng CJ, Biaggioni I, et al. Effects of caffeine on baroreflex activity in humans. Clin Pharmacol Ther. 1990;48(5):568–74.

    Article  CAS  PubMed  Google Scholar 

  94. 94.

    Brito Ade F, de Oliveira CV, Brasileiro-Santos Mdo S, et al. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly. Clin Interv Aging. 2014;9:2151–8.

    PubMed  Google Scholar 

  95. 95.

    Astorino TA, Rohmann RL, Firth K, et al. Caffeine-induced changes in cardiovascular function during resistance training. Int J Sport Nutr Exerc Metab. 2007;17(5):468–77.

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Astorino TA, Martin BJ, Schachtsiek L, et al. Caffeine ingestion and intense resistance training minimize postexercise hypotension in normotensive and prehypertensive men. Res Sports Med. 2013;21(1):52–65.

    Article  PubMed  Google Scholar 

  97. 97.

    Higgins JP, Babu KM. Caffeine reduces myocardial blood flow during exercise. Am J Med. 2013;126(8):730.e1–8.

    Article  CAS  Google Scholar 

  98. 98.

    Passmore AP, Kondowe GB, Johnston GD. Renal and cardiovascular effects of caffeine: a dose-response study. Clin Sci (Lond). 1987;72(6):749–56.

    Article  CAS  Google Scholar 

  99. 99.

    Souza D, Casonatto J, Poton R, et al. Acute effect of caffeine intake on hemodynamics after resistance exercise in young non-hypertensive subjects. Res Sports Med. 2014;22(3):253–64.

    Article  PubMed  Google Scholar 

  100. 100.

    Beevers G, Lip GYH, O’Brien E. Blood pressure measurement. Part I—Sphygmomanometry: factors common to all techniques. BMJ. 2001;322(7292):981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Pincomb GA, Lovallo WR, Passey RB, et al. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young men. Am J Cardiol. 1985;56(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Richardson DL, Clarke ND. Effect of coffee and caffeine ingestion on resistance exercise performance. J Strength Cond Res. 2016;30(10):2892–900.

    Article  PubMed  Google Scholar 

  103. 103.

    Dodd SL, Brooks E, Powers SK, et al. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol Occup Physiol. 1991;62(6):424–9.

    Article  CAS  PubMed  Google Scholar 

  104. 104.

    Temple JL, Bernard C, Lipshultz SE, et al. The safety of ingested caffeine: a comprehensive review. Front Psychiatry. 2017;8:80.

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Bunsawat K, White DW, Kappus RM, et al. Caffeine delays autonomic recovery following acute exercise. Eur J Prev Cardiol. 2015;22(11):1473–9.

    Article  PubMed  Google Scholar 

  106. 106.

    Kamimori GH, Karyekar CS, Otterstetter R, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234(1–2):159–67.

    Article  CAS  PubMed  Google Scholar 

  107. 107.

    Clarke ND, Kornilios E, Richardson DL. Carbohydrate and caffeine mouth rinses do not affect maximum strength and muscular endurance performance. J Strength Cond Res. 2015;29(10):2926–31.

    Article  PubMed  Google Scholar 

  108. 108.

    Doering TM, Fell JW, Leveritt MD, et al. The effect of a caffeinated mouth-rinse on endurance cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2014;24(1):90–7.

    Article  PubMed  Google Scholar 

  109. 109.

    Eckerson JM, Bull AJ, Baechle TR, et al. Acute ingestion of sugar-free Red Bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res. 2013;27(8):2248–54.

    Article  PubMed  Google Scholar 

  110. 110.

    Martin J. Does caffeine ingestion prior to high intensity exercise act as an ergogenic aid in sporting performance in male athletes? [Masters thesis]. Cardiff: Cardiff Metropolitan University; 2015.

    Google Scholar 

  111. 111.

    Trexler ET, Smith-Ryan AE, Roelofs EJ, et al. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur J Sport Sci. 2016;16(6):702–10.

    Article  PubMed  Google Scholar 

  112. 112.

    Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr. 2005;45(7–8):535–62.

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Gonçalves LS, Painelli VS, Yamaguchi G, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123(1):213–20.

    Article  CAS  PubMed  Google Scholar 

  114. 114.

    Motl RW, O’Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;6:316–21.

    Article  CAS  Google Scholar 

  115. 115.

    Glaister M, Howatson G, Abraham CS, et al. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008;40(10):1835–40.

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Wiles JD, Bird SR, Hopkins J, et al. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br J Sports Med. 1992;26(2):116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):1227–34.

    Article  CAS  PubMed  Google Scholar 

  118. 118.

    Evans M, Tierney P, Gray N, et al. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sports athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  119. 119.

    McLellan TM, Bell DG. The impact of prior coffee consumption on the subsequent ergogenic effect of anhydrous caffeine. Int J Sport Nutr Exerc Metab. 2004;14(6):698–708.

    Article  PubMed  Google Scholar 

  120. 120.

    Desbrow B, Barrett CM, Minahan CL, et al. Caffeine, cycling performance, and exogenous CHO oxidation: a dose-response study. Med Sci Sports Exerc. 2009;41(9):1744–51.

    Article  CAS  PubMed  Google Scholar 

  121. 121.

    Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 2004;176(1):1–29.

    Article  CAS  Google Scholar 

  122. 122.

    Pickering C, Kiely J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018;48(1):7–16.

    Article  PubMed  Google Scholar 

  123. 123.

    Womack CJ, Saunders MJ, Bechtel MK, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Klein CS, Clawson A, Martin M, et al. The effect of caffeine on performance in collegiate tennis players. J Caffeine Res. 2012;2(3):111–6.

    Article  CAS  Google Scholar 

  125. 125.

    Puente C, Abián-Vicén J, Del Coso J, et al. The CYP1A2 −163C>A polymorphism does not alter the effects of caffeine on basketball performance. PLoS One. 2018;13(4):e0195943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Guest N, Corey P, Vescovi J, et al. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–8.

    Article  CAS  PubMed  Google Scholar 

  127. 127.

    Rahimi R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: a randomized, double-blind, placebo-controlled, crossover study. Ir J Med Sci. 2018. https://doi.org/10.1007/s11845-018-1780-7.

    Article  PubMed  Google Scholar 

  128. 128.

    Pollo A, Carlino E, Benedetti F. The top-down influence of ergogenic placebos on muscle work and fatigue. Eur J Neurosci. 2008;28(2):379–88.

    Article  PubMed  Google Scholar 

  129. 129.

    Duncan MJ, Lyons M, Hankey J. Placebo effects of caffeine on short-term resistance exercise to failure. Int J Sports Physiol Perform. 2009;4(2):244–53.

    Article  PubMed  Google Scholar 

  130. 130.

    Beedie CJ, Foad AJ. The placebo effect in sports performance: a brief review. Sports Med. 2009;39(4):313–29.

    Article  PubMed  Google Scholar 

  131. 131.

    Saunders B, de Oliveira LF, da Silva RP, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240–7.

    Article  CAS  PubMed  Google Scholar 

  132. 132.

    Astorino TA, Martin BJ, Schachtsiek L, et al. Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res. 2011;25(6):1752–8.

    Article  PubMed  Google Scholar 

  133. 133.

    Tallis J, Muhammad B, Islam M, et al. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve. 2016;54(3):479–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jozo Grgic.

Ethics declarations

Conflict of interest

Jozo Grgic, Pavle Mikulic, Brad J. Schoenfeld, David J. Bishop, and Zeljko Pedisic declare that they have no conflicts of interest relevant to the content of this review.

Funding

No sources of funding were used to assist in the preparation of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grgic, J., Mikulic, P., Schoenfeld, B.J. et al. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Med 49, 17–30 (2019). https://doi.org/10.1007/s40279-018-0997-y

Download citation