Skip to main content

Advertisement

Log in

The General Adaptation Syndrome: A Foundation for the Concept of Periodization

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Recent reviews have attempted to refute the efficacy of applying Selye’s general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye’s work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete’s training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buckner SL, Mouser JG, Dankel SJ, Jessee MB, Mattocks KT, Loenneke JP. The general adaptation syndrome: potential misapplications to resistance exercise. J Sci Med Sport. 2017;20(11):1015–7.

    Article  PubMed  Google Scholar 

  2. Mattocks KT, Dankel SJ, Buckner SL, Jessee MB, Counts BR, Mouser JG, et al. Periodization: what is it good for? J Trainol. 2016;5(1):6–12.

    Article  Google Scholar 

  3. Kiely J. A new understanding of stress and the implications of our cultural training paradigm. New Stud Athl. 2016;30(3):27–35.

    Google Scholar 

  4. Green WA. Periodizing world history. Hist Theory. 1995;34(2)99–111.

    Article  Google Scholar 

  5. Philostratus. Heroicus. Gymnasticus. Discourses 1 and 2. London: Harvard University Press; 2014.

    Google Scholar 

  6. Haff GG. Roundtable discussion: periodization of training—part 1. Strength Cond J. 2004;26(1):50–69.

    Google Scholar 

  7. Drees L. Olympia: gods, artists, and athletes. New York: Praeger; 1968.

    Google Scholar 

  8. Gardiner EN. Athletics in the ancient world. London: Oxford University Press; 1930.

    Google Scholar 

  9. Kotov B. Olympic sport. Guidelines for track and field. Sankt Petersburg: Majtov Publisher; 1916.

    Google Scholar 

  10. Grantyn K. Methodology of physical education. Moscow: FiS Publisher; 1939 (in Russian).

  11. Pihkala L. Specialization in track sports, what it is, and what it is not. Am Phys Educ Rev. 1913;18(3):154–9.

    Google Scholar 

  12. Matveyev L. Fundamentals of sports training. Moscow: Progress Publishers; 1981.

    Google Scholar 

  13. Maresh CM, Armstrong LE, Bergeron MF, Gabaree CL, Hoffman JR, Hannon DR, et al. Plasma cortisol and testosterone responses during a collegiate swim season. J Strength Cond Res. 1994;8(1):1–4.

    Google Scholar 

  14. McGuigan M. Monitoring training and performance in athletes. Champaign: Human Kinetics Publishers; 2017.

    Google Scholar 

  15. McGuigan MR, Egan AD, Foster C. Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of resistance exercise. J Sports Sci Med. 2004;3(1):8–15.

    PubMed  PubMed Central  Google Scholar 

  16. McGuigan MR, Foster C. A new approach to monitoring resistance training. Strength Cond J. 2004;26(6):42–7.

    Article  Google Scholar 

  17. Bowen L, Gross AS, Gimpel M, Li F-X. Accumulated workloads and the acute: chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med. 2017;51(5):452–9.

    Article  PubMed  Google Scholar 

  18. Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30:1164–8.

    Article  CAS  PubMed  Google Scholar 

  19. Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. Sports Med. 1997;23(2):106–29.

    Article  CAS  PubMed  Google Scholar 

  20. Nieman D. Exercise immunology: future directions for research relatedto athletes, nutrition, and the elderly. Int J Sports Med. 2000;21(Suppl 1):61–8.

    Article  Google Scholar 

  21. Schwellnus M, Soligard T, Alonso J-M, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50(17):1043–52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith LL. Overtraining, excessive exercise, and altered immunity. Sports Med. 2003;33(5):347–64.

    Article  Google Scholar 

  23. Soligard T, Schwellnus M, Alonso J-M, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):1030–41.

    Article  PubMed  Google Scholar 

  24. Stone M, Keith R, Kearney J, Fleck S, Wilson G, Triplett N. Overtraining: a review of the signs, symptoms and possible causes. J Strength Cond Res. 1991;5(1):35–50.

    Google Scholar 

  25. Selye H. The general-adaptation-syndrome. Annu Rev Med. 1951;2(1):327–42.

    Article  CAS  PubMed  Google Scholar 

  26. Selye H. Stress: eustress, distress, and human perspectives. In: Day SB, editor. Life Stress. New York: Van Nostrand Reinhold; 1982. pp. 3–13.

  27. Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138(3479):32.

    Article  Google Scholar 

  28. Selye H. The alarm reaction and the diseases of adaptation. Ann Intern Med. 1948;29(3):403–15.

    Article  CAS  PubMed  Google Scholar 

  29. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 1946;6(2):117–230.

    Article  CAS  PubMed  Google Scholar 

  30. Selye H. Stress and the general adaptation syndrome. BMJ. 1950;1(4667):1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Selye H. Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J. 1976;115(1):53–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Selye H. The alarm reaction. Can Med Assoc J. 1936;34(6):706.

    Google Scholar 

  33. Selye H. Studies on adaptation. Endocrinology. 1937;21(2):169–88.

    Article  Google Scholar 

  34. Viru A. The mechanism of training effects: a hypothesis. Int J Sports Med. 1984;5(05):219–27.

    Article  CAS  PubMed  Google Scholar 

  35. Viru A. Mechanism of general adaptation. Med Hypotheses. 1992;38(4):296–300.

    Article  CAS  PubMed  Google Scholar 

  36. Seyle H. Further evidence in support of the alarm reaction theory of adrenal insufficiency. Am J Physiol. 1937;119:400–1.

    Google Scholar 

  37. Yakovlev NN. Sports biochemistry. Leipzig: Deutsche Hochschule für Korperkultur; 1967.

    Google Scholar 

  38. Chiu LZF, Barnes JL. The fitness-fatigue model revisited: implications for planning short- and long-term training. Strength Cond J. 2003;25(6):42–51.

    Google Scholar 

  39. Morton R, Fitz-Clarke J, Banister E. Modeling human performance in running. J Appl Physiol. 1990;69(3):1171–7.

    Article  CAS  PubMed  Google Scholar 

  40. Garhammer J. Periodization of strength training for athletes. Track Tech. 1979;73:2398–9.

    Google Scholar 

  41. Bishop D. Warm up II: performance changes following active warm up and how to structure the warm up. Sports Med. 2003;33(7):483–98.

    Article  PubMed  Google Scholar 

  42. Bishop D. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003;33(6):439–54.

    Article  PubMed  Google Scholar 

  43. Chiu LZ, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL. Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res. 2003;17(4):671–7.

    PubMed  Google Scholar 

  44. DeRenne C. Effects of postactivation potentiation warm-up in male and female sport performances: a brief review. Strength Cond J. 2010;32(6):58–64.

    Article  Google Scholar 

  45. Fradkin AJ, Zazryn TR, Smoliga JM. Effects of warming-up on physical performance: a systematic review with meta-analysis. J Strength Cond Res. 2010;24(1):140–8.

    Article  PubMed  Google Scholar 

  46. Hodgson M, Docherty D, Robbins D. Post-activation potentiation. Sports Med. 2005;35(7):585–95.

    Article  PubMed  Google Scholar 

  47. Yamaguchi T, Ishii K. An optimal protocol for dynamic stretching to improve explosive performance. J Phys Fit Sports Med. 2014;3(1):121–9.

    Article  Google Scholar 

  48. Suchomel TJ, Sato K, DeWeese BH, Ebben WP, Stone MH. Potentiation following ballistic and nonballistic complexes: the effect of strength level. J Strength Cond Res. 2016;30(7):1825–33.

    Article  PubMed  Google Scholar 

  49. Suchomel TJ, Sato K, DeWeese BH, Ebben WP, Stone MH. Potentiation effects of half-squats performed in a ballistic or nonballistic manner. J Strength Cond Res. 2016;30(6):1652–60.

    Article  PubMed  Google Scholar 

  50. Dolan M, Sevene TG, Berninig J, Harris C, Climstein M, Adams KJ, et al. Post-activation potentiation and the shot put throw. Int J Sports Sci. 2017;7(4):170–6.

    Google Scholar 

  51. Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138–43.

    Article  PubMed  Google Scholar 

  52. Suchomel TJ, Lamont HS, Moir GL. Understanding vertical jump potentiation: a deterministic model. Sports Med. 2016;46(6):809–28.

    Article  PubMed  Google Scholar 

  53. Suchomel TJ, Sato K, DeWeese BH, Ebben WP, Stone MH. Relationships between potentiation effects after ballistic half-squats and bilateral symmetry. Int J Sports Physiol Perform. 2016;11(4):448–54.

    Article  PubMed  Google Scholar 

  54. Robbins DW. Postactivation potentiation and its practical applicability: a brief review. J Strength Cond Res. 2005;19(2):453–8.

    PubMed  Google Scholar 

  55. Minetti AE. On the mechanical power of joint extensions as affected by the change in muscle force (or cross-sectional area), ceteris paribus. Eur J Appl Physiol. 2002;86(4):363–9.

    Article  PubMed  Google Scholar 

  56. Zamparo P, Minetti A, Di Prampero P. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: theory and facts. Eur J Appl Physiol. 2002;88(3):193–202.

    Article  CAS  PubMed  Google Scholar 

  57. Bazyler CD, Mizuguchi S, Harrison AP, Sato K, Kavanaugh AA, DeWeese BH, et al. Changes in muscle architecture, explosive ability, and track and field throwing performance throughout a competitive season and after a taper. J Strength Cond Res. 2017;31(10):2785–93.

    Article  PubMed  Google Scholar 

  58. Bazyler CD, Mizuguchi S, Kavanaugh AA, McMahon JJ, Comfort P, Stone MH. Returners exhibit greater jumping performance improvements during a peaking phase compared to new players on a volleyball team. Int J Sports Physiol Perform. 2017. https://doi.org/10.1123/ijspp.2017-0474.

    PubMed  Google Scholar 

  59. Painter KB, Haff GG, Ramsey MW, McBride J, Triplett T, Sands WA, et al. Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sports Physiol Perform. 2012;7(2):161–9.

    Article  PubMed  Google Scholar 

  60. Arroyo-Toledo J, Clemente V, González-Rave J. The effects of ten weeks block and reverse periodization training on swimming performance and body composition of moderately trained female swimmers. J Swim Res. 2013;21:1.

    Google Scholar 

  61. Prestes J, De Lima C, Frollini AB, Donatto FF, Conte M. Comparison of linear and reverse linear periodization effects on maximal strength and body composition. J Strength Cond Res. 2009;23(1):266–74.

    Article  PubMed  Google Scholar 

  62. Rhea MR, Phillips WT, Burkett LN, Stone WJ, Ball SD, Alvar BA, et al. A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. J Strength Cond Res. 2003;17(1):82–7.

    PubMed  Google Scholar 

  63. Selye H. Experimental evidence supporting the conception of “adaptation energy”. Am J Physiol. 1938;123:758–65.

    Google Scholar 

  64. Meerson F. Intensity of function of structures of the differentiated cell as a determinant of activity of its genetic apparatus. Nature. 1965;206(4983):483–4.

    Article  CAS  PubMed  Google Scholar 

  65. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    Article  CAS  PubMed  Google Scholar 

  66. Selye H, Maclean A. Prevention of gastric ulcer formation during the alarm reaction. Am J Dig Dis. 1944;11(10):319–22.

    Article  Google Scholar 

  67. Selye H, Fortier C. Adaptive reaction to stress. Psychosom Med. 1950;12(3):149–57.

    Article  CAS  PubMed  Google Scholar 

  68. Selye H, Stone H. Influence of the diet upon the nephrosclerosis, periarteritis nodosa and cardiac lesions produced by the “endocrine kidney”. Endocrinology. 1948;43(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  69. Laplante M, Sabatini DM. Mtor signaling at a glance. J Cell Sci. 2009;122(20):3589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ogasawara R, Kobayashi K, Tsutaki A, Lee K, Abe T, Fujita S, et al. Mtor signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. J Appl Physiol. 2013;114(7):934–40.

    Article  CAS  PubMed  Google Scholar 

  71. Stupka N, Tarnopolsky MA, Yardley N, Phillips SM. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol. 2001;91(4):1669–78.

    Article  CAS  PubMed  Google Scholar 

  72. Beaton LJ, Tarnopolsky MA, Phillips SM. Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol. 2002;544(3):849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. MacIntyre D, Reid WD, Lyster D, Szasz I, McKenzie D. Presence of wbc, decreased strength, and delayed soreness in muscle after eccentric exercise. J Appl Physiol. 1996;80(3):1006–13.

    Article  CAS  PubMed  Google Scholar 

  74. MacIntyre DL, Reid WD, Lyster DM, McKenzie DC. Different effects of strenuous eccentric exercise on the accumulation of neutrophils in muscle in women and men. Eur J Appl Physiol. 2000;81(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  75. Prestes J, Shiguemoto G, Botero JP, Frollini A, Dias R, Leite R, et al. Effects of resistance training on resistin, leptin, cytokines, and muscle force in elderly post-menopausal women. J Sports Sci. 2009;27(14):1607–15.

    Article  PubMed  Google Scholar 

  76. Izquierdo M, Ibañez J, Calbet JA, Navarro-Amezqueta I, González-Izal M, Idoate F, et al. Cytokine and hormone responses to resistance training. Eur J Appl Physiol. 2009;107(4):397.

    Article  CAS  PubMed  Google Scholar 

  77. Carroll TJ, Riek S, Carson RG. Neural adaptations to resistance training. Sports Med. 2001;31(12):829–40.

    Article  CAS  PubMed  Google Scholar 

  78. Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM. Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. Eur J Appl Physiol. 2010;109(5):923–33.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Griffin L, Cafarelli E. Resistance training: cortical, spinal, and motor unit adaptations. Can J Appl Physiol. 2005;30(3):328–40.

    Article  PubMed  Google Scholar 

  80. Aagaard P, Simonsen E, Andersen J, Magnusson S, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89(6):2249–57.

    Article  CAS  PubMed  Google Scholar 

  81. Chen TC. Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity. Eur J Appl Physiol. 2003;89(2):115–21.

    Article  PubMed  Google Scholar 

  82. Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31(2):61–7.

    Article  PubMed  Google Scholar 

  83. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):1318–26.

    Article  PubMed  Google Scholar 

  84. Moritani T. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks. J Biomech. 1993;26:95–107.

    Article  PubMed  Google Scholar 

  85. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45.

    Article  CAS  PubMed  Google Scholar 

  86. Plisk SS, Stone MH. Periodization strategies. Strength Cond J. 2003;25(6):19–37.

    Article  Google Scholar 

  87. DeWeese BH, Hornsby G, Stone M, Stone MH. The training process: planning for strength–power training in track and field. Part 1: theoretical aspects. J Sport Health Sci. 2015;4(4):308–17.

    Article  Google Scholar 

  88. DeWeese BH, Hornsby G, Stone M, Stone MH. The training process: planning for strength–power training in track and field. Part 2: practical and applied aspects. J Sport Health Sci. 2015;4(4):318–24.

    Article  Google Scholar 

  89. Bergeron MF, Mountjoy M, Armstrong N, Chia M, Côté J, Emery CA, et al. International Olympic Committee consensus statement on youth athletic development. Br J Sports Med. 2015;49(13):843–51.

    Article  PubMed  Google Scholar 

  90. Hulin BT, Gabbett TJ, Caputi P, Lawson DW, Sampson JA. Low chronic workload and the acute: chronic workload ratio are more predictive of injury than between-match recovery time: a two-season prospective cohort study in elite rugby league players. Br J Sports Med. 2016. https://doi.org/10.1136/bjsports-2015-095364.

    Google Scholar 

  91. Stone MH, O’Bryant HS, Schilling BK, Johnson RI, Pierce KC, Haff GG, et al. Periodization: effects of manipulating volume and intensity. Part 1. Strength Cond J. 1999;21(2):56–62.

    Google Scholar 

  92. Verkhoshansky YV. Programming and organization of training. Livonia: Sportivny Press; 1988.

    Google Scholar 

  93. Stone MH, Stone M, Sands WA. Principles and practice of resistance training. Champaign: Human Kinetics Publishers; 2007.

    Google Scholar 

  94. Brown LE, Greenwood M. Periodization essentials and innovations in resistance training protocols. Strength Cond J. 2005;27(4):80–5.

    Article  Google Scholar 

  95. Abe T, Brechue WF, Fujita S, Brown JB. Gender differences in ffm accumulation and architectural characteristics of muscle. Med Sci Sports Exerc. 1998;30:1066–70.

    Article  CAS  PubMed  Google Scholar 

  96. Hawley JA, Burke LM. Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc Sport Sci Rev. 2010;38(4):152–60.

    Article  PubMed  Google Scholar 

  97. Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Klissouras V. Heritability of adaptive variation. J Appl Physiol. 1971;31(3):338–44.

    Article  CAS  PubMed  Google Scholar 

  100. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  101. Lippi G, Longo UG, Maffulli N. Genetics and sports. Br Med Bull. 2009;93(1):27–47.

    Article  PubMed  Google Scholar 

  102. Miller AEJ, MacDougall J, Tarnopolsky M, Sale D. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62.

    Article  CAS  PubMed  Google Scholar 

  103. Pimjan L. A study on ACE, ACTN3, and VDR genes polymorphism in Thai weightlifters. Walailak J Sci Tech. 2017. https://doi.org/10.14456/vol15iss6pp%25p. http://wjst.wu.ac.th/index.php/wjst/article/view/3525.

  104. Polderman TJ, Benyamin B, De Leeuw CA, Sullivan PF, Van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47(7):702–9.

    Article  CAS  PubMed  Google Scholar 

  105. Schutte NM, Nederend I, Hudziak JJ, Bartels M, de Geus EJ. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiol Genom. 2016;48(3):210–9.

    Article  CAS  Google Scholar 

  106. Smiles WJ, Hawley JA, Camera DM. Effects of skeletal muscle energy availability on protein turnover responses to exercise. J Exp Biol. 2016;219(2):214–25.

    Article  PubMed  Google Scholar 

  107. Storey A, Smith HK. Unique aspects of competitive weightlifting. Sports Med. 2012;42(9):769–90.

    Article  PubMed  Google Scholar 

  108. Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):2883–96.

    Article  CAS  PubMed  Google Scholar 

  109. Anderson T, Kearney JT. Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res Q Exerc Sport. 1982;53(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  110. Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39(6):996–1003.

    Article  PubMed  Google Scholar 

  111. Cushion EJ, Goodwin JE, Cleather DJ. Relative intensity influences the degree of correspondence of jump squats and push jerks to countermovement jumps. J Strength Cond Res. 2016;30(5):1255–64.

    Article  PubMed  Google Scholar 

  112. de Villarreal ES, Requena B, Izquierdo M, Gonzalez-Badillo JJ. Enhancing sprint and strength performance: combined versus maximal power, traditional heavy-resistance and plyometric training. J Sci Med Sport. 2013;16(2):146–50.

    Article  Google Scholar 

  113. Faigenbaum AD, Westcott WL, Loud RL, Long C. The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics. 1999;104(1):e5-e.

    Article  Google Scholar 

  114. Farris D, Lichtwark G, Brown N, Cresswell A. Deconstructing the power resistance relationship for squats: a joint-level analysis. Scand J Med Sci Sports. 2016;26(7):774–81.

    Article  CAS  PubMed  Google Scholar 

  115. Harris GR, Stone MH, O’bryant HS, Proulx CM, Johnson RL. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res. 2000;14(1):14–20.

    Google Scholar 

  116. Kipp K, Harris C, Sabick MB. Correlations between internal and external power outputs during weightlifting exercise. J Strength Cond Res. 2013;27(4):1025–30.

    Article  PubMed  Google Scholar 

  117. Kipp K, Redden J, Sabick M, Harris C. Kinematic and kinetic synergies of the lower extremities during the pull in Olympic weightlifting. J Appl Biomech. 2012;28(3):271–8.

    Article  PubMed  Google Scholar 

  118. Lesinski M, Muehlbauer T, Büsch D, Granacher U. Effects of complex training on strength and speed performance in athletes: a systematic review. Effects of complex training on athletic performance. Sportverletz Sportschaden. 2014;28(2):85–107.

    Article  CAS  PubMed  Google Scholar 

  119. McGee D, Jessee TC, Stone MH, Blessing D. Leg and hip endurance adaptations to three weight-training programs. J Strength Cond Res. 1992;6(2):92–5.

    Google Scholar 

  120. Moir GL, Gollie JM, Davis SE, Guers JJ, Witmer CA. The effects of load on system and lower-body joint kinetics during jump squats. Sports Biomech. 2012;11(4):492–506.

    Article  PubMed  Google Scholar 

  121. Scott DJ, Ditroilo M, Marshall PA. Complex training: the effect of exercise selection and training status on postactivation potentiation in rugby league players. J Strength Cond Res. 2017;31(10):2694–703.

    Article  PubMed  Google Scholar 

  122. Stone WJ, Coulter SP. Strength/endurance effects from three resistance training protocols with women. J Strength Cond Res. 1994;8(4):231–4.

    Google Scholar 

  123. Suchomel TJ, Stone MH. The relationships between hip and knee extensor cross-sectional area, strength, power, and potentiation characteristics. Sports. 2017;5(3):66.

    Article  Google Scholar 

  124. Toji H, Suei K, Kaneko M. Effects of combined training loads on relations among force, velocity, and power development. Can J Appl Physiol. 1997;22(4):328–36.

    Article  CAS  PubMed  Google Scholar 

  125. Matveyev L. Problem of periodization the sport training. Moscow: Fizkultura i Sport Publisher; 1964.

    Google Scholar 

  126. Viru A. Early contributions of russian stress and exercise physiologists. J Appl Physiol. 2002;92(4):1378–82.

    Article  PubMed  Google Scholar 

  127. Carlile F. The athlete and adaptation to stress. Track Tech. 1961;5:156–8.

    Google Scholar 

  128. Wilt F. Stress and training. Track Tech. 1960;1(6):1–16.

    Google Scholar 

  129. Arroyo-Toledo J, Cantos-Polo I, Liedtke J, Palomo-Vélez J. Concentrated load on a reverse periodization, propel higher positives effects on track test performance, than traditional sequence. Imp J Interdiscip Res. 2017;3(2).

  130. Arroyo-Toledo J, Clemente VJ, Gonzalez-Rave JM, Ramos Campo DJ, Sortwell A. Comparison between traditional and reverse periodization: swimming performance and specific strength values. Int J Swim Kinet. 2013;2(1):87–96.

    Google Scholar 

  131. Clemente-Suárez VJ, Dalamitros A, Ribeiro J, Sousa A, Fernandes RJ, Vilas-Boas JP. The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur J Sport Sci. 2017;17(4):425–32.

    Article  PubMed  Google Scholar 

  132. Clemente-Suárez VJ, Fernandes RJ, Arroyo-Toledo J, Figueiredo P, González-Ravé JM, Vilas-Boas J. Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiol Hung. 2015;102(1):105–13.

    Article  PubMed  Google Scholar 

  133. Rhea MR, Alderman BL. A meta-analysis of periodized versus nonperiodized strength and power training programs. Res Q Exerc Sport. 2004;75(4):413–22.

    Article  PubMed  Google Scholar 

  134. Williams TD, Tolusso DV, Fedewa MV, Esco MR. Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med. 2017;47(10):2083–100.

    Article  PubMed  Google Scholar 

  135. Selye H. The stress concept: past, present, and future. In: Cooper CL, editor. Stress research: issues for the eighties. New York: Wiley; 1983. pp. 1–20.

    Google Scholar 

  136. Selye H. Confusion and controversy in the stress field. J Hum Stress. 1975;1(2):37–44.

    Article  CAS  Google Scholar 

  137. Selye H. A code for coping with stress. AORN J. 1977;25(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  138. Selye H. Stress and holistic medicine. Fam Community Health. 1980;3(2):85–8.

    Article  CAS  PubMed  Google Scholar 

  139. Kiely J. Periodization paradigms in the 21st century: EVIDENCE-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242–50.

    Article  PubMed  Google Scholar 

  140. Morris CW. The effect of fluid periodization on athletic performance outcomes in American football players. Lexington: University of Kentucky; 2015.

    Google Scholar 

  141. Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016;38(4):42.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Helms ER, Cross MR, Brown SR, Storey A, Cronin J, Zourdos MC. Rating of perceived exertion as a method of volume autoregulation within a periodized program. J Strength Cond Res. 2017. https://doi.org/10.1519/JSC.0000000000002032 (Epub 2 Jun 2017).

    Google Scholar 

  143. Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2015. https://doi.org/10.1136/bjsports-2015-094758.

    PubMed  PubMed Central  Google Scholar 

  144. Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):517–38.

    Article  PubMed  Google Scholar 

  145. Jovanović M, Flanagan EP. Researched applications of velocity based strength training. J Aust Strength Cond. 2014;22(2):58–69.

    Google Scholar 

  146. Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–81.

    Article  PubMed  Google Scholar 

  147. Storey AG, Birch NP, Fan V, Smith HK. Stress responses to short-term intensified and reduced training in competitive weightlifters. Scand J Med Sci Sports. 2016;26(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  148. Jeffreys F. A system for monitoring training stress and recovery in high school athletes. Strength Cond J. 2004;26(3):28–33.

    Article  Google Scholar 

  149. Pistilli EE, Kaminsky DE, Totten LM, Miller DR. Incorporating one week of planned overreaching into the training program of weightlifters. Strength Cond J. 2008;30(6):39–44.

    Article  Google Scholar 

  150. Haff GG. The essentials of periodization. In: Jeffreys I, Moody J, editors. Strength and conditioning for sports performance. New York: Routledge; 2016. pp. 404–44.

    Google Scholar 

  151. Bompa TO, Haff GG. Periodization: theory and methodology of training. Champaign: Human Kinetics Publishers; 2009.

    Google Scholar 

  152. Sands WA, Kavanaugh AA, Murray SR, McNeal JR, Jemni M. Modern techniques and technologies applied to training and performance monitoring. Int J Sports Physiol Perform. 2017;12(Suppl 2):S263–72.

    Article  PubMed  Google Scholar 

  153. Viru AA, Viru M. Biochemical monitoring of sport training. Champaign: Human Kinetics Publishers; 2001.

  154. DeWeese B, Gray H, Sams M, Scruggs S, Serrano A. Revising the definition of periodization: merging historical principles with modern concern. Olymp Coach. 2013;24(1):5–19.

    Google Scholar 

  155. Haff GG. Roundtable discussion: periodization of training—part 2. Strength Cond J. 2004;26(2):56–70.

    Google Scholar 

  156. Stone MH, O’Bryant H, Garhammer J, McMillan J, Rozenek R. A theoretical model of strength training. Strength Cond J. 1982;4(4):36–9.

    Google Scholar 

  157. DeWeese B. Development of phase potentiation for strength and power athletes. In: Presentation at the national strength and conditioning association; 9–12 July 2014: Las Vegas (NV).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Cunanan.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Aaron Cunanan, Brad DeWeese, John Wagle, Kevin Carroll, Robert Sausaman, W. Guy Hornsby III, G. Gregory Haff, N. Travis Triplett, Kyle Pierce, and Michael Stone declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunanan, A.J., DeWeese, B.H., Wagle, J.P. et al. The General Adaptation Syndrome: A Foundation for the Concept of Periodization. Sports Med 48, 787–797 (2018). https://doi.org/10.1007/s40279-017-0855-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0855-3

Navigation