Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation

Abstract

Historically, heat has been used in various clinical and sports rehabilitation settings to treat soft tissue injuries. More recently, interest has emerged in using heat to pre-condition muscle against injury. The aim of this narrative review was to collate information on different types of heat therapy, explain the physiological rationale for heat therapy, and to summarise and evaluate the effects of heat therapy before, during and after muscle injury, immobilisation and strength training. Studies on skeletal muscle cells demonstrate that heat attenuates cellular damage and protein degradation (following in vitro challenges/insults to the cells). Heat also increases the expression of heat shock proteins (HSPs) and upregulates the expression of genes involved in muscle growth and differentiation. In rats, applying heat before and after muscle injury or immobilisation typically reduces cellular damage and muscle atrophy, and promotes more rapid muscle growth/regeneration. In humans, some research has demonstrated benefits of microwave diathermy (and, to a lesser extent, hot water immersion) before exercise for restricting muscle soreness and restoring muscle function after exercise. By contrast, the benefits of applying heat to muscle after exercise are more variable. Animal studies reveal that applying heat during limb immobilisation attenuates muscle atrophy and oxidative stress. Heating muscle may also enhance the benefits of strength training for improving muscle mass in humans. Further research is needed to identify the most effective forms of heat therapy and to investigate the benefits of heat therapy for restricting muscle wasting in the elderly and those individuals recovering from serious injury or illness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Hausswirth C, Mujika I. Introduction. In: Hausswirth C, Mujika I (eds). Recovery for performance in sport. Champaign: Human Kinetics; 2013. pp. viii–xiii.

  2. 2.

    Goto K, Oda H, Kondo H, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27.

    Article  PubMed  Google Scholar 

  3. 3.

    Morimoto Y, Kondo Y, Kataoka H, et al. Heat treatment inhibits skeletal muscle atrophy of glucocorticoid-induced myopathy in rats. Physiol Res. 2015;64(6):897–905.

    CAS  PubMed  Google Scholar 

  4. 4.

    Touchberry CD, Gupte AA, Bomhoff GL, et al. Acute heat stress prior to downhill running may enhance skeletal muscle remodeling. Cell Stress Chaperones. 2012;17(6):693–705.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Takeuchi K, Hatade T, Wakamiya S, et al. Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem. 2014;116(2):327–34.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Selsby JT, Dodd SL. Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R134–9.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Frier BC, Locke M. Heat stress inhibits skeletal muscle hypertrophy. Cell Stress Chaperones. 2007;12(2):132–41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol. 2008;102(4):447–55.

    Article  PubMed  Google Scholar 

  9. 9.

    Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Goto K, Oda H, Morioka S, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. Jpn J Aerosp Environ Med. 2007;44(1):13–8.

    Google Scholar 

  11. 11.

    Nosaka K, Muthalib M, Lavender A, et al. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise. Eur J Appl Physiol. 2007;99(2):183–92.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Iguchi M, Shields RK. Prior heat stress effects fatigue recovery of the elbow flexor muscles. Muscle Nerve. 2011;44(1):115–25.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Skurvydas A, Kamandulis S, Stanislovaitis A, et al. Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage. J Athl Train. 2008;43(6):592–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30.

    Article  PubMed  Google Scholar 

  15. 15.

    Symons BT, Clasey JL, Gater DR, et al. Effects of deep heat as a preventative mechanism on delayed onset muscle soreness. J Strength Cond Res. 2004;18(1):155–61.

    Article  Google Scholar 

  16. 16.

    Saga N, Katamoto S, Naito H. Effect of heat preconditioning by microwave hyperthermia on human skeletal muscle after eccentric exercise. J Sports Sci Med. 2008;7:176–83.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nosaka K, Sakamoto K, Newton M, et al. Influence of pre-exercise muscle temperature on responses to eccentric exercise. J Athl Train. 2004;39(2):132–7.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bailey SJ, Wilkerson DP, Fulford J, et al. Influence of passive lower-body heating on muscle metabolic perturbation and high-intensity exercise tolerance in humans. Eur J Appl Physiol. 2012;112(10):3569–76.

    Article  PubMed  Google Scholar 

  19. 19.

    Garramone RR Jr, Winters RM, Das DK, et al. Reduction of skeletal muscle injury through stress conditioning using the heat-shock response. Plast Reconstr Surg. 1994;93(6):1242–7.

    Article  PubMed  Google Scholar 

  20. 20.

    Naito H, Powers SK, Demirel HA, et al. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol (1985). 2000;88(1):359–363.

  21. 21.

    Kojima A, Goto K, Morioka S, et al. Heat stress facilitates the regeneration of injured skeletal muscle in rats. J Orthop Sci. 2007;12(1):74–82.

    Article  PubMed  Google Scholar 

  22. 22.

    Khamwong P, Nosaka K, Pirunsan U, et al. Prophylactic effect of hot pack on symptoms of eccentric exercise-induced muscle damage of the wrist extensors. Eur J Sport Sci. 2012;12(5):443–53.

    Article  Google Scholar 

  23. 23.

    Khamwong P, Paungmali A, Pirunsan U, et al. Prophylactic effects of sauna on delayed-onset muscle soreness of the wrist extensors. Asian J Sports Med. 2015;6(2):e25549.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Vardiman JP, Moodie N, Siedlik JA, et al. Short-wave diathermy pretreatment and inflammatory myokine response after high-intensity eccentric exercise. J Athl Train. 2015;50(6):612–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Evans RK, Knight KL, Draper DO, et al. Effects of warm-up before eccentric exercise on indirect markers of muscle damage. Med Sci Sports Exerc. 2002;34(12):1892–9.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Castellani JW, Zambraski EJ, Sawka MN, et al. Does high muscle temperature accentuate skeletal muscle injury from eccentric exercise? Physiol Rep. 2016;4(9):e12777.

  27. 27.

    Shibaguchi T, Sugiura T, Fujitsu T, et al. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci. 2016;66(4):345–57.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Selsby JT, Rother S, Tsuda S, et al. Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol. 2007;102(4):1702–7.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Clarke DH. Effects of immersion in hot and cold water upon recovery of muscular strength following fatiguing isometric exercise. Arch Phys Med Rehabil. 1963;44:565–8.

    CAS  PubMed  Google Scholar 

  30. 30.

    Mayer JM, Mooney V, Matheson LN, et al. Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1310–7.

    Article  PubMed  Google Scholar 

  31. 31.

    Viitasalo JT, Niemela K, Kaappola R, et al. Warm underwater water-jet massage improves recovery from intense physical exercise. Eur J Appl Physiol Occup Physiol. 1995;71(5):431–8.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kuligowski LA, Lephart SM, Giannantonio FP, et al. Effect of whirlpool therapy on the signs and symptoms of delayed onset muscle soreness. J Athl Train. 1998;33(3):222–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Jayaraman RC, Reid RW, Foley JM, et al. MRI evaluation of topical heat and static stretching as therapeutic modalities for the treatment of eccentric exercise-induced muscle damage. Eur J Appl Physiol. 2004;93(1–2):30–8.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Pournot H, Bieuzen F, Duffield R, et al. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):1287–95.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Stadnyk AMJ, Rehrer NJ, Handcock PJ, et al. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature (Epub 7 Dec 2017).

  36. 36.

    Noble EG, Milne KJ, Melling CW. Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab. 2008;33(5):1050–65.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Morton JP, Kayani AC, McArdle A, et al. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009;39(8):643–62.

    Article  PubMed  Google Scholar 

  38. 38.

    Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteom Clin Appl. 2014;8(11–12):875–95.

    CAS  Article  Google Scholar 

  39. 39.

    Archer AE, Von Schulze AT, Geiger PC. Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160529.

    Article  PubMed  Google Scholar 

  40. 40.

    Thakur SS, Swiderski K, Ryall JG, et al. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160528.

    Article  PubMed  Google Scholar 

  41. 41.

    Goto K, Okuyama R, Sugiyama H, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. 2003;447(2):247–53.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Maglara AA, Vasilaki A, Jackson MJ, et al. Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol. 2003;548(Pt 3):837–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tsuchida W, Iwata M, Akimoto T, et al. Heat stress modulates both anabolic and catabolic signaling pathways preventing dexamethasone-induced muscle atrophy in vitro. J Cell Physiol. 2017;232(3):650–64.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ohno Y, Yamada S, Sugiura T, et al. Possible role of NF-kB signals in heat stress-associated increase in protein content of cultured C2C12 cells. Cells Tissues Organs. 2011;194(5):363–70.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ogura Y, Naito H, Tsurukawa T, et al. Microwave hyperthermia treatment increases heat shock proteins in human skeletal muscle. Br J Sports Med. 2007;41(7):453–455 (discussion 455).

  46. 46.

    Touchberry C, Le T, Richmond S, et al. Diathermy treatment increases heat shock protein expression in female, but not male skeletal muscle. Eur J Appl Physiol. 2008;102(3):319–23.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Kuhlenhoelter AM, Kim K, Neff D, et al. Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;311(2):R377–91.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Morton JP, Maclaren DP, Cable NT, et al. Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men. Acta Physiol (Oxf). 2007;190(4):319–27.

    CAS  Article  Google Scholar 

  49. 49.

    Morton JP, MacLaren DP, Cable NT, et al. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol (1985). 2006;101(1):176–182.

  50. 50.

    Ohno Y, Yamada S, Sugiura T, et al. A possible role of NF-kappaB and HSP72 in skeletal muscle hypertrophy induced by heat stress in rats. Gen Physiol Biophys. 2010;29(3):234–42.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Laplante M, Sabatani DM. mTOR signalling at a glance. J Cell Sci. 2009;20(122):3589–94.

    Article  Google Scholar 

  52. 52.

    Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Léger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576(3):923–33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006;38(11):1950–7.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yoshihara T, Naito H, Kakigi R, et al. Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol. 2012;207(2):416–26.

    Article  Google Scholar 

  56. 56.

    Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Kakigi R, Naito H, Ogura Y, et al. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci. 2011;61(2):131–40.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Chou SD, Prince T, Gong J, et al. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One. 2012;7(6):e39679.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Guo Q, Miller D, An H, et al. Controlled heat stress promotes myofibrillogenesis during myogenesis. PLoS One. 2016;11(11):e0166294.

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Luo G, Sun X, Hungness E, et al. Heat shock protects L6 myotubes from catabolic effects of dexamethasone and prevents downregulation of NF-kappaB. Am J Physiol Regul Integr Comp Physiol. 2001;281(4):R1193–200.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652–8.

    Article  PubMed  Google Scholar 

  62. 62.

    Uehara K, Goto K, Kobayashi T, et al. Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol. 2004;54(3):263–71.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to Miss Bianca Cattelini, contracted through the Queensland Academy of Sport, for her work on the design of the figures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamish McGorm.

Ethics declarations

Funding

Hamish McGorm is supported by an Australian Government Research Training Program Scholarship, and the Queensland Academy of Sport.

Conflicts of interest

Hamish McGorm, Llion Roberts, Jeff Coombes and Jonathan Peake declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGorm, H., Roberts, L.A., Coombes, J.S. et al. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med 48, 1311–1328 (2018). https://doi.org/10.1007/s40279-018-0876-6

Download citation