Skip to main content

Post-exercise Ingestion of Carbohydrate, Protein and Water: A Systematic Review and Meta-analysis for Effects on Subsequent Athletic Performance



Athletes may complete consecutive exercise sessions with limited recovery time between bouts (e.g. ≤ 4 h). Nutritional strategies that optimise post-exercise recovery in these situations are therefore important.


This two-part review investigated the effect of consuming carbohydrate (CHO) and protein with water (W) following exercise on subsequent athletic (endurance/anaerobic exercise) performance.

Data Sources

Studies were identified by searching the online databases SPORTDiscus, PubMed, Web of Science and Scopus.

Study Eligibility Criteria and Interventions

Investigations that measured endurance performance (≥ 5 min duration) ≤ 4 h after a standardised exercise bout (any type) under the following control vs. intervention conditions were included: Part 1: W vs. CHO ingested with an equal volume of W (CHO + W); and, Part 2: CHO + W vs. protein (PRO) ingested with CHO and an equal volume of W (PRO + CHO + W), where CHO or energy intake was matched.

Study Appraisal and Synthesis Methods

Publications were examined for bias using the Rosendal scale. Random-effects meta-analyses and meta-regression analyses were conducted to evaluate intervention efficacy.


The quality assessment yielded a Rosendal score of 63 ± 9% (mean ± standard deviation). Part 1: 45 trials (n = 486) were reviewed. Ingesting CHO + W (102 ± 50 g CHO; 0.8 ± 0.6 g CHO kg−1 h−1) improved exercise performance compared with W (1.6 ± 0.7 L); %Δ mean power output = 4.0, 95% confidence interval 3.2–4.7 (I 2 = 43.9). Improvement was attenuated when participants were ‘Fed’ (a meal 2–4 h prior to the initial bout) as opposed to ‘Fasted’ (p = 0.012). Part 2: 13 trials (n = 125) were reviewed. Ingesting PRO + CHO + W (35 ± 26 g PRO; 0.5 ± 0.4 g PRO kg−1) did not affect exercise performance compared with CHO + W (115 ± 61 g CHO; 0.6 ± 0.3 g CHO·kg body mass−1 h−1; 1.2 ± 0.6 L); %Δ mean power output = 0.5, 95% confidence interval − 0.5 to 1.6 (I 2 = 72.9).


Athletes with limited time for recovery between consecutive exercise sessions should prioritise CHO and fluid ingestion to enhance subsequent athletic performance.

PROSPERO Registration Number


This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Web of Science (via Thomas Reuters) retrieved a comparatively large number of records [68,347 vs. ≤ 4789 records via each SPORTDiscus (via EBSCOhost), PubMed (MEDLINE) and Scopus] using the search strategy indicated above. To improve the efficiency of the study selection process, only those records categorised within the Sport Sciences field (3418 records) were retrieved from Web of Science.


  1. 1.

    McCartney D, Desbrow B, Irwin C. The effect of fluid intake following dehydration on subsequent athletic and cognitive performance: a systematic review and meta-analysis. Sports Med. 2017;3(1):13.

    Google Scholar 

  2. 2.

    Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–28.

    Article  PubMed  Google Scholar 

  3. 3.

    Jentjens R, Jeukendrup AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.

    Article  PubMed  Google Scholar 

  4. 4.

    Murray R, Seifert JG, Eddy DE, Paul GL, Halaby GA. Carbohydrate feeding and exercise: effect of beverage carbohydrate content. Eur J Appl Physiol Occup Physiol. 1989;59(1/2):152–8.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Murray R, Paul GL, Seifert JG, Eddy DE. Responses to varying rates of carbohydrate ingestion during exercise. Med Sci Sports Exerc. 1991;23(6):713–8.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Burgess WA, Davis JM, Bartoli WP, Woods JA. Failure of low dose carbohydrate feeding to attenuate glucoregulatory hormone responses and improve endurance performance. Int J Sport Nutr. 1991;1(4):338–52.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Burke LM, Deakin V. Clinical sports nutrition. 4th ed. Sydney (NSW): McGraw-Hill Medical; 2010.

    Google Scholar 

  8. 8.

    Pochmuller M, Schwingshackl L, Colombani PC, Hoffmann G. A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J Int Soc Sports Nutr. 2016;13:27.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Spiller GA, Jensen CD, Pattison TS, Chuck CS, Whittam JH, Scala J. Effect of protein dose on serum glucose and insulin response to sugars. Am J Clin Nutr. 1987;46(3):474–80.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.

    PubMed  Google Scholar 

  11. 11.

    Beelen M, Burke LM, Gibala MJ, van Loon LJC. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Moore DR, Camera DM, Areta JL, Hawley JA. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab. 2014;39(9):987–97.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    McLellan TM, Pasiakos SM, Lieberman HR. Effects of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance: a systematic review. Sports Med. 2014;44(4):535–50.

    Article  PubMed  Google Scholar 

  14. 14.

    Betts J, Williams C, Duffy K, Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sci. 2007;25(13):1449–60.

    Article  PubMed  Google Scholar 

  15. 15.

    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211–34.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hopkins WG. How to interpret changes in athletic performance. Sportscience. 2004;8:1–7.

    Google Scholar 

  18. 18.

    Below PR, Morarodriguez R, Gonzalezalonso J, Coyle EF. Fluid and carbohydrate ingestion independently improve performance during 1-h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–10.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Abbiss CR, Peiffer JJ, Peake JM, Nosaka K, Suzuki K, Martin DT, et al. Effect of carbohydrate ingestion and ambient temperature on muscle fatigue development in endurance-trained male cyclists. J Appl Physiol. 2008;104(4):1021–8.

    Article  PubMed  Google Scholar 

  20. 20.

    Osterberg KL, Zachwieja JJ, Smith JW. Carbohydrate and carbohydrate + protein for cycling time-trial performance. J Sports Sci. 2008;26(3):227–33.

    Article  PubMed  Google Scholar 

  21. 21.

    Smith JW, Zachwieja JJ, Peronnet F, Passe DH, Massicotte D, Lavoie C, et al. Fuel selection and cycling endurance performance with ingestion of C-13 glucose: evidence for a carbohydrate dose response. J Appl Physiol. 2010;108(6):1520–9.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Ferguson-Stegall L, McCleave EL, Ding ZP, Doerner PG, Wang B, Liao YH, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signalling for protein synthesis. J Strength Cond Res. 2011;25(5):1210–24.

    Article  PubMed  Google Scholar 

  23. 23.

    Heesch MWS, Mieras ME, Slivka DR. The performance effect of early versus late carbohydrate feedings during prolonged exercise. Appl Physiol Nutr Metab. 2014;39(1):58–63.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Newell ML, Hunter AM, Lawrence C, Tipton KD, Galloway SDR. The ingestion of 39 or 64 g·h-1 of carbohydrate is equally effective at improving endurance exercise performance in cyclists. Int J Sport Nutr Exerc Metab. 2015;25(3):285–92.

    Article  PubMed  Google Scholar 

  25. 25.

    Breen L, Tipton KD, Jeukendrup AE. No effect of carbohydrate-protein on cycling performance and indices of recovery. Med Sci Sports Exerc. 2010;42(6):1140–8.

    CAS  PubMed  Google Scholar 

  26. 26.

    Siegler JC, Page R, Turner M, Mitchell N, Midgely AW. The effect of carbohydrate and marine peptide hydrolysate co-ingestion on endurance exercise metabolism and performance. J Int Soc Sports Nutr. 2013;10(1):1–7.

    Article  Google Scholar 

  27. 27.

    Cole KJ, Grandjean PW, Sobszak RJ, Mitchell JB. Effect of carbohydrate composition on fluid balance, gastric emptying, and exercise performance. Int J Sport Nutr. 1993;3(4):408–17.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    McConell G, Kloot K, Hargreaves M. Effect of timing of carbohydrate ingestion on endurance exercise performance. Med Sci Sports Exerc. 1996;28(10):1300–4.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Temesi J, Rooney K, Raymond J, O’Connor H. Effect of carbohydrate ingestion on exercise performance and carbohydrate metabolism in persons with spinal cord injury. Eur J Appl Physiol. 2010;108(1):131–40.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Morifuji M, Aoyama T, Nakata A, Sambongi C, Koga J, Kurihara K, et al. Post-exercise ingestion of different amounts of protein affects plasma insulin concentration in humans. Eur J Sport Sci. 2012;12(2):152–60.

    Article  Google Scholar 

  32. 32.

    Too BW, Cicai S, Hockett KR, Applegate E, Davis BA, Casazza GA. Natural versus commercial carbohydrate supplementation and endurance running performance. J Int Soc Sports Nutr. 2012;9(1):27–35.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Robson-Ansley P, Walshe I, Ward D. The effect of carbohydrate ingestion on plasma interleukin-6, hepcidin and iron concentrations following prolonged exercise. Cytokine. 2011;53(2):196–200.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Millard-Stafford ML, Sparling PB, Rosskopf LB, Dicarlo LJ. Carbohydrate electrolyte replacement improves distance running performance in the heat. Med Sci Sports Exerc. 1992;24(8):934–40.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Cepero M, Padial R, Rojas FJ, Geerlings A, De la Cruz JC, Boza JJ. Influence of ingesting casein protein and whey protein carbohydrate beverages on recovery and performance of an endurance cycling test. J Hum Sport Exerc. 2010;5(2):158–75.

    Article  Google Scholar 

  36. 36.

    Toone RJ, Betts JA. Isocaloric carbohydrate versus carbohydrate-protein ingestion and cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2010;20(1):34–43.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    McGawley K, Shannon O, Betts J. Ingesting a high-dose carbohydrate solution during the cycle section of a simulated Olympic-distance triathlon improves subsequent run performance. Appl Physiol Nutr Metabol. 2012;37(4):664–71.

    CAS  Article  Google Scholar 

  38. 38.

    Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–85.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Greer BK, White JP, Arguello EM, Haymes EM. Branched-chain amino acid supplementation lowers perceived exertion but does not affect performance in untrained males. J Strength Cond Res. 2011;25(2):539–44.

    Article  PubMed  Google Scholar 

  40. 40.

    El-Sayed MS, Rattu AJM. Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal. Int J Sport Nutr. 1995;5(3):215.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Saunders MJ, Moore RW, Kies AK, Luden ND, Pratt CA. Carbohydrate and protein hydrolysate coingestion’s improvement of late-exercise time-trial performance. Int J Sport Nutr Exerc Metab. 2009;19(2):136–49.

    Article  PubMed  Google Scholar 

  42. 42.

    Sporer B. Reproducibility of a laboratory based 20-km time trial evaluation in competitive cyclists using the velotron pro ergometer. Int J Sports Med. 2007;28(11):940–4.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Paton C. Ergometer error and biological variation in power output in a performance pest with three cycle ergometers. Int J Sports Med. 2006;27(6):444–7.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Jensen K, Johansen L. Reproducibility and validity of physiological parameters measured in cyclists riding on racing bikes placed on a stationary magnetic brake. Scand J Med Sci Sports. 1998;8(1):1–6.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wong SH, Williams C, Adams N. Effects of ingesting a large volume of carbohydrate-electrolyte solution on rehydration during recovery and subsequent exercise capacity. Int J Sport Nutr Exerc Metab. 2000;10(4):375.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Ivy JL, Res PT, Sprague RC, Widzer MO. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13(3):382–95.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Alghannam AF. Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Appl Physiol Nutr Metab. 2011;36(5):748–57.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Lee JKW, Nio AQX, Ang WH, Law LYL, Lim CL. Effects of ingesting a sports drink during exercise and recovery on subsequent endurance capacity. Eur J Sport Sci. 2011;11(2):77–86.

    Article  Google Scholar 

  49. 49.

    Betts JA, Stevenson E, Williams C, Sheppard C, Grey E, Griffin J. Recovery of endurance running capacity: effect of carbohydrate-protein mixtures. Int J Sport Nutr Exerc Metab. 2005;15(6):590.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, et al. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am J Physiol Endocrinol Metab. 2000;278(1):E65–75.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Bonetti DL, Hopkins WG, Jeukendrup A. Effects of hypotonic and isotonic sports drinks on endurance performance and physiology. Sportscience. 2010;14:63–70.

    Google Scholar 

  52. 52.

    van Rosendal SP, Osborne MA, Fassett RG, Coombes JS. Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med. 2010;40(2):113–29.

    Article  PubMed  Google Scholar 

  53. 53.

    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Wiley Online Library; 2008.

  55. 55.

    Ball TC, Headley SA, Vanderburgh PM, Smith JC. Periodic carbohydrate replacement during 50 min of high-intensity cycling improves subsequent sprint performance. Int J Sport Nutr. 1995;5(2):151–8.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hopkins WG. Calculating likely (confidence) limits and likelihoods for true values (Excel spreadsheet): a new view of statistics. 2002. Accessed June 2017.

  58. 58.

    National Health and Medical Research Council. Nutrient reference values for Australia and New Zealand including recommended dietary intakes. Canberra (ACT): Department of Health and Ageing; 2006.

    Google Scholar 

  59. 59.

    Bacharach DW, Von Duvillard SP, Rundell KW, Meng J, Cring MR, Szmedra L, et al. Carbohydrate drinks and cycling performance. J Sports Med Phys Fit. 1994;34(2):161–8.

    CAS  Google Scholar 

  60. 60.

    Singh R, Brouns F, Kovacs E. The effects of rehydration on cycling performance after exercise-induced dehydration. Southeast Asian J Trop Med Public Health. 2002;33(2):378–88.

    CAS  PubMed  Google Scholar 

  61. 61.

    Singh R, Kovacs EMR, Senden JMG, Brouns F. Fluid balance and cycling performance following dehydration and rehydration with a carbohydrate-electrolyte solution. Asian J Exerc Sports Sci. 2004;1(1):39–51.

    CAS  Google Scholar 

  62. 62.

    Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63(6):2388–95.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989;67(5):1843–9.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    White JS. Straight talk about high-fructose corn syrup: what it is and what it ain’t. Am J Clin Nutr. 2008;88(6):1716s–21s.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Clarke ND, Drust B, Maclaren DPM, Reilly T. Fluid provision and metabolic responses to soccer-specific exercise. Eur J Appl Physiol. 2008;104(6):1069.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Clarke ND, Drust B, MacLaren DPM, Reilly T. Strategies for hydration and energy provision during soccer-specific exercise. Int J Sport Nutr Exerc Metab. 2005;15(6):625.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Sugiura K, Kobayashi K. Effect of carbohydrate ingestion on sprint performance following continuous and intermittent exercise. Med Sci Sports Exerc. 1998;30(11):1624–30.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Anthony JT, Scott FD, Stacy S, Margaret JT, Coughlin MA, Samuel HA. Carbohydrate supplementation fails to improve sprint performance of female cyclists. J Exerc Physiol Online. 1999;2(2):16–23.

    Google Scholar 

  69. 69.

    O’Neal EK, Poulos SP, Wingo JE, Richardson MT, Bishop PA. Post-prandial carbohydrate ingestion during 1-h of moderate-intensity, intermittent cycling does not improve mood, perceived exertion, or subsequent power output in recreationally-active exercisers. J Int Soc Sports Nutr. 2013;10(1):1–9.

    Article  Google Scholar 

  70. 70.

    Stellingwerff T, Boon H, Gijsen AP, Stegen JHCH, Kuipers H, van Loon LJC. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Arch. 2007;454(4):635–47.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Burke LM, Maughan RJ. The Governor has a sweet tooth: mouth sensing of nutrients to enhance sports performance. Eur J Sport Sci. 2015;15(1):29–40.

    Article  PubMed  Google Scholar 

  73. 73.

    Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011;41(9):773–92.

    Article  PubMed  Google Scholar 

  74. 74.

    Hargreaves M, Finn JP, Withers RT, Halbert JA, Scroop GC, Mackay M, et al. Effect of muscle glycogen availability on maximal exercise performance. Eur J Appl Physiol Occup Physiol. 1997;75(2):188–92.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Langfort J, Zarzeczny R, Pilis W, Nazar K, Kaciuba-Uscitko H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1997;76(2):128–33.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(8):1779–94.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    McCormick A, Meijen C, Marcora S. Psychological determinants of whole-body endurance performance. Sports Med. 2015;45(7):997–1015.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    de Oliveira EP, Burini RC. Carbohydrate-dependent, exercise-induced gastrointestinal distress. Nutrients. 2014;6(10):4191–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank all of the authors of the reviewed studies that provided raw experimental data for this investigation.

Author information




All authors were involved in the conception and design of this review. DM and CI were responsible for collating manuscripts and retrieving data. DM conducted the analysis of the data. All authors contributed to the drafting and revising of the article, and the final approval of the published version of the manuscript.

Corresponding author

Correspondence to Danielle McCartney.

Ethics declarations


No sources of funding were received for the preparation of this article.

Conflict of interest

Danielle McCartney, Ben Desbrow and Christopher Irwin have no conflicts of interest directly relevant to the content of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCartney, D., Desbrow, B. & Irwin, C. Post-exercise Ingestion of Carbohydrate, Protein and Water: A Systematic Review and Meta-analysis for Effects on Subsequent Athletic Performance. Sports Med 48, 379–408 (2018).

Download citation