Skip to main content

What Performance Analysts Need to Know About Research Trends in Association Football (2012–2016): A Systematic Review

Abstract

Background

Evolving patterns of match analysis research need to be systematically reviewed regularly since this area of work is burgeoning rapidly and studies can offer new insights to performance analysts if theoretically and coherently organized.

Objective

The purpose of this paper was to conduct a systematic review of published articles on match analysis in adult male football, identify and organize common research topics, and synthesize the emerging patterns of work between 2012 and 2016, according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.

Methods

The Web of Science database was searched for relevant published studies using the following keywords: ‘football’ and ‘soccer’, each one associated with the terms ‘match analysis’, ‘performance analysis’, ‘notational analysis’, ‘game analysis’, ‘tactical analysis’ and ‘patterns of play’.

Results

Of 483 studies initially identified, 77 were fully reviewed and their outcome measures extracted and analyzed. Results showed that research mainly focused on (1) performance at set pieces, i.e. corner kicks, free kicks, penalty kicks; (2) collective system behaviours, captured by established variables such as team centroid (geometrical centre of a set of players) and team dispersion (quantification of how far players are apart), as well as tendencies for team communication (establishing networks based on passing sequences), sequential patterns (predicting future passing sequences), and group outcomes (relationships between match-related statistics and final match scores); and (3) activity profile of players, i.e. playing roles, effects of fatigue, substitutions during matches, and the effects of environmental constraints on performance, such as heat and altitude.

Conclusion

From the previous review, novel variables were identified that require new measurement techniques. It is evident that the complexity engendered during performance in competitive soccer requires an integrated approach that considers multiple aspects. A challenge for researchers is to align these new measures with the needs of the coaches through a more integrated relationship between coaches and researchers, to produce practical and usable information that improves player performance and coach activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Sarmento H, Marcelino R, Anguera M, Campaniço J, Matos N, Leitão J. Match analysis in football: a systematic review. J Sports Sci. 2014;32:1831–43.

    PubMed  Article  Google Scholar 

  2. Rein R, Memmert D. Big data and tactical analysis in elite soccer: future challenges and opportunities for sports science. SpringerPlus. 2016;5(1):1410.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Memmert D, Lemmink KA, Sampaio J. Current approaches to tactical performance analyses in soccer using position data. Sports Med. 2017;47(1):1–10.

    PubMed  Article  Google Scholar 

  4. Castellano J, Alvarez-Pastor D, Bradley PS. Evaluation of research using computerised tracking systems (Amisco and Prozone) to analyse physical performance in elite soccer: a systematic review. Sports Med. 2014;44(5):701–12.

    PubMed  Article  Google Scholar 

  5. Williams A. Science and soccer: developing elite performers. New York: Routledge; 2013.

    Google Scholar 

  6. Favero T, Drust B, Dawson B. International research in science and soccer II. New York: Routledge; 2016.

    Google Scholar 

  7. Passos P, Araújo D, Volossovitch A. Performance analysis in team sports. London and New York: Routledge; 2017.

    Google Scholar 

  8. Clemente FM, Couceiro MS, Fernando ML, Mendes R, Figueiredo AJ. Measuring tactical behaviour using technological metrics: case study of a football game. Int J Sports Sci Coach. 2013;8:723–39.

    Article  Google Scholar 

  9. Travassos B, Davids K, Araújo D, Esteves PT. Performance analysis in team sports: advances from an ecological dynamics approach. Int J Perform Anal Sport. 2013;13(1):83–95.

    Article  Google Scholar 

  10. Law M, Stewart D, Pollock N, Letts L, Bosch J, Westmorland M. Critical review form—quantitative studies. Hamilton: MacMaster University; 1998.

    Google Scholar 

  11. Faber IR, Bustin PM, Oosterveld FG, Elferink-Gemser MT, Nijhuis-Van der Sanden MW. Assessing personal talent determinants in young racquet sport players: a systematic review. J Sports Sci. 2016;34(5):395–410.

    PubMed  Article  Google Scholar 

  12. Wierike S, Van der Sluis A, Van den Akker-Scheek I, Elferink-Gemser MT, Visscher C. Psychosocial factors influencing the recovery of athletes with anterior cruciate ligament injury: a systematic review. Scand J Med Sci Sports. 2013;23(5):527–40.

    Google Scholar 

  13. Almeida CH, Volossovitch A, Duarte R. Penalty kick outcomes in UEFA club competitions (2010–2015): the roles of situational, individual and performance factors. Int J Perform Anal Sport. 2016;16(2):508–22.

    Article  Google Scholar 

  14. Casal CA, Maneiro R, Arda T, Losada JL, Rial A. Analysis of corner kick success in elite football. Int J Perform Anal Sport. 2015;15(2):430–51.

    Article  Google Scholar 

  15. Sarmento H. Análise do jogo de futebol: Padrões de jogo ofensivo em equipas de alto rendimento: uma abordagem qualitativa. Vila Real: Universidade de Trás os Montes e Alto Douro; 2012.

    Google Scholar 

  16. Andrzejewski M, Chmura J, Pluta B, Kasprzak A. Analysis of motor activities of professional soccer players. J Strength Cond Res. 2012;26(6):1481–8.

    PubMed  Article  Google Scholar 

  17. Silva JR, Magalhaes J, Ascensao A, Seabra AF, Rebelo A. Training status and match activity of professional soccer players throughout a season. J Strength Cond Res. 2013;27(1):20–30.

    PubMed  Article  Google Scholar 

  18. Wallace JL, Norton KI. Evolution of World Cup soccer final games 1966–2010: game structure, speed and play patterns. J Sci Med Sport. 2014;17(2):223–8.

    PubMed  Article  Google Scholar 

  19. Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity activity in Premier League soccer. Int J Sports Med. 2009;30(3):205–12.

    PubMed  Article  Google Scholar 

  20. Bradley PS, Lago-Penas C, Rey E. Evaluation of the match performances of substitution players in elite soccer. Int J Sports Physiol Perform. 2014;9(3):415–24.

    PubMed  Article  Google Scholar 

  21. Gomez MA, Lago-Penas C, Owen AL. The influence of substitutions on elite soccer teams’ performance. Int J Perform Anal Sport. 2016;16(2):553–68.

    Article  Google Scholar 

  22. Rey E, Lago-Ballesteros J, Padron-Cabo A. Timing and tactical analysis of player substitutions in the UEFA Champions League. Int J Perform Anal Sport. 2015;15(3):840–50.

    Article  Google Scholar 

  23. Nassis GP. Effect of altitude on football performance: analysis of the 2010 FIFA World Cup data. J Strength Cond Res. 2013;27(3):703–7.

    PubMed  Article  Google Scholar 

  24. Nassis GP, Brito J, Dvorak J, Chalabi H, Racinais S. The association of environmental heat stress with performance: analysis of the 2014 FIFA World Cup Brazil. Br J Sports Med. 2015;49(9):609–13.

    PubMed  PubMed Central  Article  Google Scholar 

  25. Clemente FM, Couceiro MS, Martins FML, Mendes R, Figueiredo AJ. Measuring collective behaviour in football teams: inspecting the impact of each half of the match on ball possession. Int J Perform Anal Sport. 2013;13(3):678–89.

    Article  Google Scholar 

  26. Bartlett R, Button C, Robins M, Dutt-Mazumder A, Kennedy G. Analysing team coordination patterns from player movement trajectories in football: methodological considerations. Int J Perform Anal Sport. 2012;12:398–424.

    Article  Google Scholar 

  27. Frencken W, Poel HD, Visscher C, Lemmink K. Variability of inter-team distances associated with match events in elite-standard soccer. J Sports Sci. 2012;30(12):1207–13.

    PubMed  Article  Google Scholar 

  28. Moura FA, Martins LE, Anido RO, Barros RM, Cunha SA. Quantitative analysis of Brazilian football players’ organization on the pitch. Sports Biomech. 2012;11:85–96.

    PubMed  Article  Google Scholar 

  29. Frencken W, Van der Plaats J, Visscher C, Lemmink K. Size matters: Pitch dimensions constrain interactive team behaviour in soccer. J Syst Sci Complex. 2013;26:85–93.

    Article  Google Scholar 

  30. Grund TU. Network structure and team performance: The case of English Premier League soccer teams. Soc Netw. 2012;34:682–90.

    Article  Google Scholar 

  31. Cotta C, Mora AM, Merelo JJ, Merelo-Molina C. A network analysis of the 2010 FIFA World Cup champion team play. J Syst Sci Complex. 2013;26:21–42.

    Article  Google Scholar 

  32. Clemente FM, Martins FML, Wong DP, Kalamaras D, Mendes RS. Midfielder as the prominent participant in the building attack: a network analysis of national teams in FIFA World Cup 2014. Int J Perform Anal Sport. 2015;15(2):704–22.

    Article  Google Scholar 

  33. Sarmento H, Anguera MT, Pereira A, Marques A, Campanico J, Leitao J. Patterns of play in the counterattack of elite football teams: a mixed method approach. Int J Perform Anal Sport. 2014;14(2):411–27.

    Article  Google Scholar 

  34. Camerino O, Chaverri J, Anguera MT, Jonsson G. Dynamics of the game in soccer: detection of T-patterns. Eur J Sport Sci. 2012;12:216–24.

    Article  Google Scholar 

  35. Zurloni V, Cavalera CM, Diana B, Elia M, Jonsson G. Detecting regularities in soccer dynamics: a T-pattern approach. Revista de Psicología del Deporte. 2015;23:157–64.

    Google Scholar 

  36. Castellano J, Casamichana D, Lago C. The use of match statistics that discriminate between successful and unsuccessful soccer teams. J Hum Kinet. 2012;31:139–47.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Harrop K, Nevill A. Performance indicators that predict success in an English professional League One soccer team. Int J Perform Anal Sport. 2014;14(3):907–20.

    Article  Google Scholar 

  38. Lago-Penas C, Gomez-Ruano M, Megias-Navarro D, Pollard R. Home advantage in football: examining the effect of scoring first on match outcome in the five major European leagues. Int J Perform Anal Sport. 2016;16(2):411–21.

    Article  Google Scholar 

  39. De Baranda PS, Lopez-Riquelme D. Analysis of corner kicks in relation to match status in the 2006 World Cup. Eur J Sport Sci. 2012;12(2):121–9.

    Article  Google Scholar 

  40. Pulling C, Robins M, Rixon T. Defending corner kicks: analysis from the English Premier League. Int J Perform Anal Sport. 2013;13(1):135–48.

    Article  Google Scholar 

  41. Pulling C. Long corner kicks in the English Premier League: deliveries into the goal area and critical area. Kinesiology. 2015;47(2):193–201.

    Google Scholar 

  42. Farina RA, Fabrica G, Tambusso PS, Alonso R. Taking the goalkeeper’s side in association football penalty kicks. Int J Perform Anal Sport. 2013;13(1):96–109.

    Article  Google Scholar 

  43. Noel B, Furley P, Van der Kamp J, Dicks M, Memmert D. The development of a method for identifying penalty kick strategies in association football. J Sports Sci. 2015;33(1):1–10.

    PubMed  Article  Google Scholar 

  44. Siegle M, Lames M. Game interruptions in elite soccer. J Sports Sci. 2012;30(7):619–24.

    PubMed  Article  Google Scholar 

  45. Casal CA, Maneiro R, Arda T, Losada JL, Rial A. Effectiveness of indirect free kicks in elite soccer. Int J Perform Anal Sport. 2014;14(3):744–60.

    Article  Google Scholar 

  46. Link D, Kolbinger O, Weber H, Stockl M. A topography of free kicks in soccer. J Sports Sci. 2016;34(24):2312–20.

    PubMed  Article  Google Scholar 

  47. Varley MC, Aughey RJ. Acceleration profiles in elite Australian soccer. Int J Sports Med. 2013;34(1):34–9.

    CAS  PubMed  Google Scholar 

  48. Clemente FM, Couceiro MS, Martins FML, Ivanova MO, Mendes R. Activity profiles of soccer players during the 2010 World Cup. J Hum Kinet. 2013;38:201–11.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Padulo J, Haddad M, Ardigo LP, Chamari K, Pizzolato F. High frequency performance analysis of professional soccer goalkeepers: a pilot study. J Sports Med Phys Fit. 2015;55(6):557–62.

    CAS  Google Scholar 

  50. Andrzejewski M, Chmura J, Pluta B, Strzelczyk R, Kasprzak A. Analysis of sprinting activities of professional soccer players. J Strength Cond Res. 2013;27(8):2134–40.

    PubMed  Article  Google Scholar 

  51. Di Salvo V, Pigozzi F, Gonzalez-Haro C, Laughlin MS, De Witt JK. Match performance comparison in top English soccer leagues. Int J Sports Med. 2013;34(6):526–32.

    PubMed  Google Scholar 

  52. Liu HY, Gomez MA, Goncalves B, Sampaio J. Technical performance and match-to-match variation in elite football teams. J Sports Sci. 2016;34(6):509–18.

    PubMed  Article  Google Scholar 

  53. Soroka A, Lago-Penas C. The effect of a succession of matches on the physical performance of elite football players during the World Cup Brazil 2014. Int J Perform Anal Sport. 2016;16(2):434–41.

    Article  Google Scholar 

  54. Dellal A, Lago-Penas C, Rey E, Chamari K, Orhant E. The effects of a congested fixture period on physical performance, technical activity and injury rate during matches in a professional soccer team. Br J Sports Med. 2015;49(6):390–4.

    PubMed  Article  Google Scholar 

  55. Penas CL, Dellal A, Owen AL, Gomez-Ruano MA. The influence of the extra-time period on physical performance in elite soccer. Int J Perform Anal Sport. 2015;15(3):830–9.

    Article  Google Scholar 

  56. Russell M, Sparkes W, Northeast J, Kilduff LP. Responses to a 120 min reserve team soccer match: a case study focusing on the demands of extra time. J Sports Sci. 2015;33(20):2133–9.

    PubMed  Article  Google Scholar 

  57. Sparks M, Coetzee B, Gabbett TJ. Variations in high-intensity running and fatigue during semi-professional soccer matches. Int J Perform Anal Sport. 2016;16(1):122–32.

    Article  Google Scholar 

  58. Yue Z, Broich H, Seifriz F, Mester J. Mathematical analysis of a football game. Part I: individual and collective behaviors. Stud Appl Math. 2008;121:223–43.

    Article  Google Scholar 

  59. Duarte R, Araújo D, Folgado H, Esteves P, Marques P, Davids K. Capturing complex, non-linear team behaviours during competitive football performance. J Syst Sci Complex. 2013;26:62–72.

    Article  Google Scholar 

  60. Lames M, Erdmann J, Walter F. Oscillations in football—order and disorder in spatial interactions between the two teams. Int J Sport Psychol. 2010;41(4):85–6.

    Google Scholar 

  61. Clemente FM, Couceiro MS, Martins FML, Mendes RS, Figueiredo AJ. Intelligent systems for analyzing soccer games: the weighted centroid. Ingeniería e Investigación. 2014;34:70–5.

    Article  Google Scholar 

  62. Siegle M, Lames M. Modeling soccer by means of relative phase. J Syst Sci Complex. 2013;26:14–20.

    Article  Google Scholar 

  63. Frencken W, Lemmink K, Delleman N, Visscher C. Oscillations of centroid position and surface area of football teams in small-sided games. Eur J Sport Sci. 2011;11:215–23.

    Article  Google Scholar 

  64. Costa IT, Garganta J, Greco PJ, Mesquita I, Seabra A. Influence of relative age effects and quality of tactical behaviour in the performance of youth football players. Int J Perform Anal Sport. 2010;10:82–97.

    Article  Google Scholar 

  65. Clemente FM, Couceiro MS, Martins FML, Mendes RS, Figueiredo AJ. Using collective metrics to inspect spatio-temporal relationships between football players. S Afr J Res Sport Phys Educ Recreat. 2014;36:47–59.

    Google Scholar 

  66. Moura FA, Martins LE, Anido RO, Ruffino PR, Barros RM, Cunha SA. A spectral analysis of team dynamics and tactics in Brazilian football. J Sports Sci. 2013;31:1568–77.

    PubMed  Article  Google Scholar 

  67. Moura FA, van Emmerik REA, Santana JE, Martins LEB, de Barros RML, Cunha SA. Coordination analysis of players’ distribution in football using cross-correlation and vector coding techniques. J Sports Sci. 2016;34(24):2224–32.

    PubMed  Article  Google Scholar 

  68. Castellano J, Alvarez D, Figueira B, Coutinho D, Sampaio J. Identifying the effects from the quality of opposition in a football team positioning strategy. Int J Perform Anal Sport. 2013;13(3):822–32.

    Article  Google Scholar 

  69. Fradua L, Zubillaga A, Caro O, Fernandez-Garcia AI, Ruiz-Ruiz C, Tenga A. Designing small-sided games for training tactical aspects in soccer: extrapolating pitch sizes from full-size professional matches. J Sports Sci. 2013;31(6):573–81.

    PubMed  Article  Google Scholar 

  70. Clemente FM, Martins FM, Couceiro MS, Mendes RS, Figueiredo AJ. Developing a tactical metric to estimate the defensive area of soccer teams: the defensive play area. Proc Inst Mech Eng Part P J Sports Eng Technol. 2016;230(2):124–32.

    Google Scholar 

  71. Clemente FM, Martins FML, Kalamaras D, Wong DP, Mendes RS. General network analysis of national soccer teams in FIFA World Cup 2014. Int J Perform Anal Sport. 2015;15(1):80–96.

    Article  Google Scholar 

  72. Clemente FM, Silva F, Martins FM, Kalamaras D, Mendes RS. Performance analysis tool for network analysis on team sports: a case study of FIFA soccer World Cup 2014. Proc Inst Mech Eng Part P J Sports Eng Technol. 2016;230:158–70.

    Article  Google Scholar 

  73. Clemente FM, Wong DP, Martins FML, Mendes RS. Acute effects of the number of players and scoring method on physiological, physical, and technical performance in small-sided soccer games. Res Sports Med. 2014;22(4):380–97.

    PubMed  Article  Google Scholar 

  74. Gama J, Passos P, Davids K, Relvas H, Ribeiro J, Vaz V, et al. Network analysis and intra-team activity in attacking phases of professional football. Int J Perform Anal Sport. 2014;14(3):692–708.

    Article  Google Scholar 

  75. Clemente FM, Martins FML, Mendes RS. Analysis of scored and conceded goals by a football team throughout a season: a network analysis. Kinesiology. 2016;48(1):103–14.

    Google Scholar 

  76. Cavalera C, Diana B, Elia M, Guldberg KJ, Zurloni V, Anguera MT. T-pattern analysis in soccer games: relationship between time and attack actions. Cuadernos de Psicología del Deporte. 2015;15:41–50.

    Article  Google Scholar 

  77. Moura FA, Martins LEB, Cunha SA. Analysis of football game-related statistics using multivariate techniques. J Sports Sci. 2014;32(20):1881–7.

    PubMed  Article  Google Scholar 

  78. Gomez MA, Gomez-Lopez M, Lago C, Sampaio J. Effects of game location and final outcome on game-related statistics in each zone of the pitch in professional football. Eur J Sport Sci. 2012;12(5):393–8.

    Article  Google Scholar 

  79. Lago-Ballesteros J, Lago-Penas C, Rey E. The effect of playing tactics and situational variables on achieving score-box possessions in a professional soccer team. J Sports Sci. 2012;30(14):1455–61.

    PubMed  Article  Google Scholar 

  80. Almeida CH, Ferreira AP, Volossovitch A. Effects of match location, match status and quality of opposition on regaining possession in UEFA Champions League. J Hum Kinet. 2014;41(1):203–14.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Bradley P, Lago-Peñas C, Rey E, Sampaio J. The influence of situational variables on ball possession in the English Premier League. J Sports Sci. 2014;32(20):1867–73.

    PubMed  Article  Google Scholar 

  82. Russell M, Rees G, Kingsley MIC. Technical demands of soccer match play in the English Championship. J Strength Cond Res. 2013;27(10):2869–73.

    PubMed  Article  Google Scholar 

  83. Garcia-Rubio J, Gomez MA, Lago-Penas C, Ibanez SJ. Effect of match venue, scoring first and quality of opposition on match outcome in the UEFA Champions League. Int J Perform Anal Sport. 2015;15(2):527–39.

    Article  Google Scholar 

  84. Castellano J, Casamichana D. What are the differences between first and second divisions of Spanish football teams? Int J Perform Anal Sport. 2015;15(1):135–46.

    Article  Google Scholar 

  85. Liu HY, Yi Q, Gimenez JV, Gomez MA, Lago-Penas C. Performance profiles of football teams in the UEFA Champions League considering situational efficiency. Int J Perform Anal Sport. 2015;15(1):371–90.

    Article  Google Scholar 

  86. Fernandez-Navarro J, Fradua L, Zubillaga A, Ford PR, McRobert AP. Attacking and defensive styles of play in soccer: analysis of Spanish and English elite teams. J Sports Sci. 2016;34(24):2195–204.

    PubMed  Article  Google Scholar 

  87. Duarte R, Araújo D, Correia V, Davids K. Sports teams as superorganisms: implications of sociobiological models of behaviour for research and practice in team sports performance analysis. Sports Med. 2012;42:633–42.

    PubMed  Article  Google Scholar 

  88. Araújo D, Davids K. Team synergies in sport: theory and measures. Front Psychol. 2016;7:1449.

    PubMed  PubMed Central  Article  Google Scholar 

  89. McLean S, Salmon PM, Gorman AD, Read GJ, Solomon C. What’s in a game? A systems approach to enhancing performance analysis in football. PLoS One. 2017;12(2):e0172565.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. Couceiro MS, Dias G, Araujo D, Davids K. The ARCANE project: how an ecological dynamics framework can enhance performance assessment and prediction in football. Sports Med. 2016;46(12):1781–6.

    PubMed  Article  Google Scholar 

  91. Gonçalves BV, Figueira BE, Maçãs V, Sampaio J. Effect of player position on movement behaviour, physical and physiological performances during an 11-a-side football game. J Sports Sci. 2014;32(2):191–9.

    PubMed  Article  Google Scholar 

  92. Aguiar M, Gonçalves B, Botelho G, Lemmink K, Sampaio J. Footballers’ movement behaviour during 2-, 3-, 4-and 5-a-side small-sided games. J Sports Sci. 2015;33(12):1259–66.

    PubMed  Article  Google Scholar 

  93. Clemente FM, Couceiro MS, Martins FML, Mendes RS. Using network metrics in soccer: a macro-analysis. J Hum Kinet. 2015;45(1):123–34.

    PubMed  PubMed Central  Article  Google Scholar 

  94. David G, Wilson R. Cooperation improves success during intergroup competition: an analysis using data from professional soccer tournaments. Plos One. 2015;10:e0136503.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Collet C. The possession game? A comparative analysis of ball retention and team success in European and international football, 2007–2010. J Sports Sci. 2013;31(2):123–36.

    PubMed  Article  Google Scholar 

  96. Paixao P, Sampaio J, Almeida CH, Duarte R. How does match status affects the passing sequences of top-level European soccer teams? Int J Perform Anal Sport. 2015;15(1):229–40.

    Article  Google Scholar 

  97. Carling C, Le Gall F, McCall A, Nedelec M, Dupont G. Squad management, injury and match performance in a professional soccer team over a championship-winning season. Eur J Sport Sci. 2015;15(7):573–82.

    PubMed  Article  Google Scholar 

  98. Gonzalez-Rodenas J, Lopez-Bondia I, Calabuig F, Perez-Turpin JA, Aranda R. The effects of playing tactics on creating scoring opportunities in random matches from US Major League Soccer. Int J Perform Anal Sport. 2015;15(3):851–72.

    Article  Google Scholar 

  99. Hoppe MW, Slomka M, Baumgart C, Weber H, Freiwald J. Match running performance and success across a season in German Bundesliga soccer teams. Int J Sports Med. 2015;36(7):563–6.

    CAS  PubMed  Article  Google Scholar 

  100. Liu HY, Hopkins WG, Gomez MA. Modelling relationships between match events and match outcome in elite football. Eur J Sport Sci. 2016;16(5):516–25.

    PubMed  Article  Google Scholar 

  101. Winter C, Pfeiffer M. Tactical metrics that discriminate winning, drawing and losing teams in UEFA Euro 2012®. J Sports Sci. 2016;34(6):486–92.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Sarmento.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Hugo Sarmento, Filipe Clemente, Keith Davids, Duarte Araújo, Allistair McRobert and António Figueiredo declare that they have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarmento, H., Clemente, F.M., Araújo, D. et al. What Performance Analysts Need to Know About Research Trends in Association Football (2012–2016): A Systematic Review. Sports Med 48, 799–836 (2018). https://doi.org/10.1007/s40279-017-0836-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0836-6