Influence of Regular Physical Activity and Fitness on Stress Reactivity as Measured with the Trier Social Stress Test Protocol: A Systematic Review

Abstract

Background

Psychosocial stress is associated with multiple health complaints. Research to date suggests that regular physical activity (PA) and higher cardiorespiratory fitness may reduce stress reactivity and therefore contribute to a reduction of stress-related risk factors. While previous reviews have not differentiated between stressors, we focus on psychosocial stress elicited with the Trier Social Stress Test (TSST).

Objective

Our objective was to examine the effect of regular PA and cardiorespiratory fitness on stress reactivity, with a particular focus on the TSST. The TSST is the laboratory task most widely used to induce socio-evaluative stress and elicits stronger stress reactions than most other cognitive stressor tasks.

Methods

A systematic search within various databases was performed in January 2018. The following outcomes were considered: cortisol, heart rate, psychological stress reactivity, and potential moderators (age, sex, exercise intensity, assessment mode, and psychological constructs).

Results

In total, 14 eligible studies were identified. Cortisol and heart rate reactivity were attenuated by higher PA or better fitness in seven of twelve studies and four of nine studies, respectively. Two of four studies reported smaller increases in anxiety and smaller decreases in calmness in physically active/fitter participants. Three of four studies found that higher PA/fitness was associated with more favorable mood in response to the TSST.

Conclusion

About half of the studies suggested that higher PA/fitness levels were associated with an attenuated response to psychosocial stress. Currently, most evidence is based on cross-sectional analyses. Therefore, a great need for further studies with longitudinal or experimental designs exists.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298:1685–7. https://doi.org/10.1001/jama.298.14.1685.

    CAS  Article  Google Scholar 

  2. 2.

    Holmes ME, Ekkekakis P, Eisenmann JC. The physical activity, stress and metabolic syndrome triangle: a guide to unfamiliar territory for the obesity researcher. Obes Rev. 2010;11:492–507. https://doi.org/10.1111/j.1467-789X.2009.00680.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Thoits PA. Stress and health: major findings and policy implications. J Health Soc Behav. 2010;51(Suppl):S41–53. https://doi.org/10.1177/0022146510383499.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Middlebrooks JS, Audage NC. The effects of childhood stress on health across the lifespan. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2008.

    Google Scholar 

  5. 5.

    McEwen BS. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol. 2008;583:174–85. https://doi.org/10.1016/j.ejphar.2007.11.071.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kivimäki M, Virtanen M, Elovainio M, Kouvonen A, Väänänen A, Vahtera J. Work stress in the etiology of coronary heart disease: a meta-analysis. Scand J Work Environ Health. 2006;32:431–42.

    Article  PubMed Central  PubMed  Google Scholar 

  7. 7.

    Booth J, Connelly L, Lawrence M, Chalmers C, Joice S, Becker C, Dougall N. Evidence of perceived psychosocial stress as a risk factor for stroke in adults: a meta-analysis. BMC Neurol. 2015;15:233. https://doi.org/10.1186/s12883-015-0456-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bergmann N, Gyntelberg F, Faber J. The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect. 2014;3:R55–80. https://doi.org/10.1530/EC-14-0031.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30. https://doi.org/10.1037/0033-2909.130.4.601.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Redmond N, Richman J, Gamboa CM, Albert MA, Sims M, Durant RW, et al. Perceived stress is associated with incident coronary heart disease and all-cause mortality in low- but not high-income participants in the Reasons for Geographic And Racial Differences in Stroke study. J Am Heart Assoc. 2013;2:e000447. https://doi.org/10.1161/JAHA.113.000447.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ludyga S. Sportaktivität, Stress und das Gehirn. In: Fuchs R, Gerber M, editors. Stressregulation und sport. Heidelberg: Springer; 2017. p. 275–91.

    Google Scholar 

  12. 12.

    Pines AM, Keinan G. Stress and burnout: the significant difference. Pers Individ Differ. 2005;39:625–35. https://doi.org/10.1016/j.paid.2005.02.009.

    Article  Google Scholar 

  13. 13.

    Bauman AE. Updating the evidence that physical activity is good for health: an epidemiological review 2000–2003. Zs Sportpsychol. 2004;7:6–19. https://doi.org/10.1016/S1440-2440(04)80273-1.

    CAS  Article  Google Scholar 

  14. 14.

    Biddle SJH, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45:886–95. https://doi.org/10.1136/bjsports-2011-090185.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Netz Y, Wu M-J, Becker BJ, Tenenbaum G. Physical activity and psychological well-being in advanced age: a meta-analysis of intervention studies. Psychol Aging. 2005;20:272–84. https://doi.org/10.1037/0882-7974.20.2.272.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801–9. https://doi.org/10.1503/cmaj.051351.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Gerber M, Holsboer-Trachsler E, Pühse U, Brand S. Exercise is medicine for patients with major depressive disorders: but only if the “pill” is taken! Neuropsychiatr Dis Treat. 2016;12:1977–81. https://doi.org/10.2147/NDT.S110656.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gerber M, Pühse U. Review article: do exercise and fitness protect against stress-induced health complaints? A review of the literature. Scand J Public Health. 2009;37:801–19. https://doi.org/10.1177/1403494809350522.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Klaperski S, Seelig H, Fuchs R. Sportaktivität als Stresspuffer. Zs Sportpsychol. 2012;19:80–90. https://doi.org/10.1026/1612-5010/a000061.

    Article  Google Scholar 

  20. 20.

    Sothmann MS. The cross-stressor adaptation hypothesis and exercise training. In: Acevedo EO, Ekkekakis P, editors. Psychobiology of physical activity. Champaign: Human Kinetics; 2006.

    Google Scholar 

  21. 21.

    Kjaer M. Regulation of hormonal and metabolic responses during exercise in humans. Exerc Sport Sci Rev. 1992;20:161–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Luger A, Deuster PA, Kyle SB, Gallucci WT, Montgomery LC, Gold PW, et al. Acute hypothalamic–pituitary–adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N Engl J Med. 1987;316:1309–15. https://doi.org/10.1056/NEJM198705213162105.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gerber M. Physiologische Wirkmechanismen des Sports unter Stress. In: Fuchs R, Gerber M, editors. Stressregulation und Sport. Heidelberg: Springer; 2017.

    Google Scholar 

  24. 24.

    Foley P, Kirschbaum C. Human hypothalamus–pituitary–adrenal axis responses to acute psychosocial stress in laboratory settings. Neurosci Biobehav Rev. 2010;35:91–6. https://doi.org/10.1016/j.neubiorev.2010.01.010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Childs E, de Wit H. Regular exercise is associated with emotional resilience to acute stress in healthy adults. Front Physiol. 2014;5:401. https://doi.org/10.3389/fphys.2014.00161.

    Article  Google Scholar 

  26. 26.

    Jayasinghe SU, Lambert GW, Torres SJ, Fraser SF, Eikelis N, Turner AI. Hypothalamo-pituitary adrenal axis and sympatho-adrenal medullary system responses to psychological stress were not attenuated in women with elevated physical fitness levels. Endocrine. 2016;51:369–79. https://doi.org/10.1007/s12020-015-0687-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Strahler J, Fuchs R, Nater UM, Klaperski S. Impact of physical fitness on salivary stress markers in sedentary to low-active young to middle-aged men. Psychoneuroendocrinology. 2016;68:14–9. https://doi.org/10.1016/j.psyneuen.2016.02.022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Klaperski S, von Dawans B, Heinrichs M, Fuchs R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial. J Behav Med. 2014;37:1118–33. https://doi.org/10.1007/s10865-014-9562-9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gerber M, Ludyga S, Mücke M, Colledge F, Brand S, Pühse U. Low vigorous physical activity is associated with increased adrenocortical reactivity to psychosocial stress in students with high stress perceptions. Psychoneuroendocrinology. 2017;80:104–13. https://doi.org/10.1016/j.psyneuen.2017.03.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Klaperski S, von Dawans B, Heinrichs M, Fuchs R. Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women? Psychol Sport Exerc. 2013;14:266–74. https://doi.org/10.1016/j.psychsport.2012.11.003.

    Article  Google Scholar 

  31. 31.

    Rimmele U, Zellweger BC, Marti B, Seiler R, Mohiyeddini C, Ehlert U, Heinrichs M. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology. 2007;32:627–35. https://doi.org/10.1016/j.psyneuen.2007.04.005.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Chida Y, Steptoe A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension. 2010;55:1026–32. https://doi.org/10.1161/HYPERTENSIONAHA.109.146621.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Forcier K, Stroud LR, Papandonatos GD, Hitsman B, Reiches M, Krishnamoorthy J, Niaura R. Links between physical fitness and cardiovascular reactivity and recovery to psychological stressors: a meta-analysis. Health Psychol. 2006;25:723–39. https://doi.org/10.1037/0278-6133.25.6.723.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Jackson EM, Dishman RK. Cardiorespiratory fitness and laboratory stress: a meta-regression analysis. Psychophysiology. 2006;43:57–72. https://doi.org/10.1111/j.1469-8986.2006.00373.x.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull. 2004;130:355–91. https://doi.org/10.1037/0033-2909.130.3.355.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Boutcher SH, Hamer M. Psychobiological reactivity, physical activity and cardiovascular health. In: Acevedo EO, Ekkekakis P, editors. Psychobiology of physical activity. Champaign: Human Kinetics; 2006. p. 161–76.

    Google Scholar 

  37. 37.

    Kirschbaum C, Pirke KM, Hellhammer DH. The ‘Trier Social Stress Test’: a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology. 1993;28:76–81. https://doi.org/10.1159/000119004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Buske-Kirschbaum A, Jobst S, Wustmans A, Kirschbaum C, Rauh W, Hellhammer D. Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosom Med. 1997;59:419–26. https://doi.org/10.1097/00006842-199707000-00012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    von Dawans B, Kirschbaum C, Heinrichs M. The Trier Social Stress Test for Groups (TSST-G): a new research tool for controlled simultaneous social stress exposure in a group format. Psychoneuroendocrinology. 2011;36:514–22. https://doi.org/10.1016/j.psyneuen.2010.08.004.

    Article  Google Scholar 

  40. 40.

    Allen AP, Kennedy PJ, Dockray S, Cryan JF, Dinan TG, Clarke G. The Trier Social Stress Test: principles and practice. Neurobiol stress. 2017;6:113–26. https://doi.org/10.1016/j.ynstr.2016.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kudielka BM, Hellhammer DH, Kirschbaum C. Ten years of research with the trier social stress test revisited. In: Harmon-Jones E, Winkielman P, editors. Social neuroscience. New York: The Guilford Press; 2007. p. 56–83.

    Google Scholar 

  42. 42.

    Kudielka BM, Hellhammer DH, Wüst S. Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology. 2009;34:2–18. https://doi.org/10.1016/j.psyneuen.2008.10.004.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: a review. Biol Psychol. 2005;69:113–32. https://doi.org/10.1016/j.biopsycho.2004.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hackney AC. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab. 2006;1:783–92. https://doi.org/10.1586/17446651.1.6.783.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Bibbey A, Carroll D, Roseboom TJ, Phillips AC, de Rooij SR. Personality and physiological reactions to acute psychological stress. Int J Psychophysiol. 2013;90:28–36. https://doi.org/10.1016/j.ijpsycho.2012.10.018.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Connor-Smith JK, Flachsbart C. Relations between personality and coping: a meta-analysis. J Pers Soc Psychol. 2007;93:1080–107. https://doi.org/10.1037/0022-3514.93.6.1080.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Houston JM, Carter D, Smither RD. Competitiveness in elite professional athletes. Percept Mot Skills. 2016;84:1447–54. https://doi.org/10.2466/pms.1997.84.3c.1447.

    Article  Google Scholar 

  48. 48.

    Harrison LK, Denning S, Easton HL, Hall JC, Burns VE, Ring C, Carroll D. The effects of competition and competitiveness on cardiovascular activity. Psychophysiology. 2001;38:601–6.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  49. 49.

    Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61:201–16.

    CAS  Article  PubMed Central  Google Scholar 

  50. 50.

    Brosschot JF, Pieper S, Thayer JF. Expanding stress theory: prolonged activation and perseverative cognition. Psychoneuroendocrinology. 2005;30:1043–9. https://doi.org/10.1016/j.psyneuen.2005.04.008.

    Article  PubMed  Google Scholar 

  51. 51.

    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. https://doi.org/10.1186/2046-4053-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647. https://doi.org/10.1136/bmj.g7647.

    Article  Google Scholar 

  54. 54.

    Rohleder N, Beulen SE, Chen E, Wolf JM, Kirschbaum C. Stress on the dance floor: the cortisol stress response to social-evaluative threat in competitive ballroom dancers. Pers Soc Psychol Bull. 2007;33:69–84. https://doi.org/10.1177/0146167206293986.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Sjörs A, Larsson B, Dahlman J, Falkmer T, Gerdle B. Physiological responses to low-force work and psychosocial stress in women with chronic trapezius myalgia. BMC Musculoskelet Disord. 2009;10:63. https://doi.org/10.1186/1471-2474-10-63.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Sommer M, Braumann M, Althoff T, Backhaus J, Kordon A, Junghanns K, et al. Psychological and neuroendocrine responses to social stress and to the administration of the alpha-2-receptor antagonist, yohimbine, in highly trained endurance athletes in comparison to untrained healthy controls. Pharmacopsychiatry. 2011;44:129–34. https://doi.org/10.1055/s-0031-1277166.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Jayasinghe SU, Torres SJ, Hussein M, Fraser SF, Lambert GW, Turner AI. Fitter women did not have attenuated hemodynamic responses to psychological stress compared with age-matched women with lower levels of fitness. PLoS One. 2017;12:e0169746. https://doi.org/10.1371/journal.pone.0169746.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dockray S, Susman EJ, Dorn LD. Depression, cortisol reactivity, and obesity in childhood and adolescence. J Adolesc Health. 2009;45:344–50. https://doi.org/10.1016/j.jadohealth.2009.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Martikainen S, Pesonen A-K, Lahti J, Heinonen K, Feldt K, Pyhälä R, et al. Higher levels of physical activity are associated with lower hypothalamic–pituitary–adrenocortical axis reactivity to psychosocial stress in children. J Clin Endocrinol Metab. 2013;98:E619–27. https://doi.org/10.1210/jc.2012-3745.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Rimmele U, Seiler R, Marti B, Wirtz PH, Ehlert U, Heinrichs M. The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology. 2009;34:190–8. https://doi.org/10.1016/j.psyneuen.2008.08.023.

    Article  PubMed  Google Scholar 

  61. 61.

    Wood CJ, Clow A, Hucklebridge F, Law R, Smyth N. Physical fitness and prior physical activity are both associated with less cortisol secretion during psychosocial stress. Anxiety Stress Coping. 2017. https://doi.org/10.1080/10615806.2017.1390083.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Wyss T, Boesch M, Roos L, Tschopp C, Frei KM, Annen H, La Marca R. Aerobic fitness level affects cardiovascular and salivary alpha amylase responses to acute psychosocial stress. Sports Med Open. 2016;2:33. https://doi.org/10.1186/s40798-016-0057-9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Puterman E, O’Donovan A, Adler NE, Tomiyama AJ, Kemeny M, Wolkowitz OM, Epel E. Physical activity moderates effects of stressor-induced rumination on cortisol reactivity. Psychosom Med. 2011;73:604–11. https://doi.org/10.1097/PSY.0b013e318229e1e0.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 2003;28:916–31. https://doi.org/10.1016/S0306-4530(02)00108-7.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34:163–71. https://doi.org/10.1016/j.psyneuen.2008.10.026.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A. Measuring cortisol in human psychobiological studies. Physiol Behav. 2007;90:43–53. https://doi.org/10.1016/j.physbeh.2006.08.025.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Wolfram M, Bellingrath S, Feuerhahn N, Kudielka BM. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day. Stress Health. 2013;29:143–9. https://doi.org/10.1002/smi.2439.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Campbell J, Ehlert U. Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology. 2012;37:1111–34. https://doi.org/10.1016/j.psyneuen.2011.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Roy MP. Patterns of cortisol reactivity to laboratory stress. Horm Behav. 2004;46:618–27. https://doi.org/10.1016/j.yhbeh.2004.06.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Zanstra YJ, Johnston DW. Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol Psychol. 2011;86:98–105. https://doi.org/10.1016/j.biopsycho.2010.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gerber M. Sportliche Aktivität und Stressreaktivität: ein Review [Exercise and stress reactivity: a review]. Dt Zs Sportmed. 2008;59:168–74.

    Google Scholar 

  72. 72.

    Lovallo WR. Do low levels of stress reactivity signal poor states of health? Biol Psychol. 2011;86:121–8. https://doi.org/10.1016/j.biopsycho.2010.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Phillips AC, Ginty AT, Hughes BM. The other side of the coin: blunted cardiovascular and cortisol reactivity are associated with negative health outcomes. Int J Psychophysiol. 2013;90:1–7. https://doi.org/10.1016/j.ijpsycho.2013.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    de Geus EJC, Stubbe JH. Aerobic exercise and stress reduction. In: Fink G, editor. Encyclopedia of stress. 2nd ed. New York: Academic Press; 2007. p. 73–8.

    Google Scholar 

  75. 75.

    Armbruster D, Mueller A, Strobel A, Lesch K-P, Brocke B, Kirschbaum C. Predicting cortisol stress responses in older individuals: influence of serotonin receptor 1A gene (HTR1A) and stressful life events. Horm Behav. 2011;60:105–11. https://doi.org/10.1016/j.yhbeh.2011.03.010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Kajantie E, Phillips DIW. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31:151–78. https://doi.org/10.1016/j.psyneuen.2005.07.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Kirschbaum C, Kudielka BM, Gaab J, Schommer NC, Hellhammer DH. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus–pituitary–adrenal axis. Psychosom Med. 1999;61:154–62.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Hollanders JJ, van der Voorn B, Rotteveel J, Finken MJJ. Is HPA axis reactivity in childhood gender-specific? A systematic review. Biol Sex Differ. 2017;8:23. https://doi.org/10.1186/s13293-017-0144-8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lustyk MKB, Olson KC, Gerrish WG, Holder A, Widman L. Psychophysiological and neuroendocrine responses to laboratory stressors in women: implications of menstrual cycle phase and stressor type. Biol Psychol. 2010;83:84–92. https://doi.org/10.1016/j.biopsycho.2009.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Glynn LM, Christenfeld N, Gerin W. The role of rumination in recovery from reactivity: cardiovascular consequences of emotional states. Psychosom Med. 2002;64:714–26. https://doi.org/10.1097/01.PSY.0000031574.42041.23.

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Linden W, Earle TL, Gerin W, Christenfeld N. Physiological stress reactivity and recovery: conceptual siblings separated at birth? J Psychosom Res. 1997;42:117–35. https://doi.org/10.1016/S0022-3999(96)00240-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: Wiley; 2009.

    Google Scholar 

  83. 83.

    Boutcher SH. Physical activity and stress reactivity. Oxford: Oxford University Press; 2017.

    Google Scholar 

  84. 84.

    Hoogendoorn WE, van Poppel MNM, Bongers PM, Koes BW, Bouter LM. Systematic review of psychosocial factors at work and private life as risk factors for back pain. Spine. 2000;25:2114–25. https://doi.org/10.1097/00007632-200008150-00017.

    CAS  Article  Google Scholar 

  85. 85.

    Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33. https://doi.org/10.1038/nrn2651.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Fuchs R, Klaperski S, Gerber M, Seelig H. Messung der Bewegungs- und Sportaktivität mit dem BSA-Fragebogen. Zs Gesundheitspsychol. 2015;23:60–76. https://doi.org/10.1026/0943-8149/a000137.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Mücke.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Manuel Mücke, Sebastian Ludyga, Flora Colledge, and Markus Gerber have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mücke, M., Ludyga, S., Colledge, F. et al. Influence of Regular Physical Activity and Fitness on Stress Reactivity as Measured with the Trier Social Stress Test Protocol: A Systematic Review. Sports Med 48, 2607–2622 (2018). https://doi.org/10.1007/s40279-018-0979-0

Download citation