Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis

  • J. R. Silva
  • M. C. Rumpf
  • M. Hertzog
  • C. Castagna
  • A. Farooq
  • O. Girard
  • K. Hader
Systematic Review

Abstract

Background

Understanding soccer players’ match-related fatigue and recovery profiles likely helps with developing conditioning programs that increase team performance and reduce injuries and illnesses. In order to improve match recovery (the return-to-play process and ergogenic interventions) it is also pivotal to determine if match simulation protocols and actual match-play lead to similar responses.

Objectives

(1) To thoroughly describe the development of fatigue during actual soccer match play and its recovery time course in terms of physiological, neuromuscular, technical, biochemical and perceptual responses, and (2) to determine similarities of recovery responses between actual competition (11 vs. 11) and match simulations.

Methods

A first screening phase consisted of a systematic search on PubMed (MEDLINE) and SportDiscus databases until March 2016. Inclusion criteria were: longitudinal study with soccer players; match or validated protocol; duration > 45 min; and published in English.

Results

A total of 77 eligible studies (n = 1105) were used to compute 1196 effect sizes (ES). Half-time assessments revealed small to large alterations in immunological parameters (e.g. leukocytes, ES = 1.9), a moderate decrement in insulin concentration (ES = − 0.9) and a small to moderate impairment in lower-limb muscle function (ES = − 0.5 to − 0.7) and physical performance measures (e.g. linear sprint, ES = − 0.3 to − 1.0). All the systematically analyzed fatigue-related markers were substantially altered at post-match. Hamstrings force production capacity (ES = − 0.7), physical performance (2–4%, ES = 0.3−0.5), creatine kinase (CK, ES = 0.4), well-being (ES = 0.2−0.4) and delayed onset muscle soreness (DOMS, ES = 0.6–1.3) remained substantially impaired at G + 72 h. Compared to simulation protocols, 11 vs. 11 match format (CK, ES = 1.8) induced a greater magnitude of change in muscle damage (i.e. CK, ES = 1.8 vs. 0.7), inflammatory (IL-6, ES = 2.6 vs. 1.1) and immunological markers and DOMS (ES = 1.5 vs. 0.7) than simulation protocols at post-assessments. Neuromuscular performances at post-match did not differ between protocols.

Conclusion

While some parameters are fully recovered (e.g. hormonal and technical), our systematic review shows that a period of 72 h post-match play is not long enough to completely restore homeostatic balance (e.g. muscle damage, physical and well-being status). The extent of the recovery period post-soccer game cannot consist of a ‘one size fits all approach’. Additionally, the ‘real match’ (11 vs. 11 format) likely induces greater magnitudes of perceptual (DOMS) and biochemical alterations (e.g. muscle damage), while neuromuscular alterations were essentially similar. Overall, coaches must adjust the structure and content of the training sessions during the 72-h post-match intervention to effectively manage the training load within this time-frame.

Supplementary material

40279_2017_798_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    Shephard RJ. Biology and medicine of soccer: an update. J Sports Sci. 1999;17(10):757–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Reilly T, Gilbourne D. Science and football: a review of applied research in the football codes. J Sports Sci. 2003;21(9):693–705.PubMedCrossRefGoogle Scholar
  3. 3.
    Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Svensson M, Drust B. Testing soccer players. J Sports Sci. 2005;23(6):601–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Bangsbo J, Iaia FM, Krustrup P. Metabolic response and fatigue in soccer. Int J Sports Physiol Perform. 2007;2(2):111–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Lees A, Nolan L. The biomechanics of soccer: a review. J Sports Sci. 1998;16(3):211–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Lees A, Asai T, Andersen TB, Nunome H, Sterzing T. The biomechanics of kicking in soccer: a review. J Sports Sci. 2010;28(8):805–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;34(3):165–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoff J. Training and testing physical capacities for elite soccer players. J Sports Sci. 2005;23(6):573–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Iaia FM, Rampinini E, Bangsbo J. High-intensity training in football. Int J Sports Physiol Perform. 2009;4(3):291–306.PubMedCrossRefGoogle Scholar
  12. 12.
    Hill-Haas SV, Dawson B, Impellizzeri FM, Coutts AJ. Physiology of small-sided games training in football: a systematic review. Sports Med. 2011;41(3):199–220.PubMedCrossRefGoogle Scholar
  13. 13.
    Silva JR, Nassis GP, Rebelo A. Strength training in soccer with a specific focus on highly trained players. Sports Med Open. 2015;2(1):1–27.CrossRefGoogle Scholar
  14. 14.
    Silva JR, Brito J, Akenhead R, Nassis GP. The transition period in soccer: a window of opportunity. Sports Med. 2016;46(3):305–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. J Sports Sci. 2005;23(6):593–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005;23(6):619–27.PubMedCrossRefGoogle Scholar
  17. 17.
    Reilly T, Drust B, Clarke N. Muscle fatigue during football match-play. Sports Med. 2008;38(5):357–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):997–1015.PubMedGoogle Scholar
  19. 19.
    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer : part II—recovery strategies. Sports Med. 2013;43(1):9–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.CrossRefGoogle Scholar
  21. 21.
    Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the english premier league. Int J Sports Med. 2014;35(13):1095–100.PubMedCrossRefGoogle Scholar
  22. 22.
    Bush M, Barnes C, Archer DT, Hogg B, Bradley PS. Evolution of match performance parameters for various playing positions in the English Premier League. Hum Mov Sci. 2014;39C:1–11.Google Scholar
  23. 23.
    Silva JR, Magalhaes J, Ascensao A, Seabra AF, Rebelo AN. Training status and match activity of professional soccer players throughout a season. J Strength Cond Res. 2013;27(1):20–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Russell M, Sparkes W, Northeast J, Cook CJ, Bracken RM, Kilduff LP. Relationships between match activities and peak power output and Creatine Kinase responses to professional reserve team soccer match-play. Hum Mov Sci. 2016;45:96–101.PubMedCrossRefGoogle Scholar
  25. 25.
    Silva JR, Ascensao A, Marques F, Seabra A, Rebelo A, Magalhaes J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur J Appl Physiol. 2013;113(9):2193–201.PubMedCrossRefGoogle Scholar
  26. 26.
    Hader K, Mendez-Villanueva A, Ahmaidi S, Williams BK, Buchheit M. Changes of direction during high-intensity intermittent runs: neuromuscular and metabolic responses. BMC Sports Sci Med Rehab. 2014;6(1):2.CrossRefGoogle Scholar
  27. 27.
    Girard O, Nybo L, Mohr M, Racinais S. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions. Scand J Med Sci Sports. 2015;25(Suppl 1):154–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Magalhaes J, Rebelo A, Oliveira E, Silva JR, Marques F, Ascensao A. Impact of Loughborough Intermittent Shuttle Test versus soccer match on physiological, biochemical and neuromuscular parameters. Eur J Appl Physiol. 2010;108(1):39–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Ispirlidis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michailidis I, Douroudos I, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Andersson H, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Paul DJ, Bradley PS, Nassis GP. Factors affecting match running performance of elite soccer players: shedding some light on the complexity. Int J Sports Physiol Perform. 2015;10(4):516–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(Suppl 2):S139–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Gabbett TJ, Hulin BT, Blanch P, Whiteley R. High training workloads alone do not cause sports injuries: how you get there is the real issue. Br J Sports Med. 2016;50(8):444–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Gabbett TJ, Domrow N. Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci. 2007;25(13):1507–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Carling C, Gall FL, Reilly TP. Effects of physical efforts on injury in elite soccer. Int J Sports Med. 2010;31(3):180–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Dupont G, Nedelec M, McCall A, McCormack D, Berthoin S, Wisloff U. Effect of 2 soccer matches in a week on physical performance and injury rate. Am J Sports Med. 2010;38(9):1752–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Dellal A, Lago-Penas C, Rey E, Chamari K, Orhant E. The effects of a congested fixture period on physical performance, technical activity and injury rate during matches in a professional soccer team. Br J Sports Med. 2013 Feb 25.Google Scholar
  39. 39.
    Bengtsson H, Ekstrand J, Hagglund M. Muscle injury rates in professional football increase with fixture congestion: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):743–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Lago-Penas C, Rey E, Lago-Ballesteros J, Casais L, Dominguez E. The influence of a congested calendar on physical performance in elite soccer. J Strength Cond Res. 2011;25(8):2111–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Nicholas CW, Nuttall FE, Williams C. The loughborough intermittent shuttle test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Russell M, Benton D, Kingsley M. The effects of fatigue on soccer skills performed during a soccer match simulation. Int J Sports Physiol Perform. 2011;6(2):221–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Stone KJ, Oliver JL, Hughes MG, Stembridge MR, Newcombe DJ, Meyers RW. Development of a soccer simulation protocol to include repeated sprints and agility. Int J Sports Physiol Perform. 2011;6(3):427–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Small K, McNaughton L, Greig M, Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sports Sports Med Aust. 2010;13(1):120–5.CrossRefGoogle Scholar
  45. 45.
    Sirotic AC, Coutts AJ. The reliability of physiological and performance measures during simulated team-sport running on a non-motorised treadmill. J Sci Med Sports Sports Med Aust. 2008;11(5):500–9.CrossRefGoogle Scholar
  46. 46.
    Drust B, Reilly T, Cable NT. Physiological responses to laboratory-based soccer-specific intermittent and continuous exercise. J Sports Sci. 2000;18(11):885–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Bendiksen M, Bischoff R, Randers MB, Mohr M, Rollo I, Suetta C, et al. The Copenhagen Soccer Test: physiological response and fatigue development. Med Sci Sports Exerc. 2012;44(8):1595–603.PubMedCrossRefGoogle Scholar
  48. 48.
    Greig MP, McNaughton LR, Lovell RJ. Physiological and mechanical response to soccer-specific intermittent activity and steady-state activity. Res Sports Med. 2006;14(1):29–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Robineau J, Jouaux T, Lacroix M, Babault N. Neuromuscular fatigue induced by a 90-minute soccer game modeling. J Strength Cond Res. 2012;26(2):555–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Lovell R, Knapper B, K. S. Physiological responses to SAFT90: a new soccer-specific match simulation. In: Verona-Ghirada Team Sports Conference Proceedings 2008.Google Scholar
  51. 51.
    Russell M, Rees G, Benton D, Kingsley M. An exercise protocol that replicates soccer match-play. Int J Sports Med. 2011;32(7):511–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Aldous JW, Akubat I, Chrismas BC, Watkins SL, Mauger AR, Midgley AW, et al. The reliability and validity of a soccer-specific nonmotorised treadmill simulation (intermittent soccer performance test). J Strength Cond Res. 2014;28(7):1971–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Page RM, Marrin K, Brogden CM, Greig M. Biomechanical and physiological response to a contemporary soccer match-play simulation. J Strength Cond Res. 2015;29(10):2860–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med. 2009;30(8):573–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Page RM, Marrin K, Brogden CM, Greig M. The biomechanical and physiological response to repeated soccer-specific simulations interspersed by 48 or 72 hours recovery. Phys Ther Sport. 2016;22:81–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med CCLM FESCC. 2010;48(6):757–67.Google Scholar
  59. 59.
    Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports. 2010;20(Suppl 3):1–18.PubMedCrossRefGoogle Scholar
  60. 60.
    Racinais S, Mohr M, Buchheit M, Voss SC, Gaoua N, Grantham J, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Ayala F, SAainz de Baranda P, De Ste Croix M, Santoja F. Absolute reliability of isokinetic measurements for estimating muscle function. Revista Internacional de Medecina y Ciencias de la Actividade Fisica y del Deporte 2013;13(52):799–830.Google Scholar
  62. 62.
    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18(4):918–20.PubMedGoogle Scholar
  63. 63.
    Borenstein M, Higgins J, Rothstein H. Introduction to meta-analysis (statistics and practice). In: Sons JW, editor. 2009.Google Scholar
  64. 64.
    Hedges L, Olkin I. Statistical methods for meta-analysis. New York: Academic Press; 1985.Google Scholar
  65. 65.
    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Stone KJ, Hughes MG, Stembridge MR, Meyers RW, Newcombe DJ, Oliver JL. The influence of playing surface on physiological and performance responses during and after soccer simulation. Eur J Sport Sci. 2016;16(1):42–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Russell M, Kingsley MI. Changes in acid-base balance during simulated soccer match play. J Strength Cond Res. 2012;26(9):2593–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Pettersen SA, Krustrup P, Bendiksen M, Randers MB, Brito J, Bangsbo J, et al. Caffeine supplementation does not affect match activities and fatigue resistance during match play in young football players. J Sports Sci. 2014;32(20):1958–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Ostojic SM, Mazic S. Effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. J Sports Sci Med. 2002;1(2):47–53.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mohr M, Nybo L, Grantham J, Racinais S. Physiological responses and physical performance during football in the heat. PLoS One. 2012;7(6):e39202.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mohr M, Draganidis D, Chatzinikolaou A, Barbero-Alvarez JC, Castagna C, Douroudos I, et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol. 2015 Sep 16.Google Scholar
  72. 72.
    Krustrup P, Zebis M, Jensen JM, Mohr M. Game-induced fatigue patterns in elite female soccer. J Strength Cond Res. 2010;24(2):437–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Hulton AT, Gregson W, Maclaren D, Doran DA. Effects of GI meals on intermittent exercise. Int J Sports Med. 2012;33(9):756–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Gravina L, Ruiz F, Lekue JA, Irazusta J, Gil SM. Metabolic impact of a soccer match on female players. J Sports Sci. 2011;29(12):1345–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Fatouros IG, Chatzinikolaou A, Douroudos II, Nikolaidis MG, Kyparos A, Margonis K, et al. Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J Strength Cond Res. 2010;24(12):3278–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Edwards AM, Clark NA. Thermoregulatory observations in soccer match play: professional and recreational level applications using an intestinal pill system to measure core temperature. Br J Sports Med. 2006;40(2):133–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Costa CSCD, Barbosa MA, Spineti J, Pedrosa CM, Pierucci APTR. Oxidative stress biomarkers response to exercise in Brazilian Junior soccer players. Food Nutr Sci. 2011;02(05):407–13.CrossRefGoogle Scholar
  79. 79.
    Bishop NC, Blannin AK, Robson PJ, Walsh NP, Gleeson M. The effects of carbohydrate supplementation on immune responses to a soccer-specific exercise protocol. J Sports Sci. 1999;17(10):787–96.PubMedCrossRefGoogle Scholar
  80. 80.
    Ali A, Williams C, Nicholas CW, Foskett A. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc. 2007;39(11):1969–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Ali A, Williams C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J Sports Sci. 2009;27(14):1499–508.PubMedCrossRefGoogle Scholar
  82. 82.
    Alghannam AF. Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Appl Physiol Nutr Metab. 2011;36(5):748–57.PubMedCrossRefGoogle Scholar
  83. 83.
    Abbey EL, Rankin JW. Effect of ingesting a honey-sweetened beverage on soccer performance and exercise-induced cytokine response. Int J Sport Nutr Exerc Metab. 2009;19(6):659–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Bendiksen M, Pettersen SA, Ingebrigtsen J, Randers MB, Brito J, Mohr M, et al. Application of the Copenhagen soccer test in high-level women players - locomotor activities, physiological response and sprint performance. Hum Mov Sci. 2013;32(6):1430–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Apostolidis N, Bogdanis GC, Kostopoulos N, Souglis A, Papadopoulos C. Changes in the lipid profile of elite basketball and soccer players after a match. Res Sports Med. 2014;22(1):100–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Colombini A, Machado M, Lombardi G, Lanteri P, Banfi G. Modifications of biochemical parameters related to protein metabolism and renal function in male soccer players after a match. J Sports Med Phys Fitness. 2014;54(5):658–64.PubMedGoogle Scholar
  87. 87.
    Tsubakihara T, Umeda T, Takahashi I, Matsuzaka M, Iwane K, Tanaka M, et al. Effects of soccer matches on neutrophil and lymphocyte functions in female university soccer players. Lumin J Biol Chem Lumin. 2013;28(2):129–35.CrossRefGoogle Scholar
  88. 88.
    Thorpe R, Sunderland C. Muscle damage, endocrine, and immune marker response to a soccer match. J Strength Cond Res. 2012;26(10):2783–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Souglis AG, Papapanagiotou A, Bogdanis GC, Travlos AK, Apostolidis NG, Geladas ND. Comparison of inflammatory responses to a soccer match between elite male and female players. J Strength Cond Res. 2015;29(5):1227–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Souglis A, Bogdanis GC, Giannopoulou I, Papadopoulos C, Apostolidis N. Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Res Sports Med. 2015;23(1):59–72.PubMedCrossRefGoogle Scholar
  91. 91.
    Russell M, Northeast J, Atkinson G, Shearer DA, Sparkes W, Cook CJ, et al. Between-match variability of peak power output and creatine kinase responses to soccer match-play. J Strength Cond Res. 2015;29(8):2079–85.PubMedCrossRefGoogle Scholar
  92. 92.
    Romagnoli M, Sanchis-Gomar F, Alis R, Risso-Ballester J, Bosio A, Graziani RL et al. Changes in muscle damage, inflammation, and fatigue-related parameters in young elite soccer players after a match. J Sports Med Phys Fitness. 2015 Nov 11.Google Scholar
  93. 93.
    Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):2161–70.PubMedCrossRefGoogle Scholar
  94. 94.
    Nedelec M, Wisloff U, McCall A, Berthoin S, Dupont G. Recovery after an intermittent test. Int J Sports Med. 2012 Dec 20.Google Scholar
  95. 95.
    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. The influence of soccer playing actions on the recovery kinetics after a soccer match. J Strength Cond Res. 2013 Oct 29.Google Scholar
  96. 96.
    Naclerio F, Larumbe-Zabala E, Cooper R, Allgrove J, Earnest CP. A multi-ingredient containing carbohydrate, proteins l-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players. PLoS One. 2015;10(4):e0125188.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Krustrup P, Ortenblad N, Nielsen J, Nybo L, Gunnarsson TP, Iaia FM, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95.PubMedCrossRefGoogle Scholar
  98. 98.
    Jamurtas AZ, Douroudos, II, Deli CK, Draganidis D, Chatzinikolaou A, Mohr M et al. Iron status markers are only transiently affected by a football game. J Sports Sci 2015;1–12.Google Scholar
  99. 99.
    Gunnarsson TP, Bendiksen M, Bischoff R, Christensen PM, Lesivig B, Madsen K, et al. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand J Med Sci Sports. 2013;23(4):508–15.PubMedCrossRefGoogle Scholar
  100. 100.
    Gatterer H, Schenk K, Wille M, Murnig P, Burtscher M. Effects of massage under hypoxic conditions on exercise-induced muscle damage and physical strain indices in professional soccer players. Biol Sport Inst Sport. 2013;30(2):81–3.CrossRefGoogle Scholar
  101. 101.
    Akkurt S, Sucan S, Gumus A, Karakus M, Yilmaz A, Saka T. Comparison of muscle damage in Turkish collegian soccer players after playing matches on artificial and natural turf fields. Anthropologist. 2015;20(3):423–9.Google Scholar
  102. 102.
    Sanchis-Gomar F, Bonaguri C, Aloe R, Pareja-Galeano H, Martinez-Bello V, Gomez-Cabrera MC, et al. Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers. Transl Res J Lab Clin Med. 2013;162(2):102–9.CrossRefGoogle Scholar
  103. 103.
    Papapanagiotou A, Gissis I, Papadopoulos C, Souglis A, Bogdanis GC, Giosos I, et al. Changes in homocysteine and 8-iso-PGF(2a) levels in football and hockey players after a match. Res Sports Med. 2011;19(2):118–28.PubMedCrossRefGoogle Scholar
  104. 104.
    Andersson H, Karlsen A, Blomhoff R, Raastad T, Kadi F. Plasma antioxidant responses and oxidative stress following a soccer game in elite female players. Scand J Med Sci Sports. 2010;20(4):600–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Andersson H, Karlsen A, Blomhoff R, Raastad T, Kadi F. Active recovery training does not affect the antioxidant response to soccer games in elite female players. Br J Nutr. 2010;1–8.Google Scholar
  106. 106.
    Andersson H, Bohn SK, Raastad T, Paulsen G, Blomhoff R, Kadi F. Differences in the inflammatory plasma cytokine response following two elite female soccer games separated by a 72-h recovery. Scand J Med Sci Sports. 2010;20(5):740–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Papacosta E, Nassis GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sports Sports Med Aust. 2011;14(5):424–34.CrossRefGoogle Scholar
  108. 108.
    Cohen DD, Zhao B, Okwera B, Matthews MJ, Delextrat A. Angle-specific eccentric hamstring fatigue after simulated soccer. Int J Sports Physiol Perform. 2015;10(3):325–31.PubMedCrossRefGoogle Scholar
  109. 109.
    de Abreu Camarda SR, Denadai BS. Does muscle imbalance affect fatigue after soccer specific intermittent protocol? J Sci Med Sports Sports Med Aust. 2012;15(4):355–60.CrossRefGoogle Scholar
  110. 110.
    Delextrat A, Baker J, Cohen DD, Clarke ND. Effect of a simulated soccer match on the functional hamstrings-to-quadriceps ratio in amateur female players. Scand J Med Sci Sports. 2013;23(4):478–86.PubMedCrossRefGoogle Scholar
  111. 111.
    Gleeson NP, Reilly T, Mercer TH, Rakowski S, Rees D. Influence of acute endurance activity on leg neuromuscular and musculoskeletal performance. Med Sci Sports Exerc. 1998;30(4):596–608.PubMedCrossRefGoogle Scholar
  112. 112.
    Greco CC, da Silva WL, Camarda SR, Denadai BS. Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Clin Physiol Funct Imaging. 2013;33(1):18–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Jones RI, Ryan B, Todd AI. Muscle fatigue induced by a soccer match-play simulation in amateur Black South African players. J Sports Sci. 2015;33(12):1305–11.PubMedCrossRefGoogle Scholar
  114. 114.
    Lovell R, Midgley A, Barrett S, Carter D, Small K. Effects of different half-time strategies on second half soccer-specific speed, power and dynamic strength. Scand J Med Sci Sports. 2013;23(1):105–13.PubMedCrossRefGoogle Scholar
  115. 115.
    Rahnama N, Reilly T, Lees A, Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J Sports Sci. 2003;21(11):933–42.PubMedCrossRefGoogle Scholar
  116. 116.
    Coratella G, Bellin G, Beato M, Schena F. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps. J Sports Sci. 2015;33(12):1276–82.PubMedCrossRefGoogle Scholar
  117. 117.
    Thorlund JB, Aagaard P, Madsen K. Rapid muscle force capacity changes after soccer match play. Int J Sports Med. 2009;30(4):273–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Greig M, Siegler JC. Soccer-specific fatigue and eccentric hamstrings muscle strength. J Athl Train. 2009;44(2):180–4.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Marshall PW, Lovell R, Jeppesen GK, Andersen K, Siegler JC. Hamstring muscle fatigue and central motor output during a simulated soccer match. PLoS One. 2014;9(7):e102753.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med. 2008;36(7):1403–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Nedelec M, McCall A, Carling C, Le Gall F, Berthoin S, Dupont G. Physical performance and subjective ratings after a soccer-specific exercise simulation: comparison of natural grass versus artificial turf. J Sports Sci. 2013;31(5):529–36.PubMedCrossRefGoogle Scholar
  122. 122.
    Nagahara R, Morin JB, Koido M. Impairment of sprint mechanical properties in an actual soccer match: a pilot study. Int J Sports Physiol Perform. 2016 Jan 18.Google Scholar
  123. 123.
    Hughes MG, Birdsey L, Meyers R, Newcombe D, Oliver JL, Smith PM, et al. Effects of playing surface on physiological responses and performance variables in a controlled football simulation. J Sports Sci. 2013;31(8):878–86.PubMedCrossRefGoogle Scholar
  124. 124.
    Edholm P, Krustrup P, Randers MB. Half-time re-warm up increases performance capacity in male elite soccer players. Scand J Med Sci Sports. 2014 Apr 30.Google Scholar
  125. 125.
    Greig M. The influence of soccer-specific activity on the kinematics of an agility sprint. Eur J Sport Sci. 2009;9(1):23–33.CrossRefGoogle Scholar
  126. 126.
    Mohr M, Mujika I, Santisteban J, Randers MB, Bischoff R, Solano R, et al. Examination of fatigue development in elite soccer in a hot environment: a multi-experimental approach. Scand J Med Sci Sports. 2010;20(Suppl 3):125–32.PubMedCrossRefGoogle Scholar
  127. 127.
    Greig M, Walker-Johnson C. The influence of soccer-specific fatigue on functional stability. Phys Therap Sport. 2007;8(4):185–90.CrossRefGoogle Scholar
  128. 128.
    Greig M, McNaughton L. Soccer-specific fatigue decreases reactive postural control with implications for ankle sprain injury. Res Sports Med. 2014;22(4):368–79.PubMedCrossRefGoogle Scholar
  129. 129.
    Brito J, Fontes I, Ribeiro F, Raposo A, Krustrup P, Rebelo A. Postural stability decreases in elite young soccer players after a competitive soccer match. Phys Ther Sport. 2012;13(3):175–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Mohr M, Krustrup P, Nybo L, Nielsen JJ, Bangsbo J. Muscle temperature and sprint performance during soccer matches–beneficial effect of re-warm-up at half-time. Scand J Med Sci Sports. 2004;14(3):156–62.PubMedCrossRefGoogle Scholar
  131. 131.
    Ali A, Williams C, Hulse M, Strudwick A, Reddin J, Howarth L, et al. Reliability and validity of two tests of soccer skill. J Sports Sci. 2007;25(13):1461–70.PubMedCrossRefGoogle Scholar
  132. 132.
    Gant N, Ali A, Foskett A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sport Nutr Exerc Metab. 2010;20(3):191–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Rampinini E, Impellizzeri FM, Castagna C, Azzalin A, Ferrari Bravo D, Wisloff U. Effect of match-related fatigue on short-passing ability in young soccer players. Med Sci Sports Exerc. 2008;40(5):934–42.PubMedCrossRefGoogle Scholar
  134. 134.
    Kellis E, Katis A, Vrabas IS. Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scand J Med Sci Sports. 2006;16(5):334–44.PubMedCrossRefGoogle Scholar
  135. 135.
    Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2016 Dec 29:jap 00971 2016.Google Scholar
  136. 136.
    Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81–82:209–30.PubMedCrossRefGoogle Scholar
  137. 137.
    Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37(10):827–36.PubMedCrossRefGoogle Scholar
  138. 138.
    Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol. 1988;65(1):1–6.PubMedGoogle Scholar
  140. 140.
    Clarkson PM, Sayers SP. Etiology of exercise-induced muscle damage. Can J Appl Physiol. 1999;24(3):234–48.PubMedCrossRefGoogle Scholar
  141. 141.
    Clarkson PM, Dedrick ME. Exercise-induced muscle damage, repair, and adaptation in old and young subjects. J Gerontol. 1988;43(4):M91–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Gissel H, Clausen T. Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiol Scand. 2001;171(3):327–34.PubMedCrossRefGoogle Scholar
  143. 143.
    Friden J, Lieber RL. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. 2001;171(3):321–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Russell M, Sparkes W, Northeast J, Cook CJ, Love TD, Bracken RM, et al. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J Strength Cond Res. 2014 Dec 2.Google Scholar
  145. 145.
    Bloomfield J, Polman R, O`Donoghue P. Physical demands of different positions in FA premier league soccer. J Sports Sci Med. 2007;6:63–70.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Akenhead R, Hayes PR, Thompson KG, French D. Diminutions of acceleration and deceleration output during professional football match play. J Sci Med Sports Sports Med Aust. 2013;16(6):556–61.CrossRefGoogle Scholar
  147. 147.
    Oliver JL, De Ste Croix MB, Lloyd RS, Williams CA. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur J Appl Physiol. 2014;114(11):2241–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Oliver J, Armstrong N, Williams C. Changes in jump performance and muscle activity following soccer-specific exercise. J Sports Sci. 2008;26(2):141–8.PubMedCrossRefGoogle Scholar
  149. 149.
    de Hoyo M, Sanudo B, Carrasco L, Mateo-Cortes J, Dominguez-Cobo S, Fernandes O, et al. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J Sports Sci. 2016;34(14):1380–7.PubMedCrossRefGoogle Scholar
  150. 150.
    de Hoyo M, Cohen DD, Sanudo B, Carrasco L, Alvarez-Mesa A, Del Ojo JJ, et al. Influence of football match time-motion parameters on recovery time course of muscle damage and jump ability. J Sports Sci. 2016;34(14):1363–70.PubMedCrossRefGoogle Scholar
  151. 151.
    Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.PubMedGoogle Scholar
  152. 152.
    Ascensao A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhaes J. Biochemical impact of a soccer match—analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem. 2008;41(10–11):841–51.PubMedCrossRefGoogle Scholar
  153. 153.
    Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol. 2012;215(Pt 10):1615–25.PubMedCrossRefGoogle Scholar
  154. 154.
    Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiol Off J Int Soc Pathophysiol. 2000;7(3):153–63.Google Scholar
  155. 155.
    Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med DM. 2009;8:1.PubMedCrossRefGoogle Scholar
  156. 156.
    Bretscher P, Egger J, Shamshiev A, Trotzmuller M, Kofeler H, Carreira EM, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7(5):593–607.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515(Pt 1):287–91.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.PubMedCrossRefGoogle Scholar
  160. 160.
    Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.PubMedCrossRefGoogle Scholar
  161. 161.
    Reid MB, Moylan JS. Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease. J Physiol. 2011;589(Pt 9):2171–9.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Moldoveanu AI, Shephard RJ, Shek PN. The cytokine response to physical activity and training. Sports Med. 2001;31(2):115–44.PubMedCrossRefGoogle Scholar
  163. 163.
    Puglisi MJ, Fernandez ML. Modulation of C-reactive protein, tumor necrosis factor-alpha, and adiponectin by diet, exercise, and weight loss. J Nutr. 2008;138(12):2293–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Belcastro AN, Arthur GD, Albisser TA, Raj DA. Heart, liver, and skeletal muscle myeloperoxidase activity during exercise. J Appl Physiol. 1996;80(4):1331–5.PubMedGoogle Scholar
  165. 165.
    Nieman DC. Special feature for the Olympics: effects of exercise on the immune system: exercise effects on systemic immunity. Immunol Cell Biol. 2000;78(5):496–501.PubMedCrossRefGoogle Scholar
  166. 166.
    Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clinic. 2007;45(2):27–37.CrossRefGoogle Scholar
  167. 167.
    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Urso ML, Sawka MN. Inflammation: sustaining the balance to optimize recovery of skeletal muscle, connective tissue, and exertional injuries. J Appl Physiol. 2013;115(6):877–8.PubMedCrossRefGoogle Scholar
  169. 169.
    MacIntyre DL, Reid WD, McKenzie DC. Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med. 1995;20(1):24–40.PubMedCrossRefGoogle Scholar
  170. 170.
    Raastad T, Risoy BA, Benestad HB, Fjeld JG, Hallen J. Temporal relation between leukocyte accumulation in muscles and halted recovery 10–20 h after strength exercise. J Appl Physiol. 2003;95(6):2503–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Adlercreutz H, Harkonen M, Kuoppasalmi K, Naveri H, Huhtaniemi I, Tikkanen H, et al. Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. Int J Sports Med. 1986;7(Suppl 1):27–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Viru A, Viru M. Biochemical monitoring of sport training. Champaign, IL: Human Kinetics; 2001.Google Scholar
  173. 173.
    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281–91.PubMedCrossRefGoogle Scholar
  174. 174.
    Draganidis D, Chatzinikolaou A, Avloniti A, Barbero-Alvarez JC, Mohr M, Malliou P, et al. Recovery kinetics of knee flexor and extensor strength after a football match. PLoS One. 2015;10(6):e0128072.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Hader K, Mendez-Villanueva A, Palazzi D, Ahmaidi S, Buchheit M. Metabolic power requirement of change of direction speed in young soccer players: not all is what it seems. PLoS One. 2016;11(3):e0149839.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Hader K, Palazzi D, Buchheit M. Change of direction speed in soccer: how much braking is enough? Kinesiology. 2015;47:67–74.Google Scholar
  177. 177.
    Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013;43(12):1207–15.PubMedCrossRefGoogle Scholar
  178. 178.
    Thompson D, Nicholas CW, Williams C. Muscular soreness following prolonged intermittent high-intensity shuttle running. J Sports Sci. 1999;17(5):387–95.PubMedCrossRefGoogle Scholar
  179. 179.
    Amann M. Significance of Group III and IV muscle afferents for the endurance exercising human. Clin Exp Pharmacol Physiol. 2012;39(9):831–5.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–89.PubMedGoogle Scholar
  181. 181.
    Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc. 2011;43(11):2039–45.PubMedCrossRefGoogle Scholar
  182. 182.
    Marcora SM. Role of feedback from Group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. J Appl Physiol. 2011;110(5):1499 (author reply 500).PubMedCrossRefGoogle Scholar
  183. 183.
    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue following simulated soccer match-play. Med Sci Sports Exerc. 2017 Jan 03.Google Scholar
  184. 184.
    Gathercole RJ, Sporer BC, Stellingwerff T, Sleivert GG. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res. 2015;29(9):2522–31.PubMedCrossRefGoogle Scholar
  185. 185.
    Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. 2014;5:73.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Girard O, Micallef JP, Millet GP. Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol. 2011;111(1):125–34.PubMedCrossRefGoogle Scholar
  187. 187.
    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—Part II: recommendations for training. Sports Med. 2011;41(9):741–56.PubMedCrossRefGoogle Scholar
  188. 188.
    Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009;34(6):1048–54.PubMedCrossRefGoogle Scholar
  189. 189.
    Bangsbo J, Iaia FM, Krustrup P. The Yo–Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51.PubMedCrossRefGoogle Scholar
  190. 190.
    Rampinini E, Sassi A, Azzalin A, Castagna C, Menaspa P, Carlomagno D et al. Physiological determinants of Yo–Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol. 2009 Oct 11.Google Scholar
  191. 191.
    Castagna C, Impellizzeri F, Chamari K, Carlomagno D, Rampinini E. Aerobic fitness and Yo–Yo continous and intermittent tests performances in soccer players: a correlation study. J Strength Cond Res. 2006;20(2):320–5.PubMedGoogle Scholar
  192. 192.
    Nielsen J, Krustrup P, Nybo L, Gunnarsson TP, Madsen K, Schroder HD, et al. Skeletal muscle glycogen content and particle size of distinct subcellular localizations in the recovery period after a high-level soccer match. Eur J Appl Physiol. 2012;112(10):3559–67.PubMedCrossRefGoogle Scholar
  193. 193.
    Costill DL, Pascoe DD, Fink WJ, Robergs RA, Barr SI, Pearson D. Impaired muscle glycogen resynthesis after eccentric exercise. J Appl Physiol. 1990;69(1):46–50.PubMedGoogle Scholar
  194. 194.
    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–94.PubMedCrossRefGoogle Scholar
  195. 195.
    Hagglund M, Walden M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA champions league injury study. Br J Sports Med. 2013;47(12):738–42.PubMedCrossRefGoogle Scholar
  196. 196.
    Hagglund M, Walden M, Ekstrand J. Injury incidence and distribution in elite football—a prospective study of the Danish and the Swedish top divisions. Scand J Med Sci Sports. 2005;15(1):21–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Hawkins RD, Hulse MA, Wilkinson C, Hodson A, Gibson M. The association football medical research programme: an audit of injuries in professional football. Br J Sports Med. 2001;35(1):43–7.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Hagglund M, Walden M, Ekstrand J. Exposure and injury risk in Swedish elite football: a comparison between seasons 1982 and 2001. Scand J Med Sci Sports. 2003;13(6):364–70.PubMedCrossRefGoogle Scholar
  199. 199.
    Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731–7.PubMedCrossRefGoogle Scholar
  200. 200.
    Walden M, Krosshaug T, Bjorneboe J, Andersen TE, Faul O, Hagglund M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 23 April 2015.Google Scholar
  201. 201.
    Vigne G, Gaudino C, Rogowski I, Alloatti G, Hautier C. Activity profile in elite Italian soccer team. Int J Sports Med. 2010;31(5):304–10.PubMedCrossRefGoogle Scholar
  202. 202.
    Barrett S, Midgley A, Reeves M, Joel T, Franklin E, Heyworth R et al. The within-match patterns of locomotor efficiency during professional soccer match play: Implications for injury risk? J Sci Med Sports Sports Med Aust. 29 Dec 2015.Google Scholar
  203. 203.
    Randers MB, Mujika I, Hewitt A, Santisteban J, Bischoff R, Solano R, et al. Application of four different football match analysis systems: a comparative study. J Sports Sci. 2010;28(2):171–82.PubMedCrossRefGoogle Scholar
  204. 204.
    Barron DN, Atkins S, Edmundson C, Fewtrell D. Accelerometer derived load according to playing position in competitive youth soccer. Int J Perform Anal Sport. 2014;14:734–43.Google Scholar
  205. 205.
    Malm C, Nyberg P, Engstrom M, Sjodin B, Lenkei R, Ekblom B, et al. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol. 2000;529(Pt 1):243–62.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Isner-Horobeti ME, Rasseneur L, Lonsdorfer-Wolf E, Dufour SP, Doutreleau S, Bouitbir J, et al. Effect of eccentric versus concentric exercise training on mitochondrial function. Muscle Nerve. 2014;50(5):803–11.PubMedCrossRefGoogle Scholar
  207. 207.
    Mellalieu SD, Neil R, Hanton S, Fletcher D. Competition stress in sport performers: stressors experienced in the competition environment. J Sports Sci. 2009;27(7):729–44.PubMedCrossRefGoogle Scholar
  208. 208.
    Nedelec M, Halson S, Abaidia AE, Ahmaidi S, Dupont G. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med. 24 Jul 2015.Google Scholar
  209. 209.
    O’Leary A. Stress, emotion, and human immune function. Psychol Bull. 1990;108(3):363–82.PubMedCrossRefGoogle Scholar
  210. 210.
    Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. 2017 Jan 02.Google Scholar
  211. 211.
    Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM. Mental fatigue impairs soccer-specific physical and technical performance. Med Sci Sports Exerc. 2016;48(2):267–76.PubMedCrossRefGoogle Scholar
  212. 212.
    Badin OO, Smith MR, Conte D, Coutts AJ. Mental fatigue: impairment of technical performance in small-sided soccer games. Int J Sports Physiol Perform. 2016;11(8):1100–5.PubMedCrossRefGoogle Scholar
  213. 213.
    Nybo L, Girard O, Mohr M, Knez W, Voss S, Racinais S. Markers of muscle damage and performance recovery after exercise in the heat. Med Sci Sports Exerc. 2013;45(5):860–8.PubMedCrossRefGoogle Scholar
  214. 214.
    Soligard T, Schwellnus M, Alonso JM, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):1030–41.PubMedCrossRefGoogle Scholar
  215. 215.
    Schwellnus M, Soligard T, Alonso JM, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50(17):1043–52.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Brito J. On adhering to Olympic guidelines on load in sport and risk of injury. Br J Sports Med. 2017 Mar 02.Google Scholar
  217. 217.
    McCall A, Nedelec M, Carling C, Le Gall F, Berthoin S, Dupont G. Reliability and sensitivity of a simple isometric posterior lower limb muscle test in professional football players. J Sports Sci. 2015;33(12):1298–304.PubMedCrossRefGoogle Scholar
  218. 218.
    Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sports Sports Med Aust. 2012;15(5):444–50.CrossRefGoogle Scholar
  219. 219.
    Hecksteden A, Pitsch W, Julian R, Pfeiffer M, Kellmann M, Ferrauti A, et al. A new method to individualize monitoring of muscle recovery in athletes. Int J Sports Physiol Perform. 2016;14:1–25.CrossRefGoogle Scholar
  220. 220.
    Williams C, Rollo I. Carbohydrate nutrition and team sport performance. Sports Med. 2015;45(Suppl 1):S13–22.PubMedCrossRefGoogle Scholar
  221. 221.
    Shirreffs SM, Sawka MN, Stone M. Water and electrolyte needs for football training and match-play. J Sports Sci. 2006;24(7):699–707.PubMedCrossRefGoogle Scholar
  222. 222.
    Hawley JA, Tipton KD, Millard-Stafford ML. Promoting training adaptations through nutritional interventions. J Sports Sci. 2006;24(7):709–21.PubMedCrossRefGoogle Scholar
  223. 223.
    Gravina L, Ruiz F, Diaz E, Lekue JA, Badiola A, Irazusta J, et al. Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players. J Int Soc Sports Nutr. 2012;9(1):32.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Blomstrand E. A role for branched-chain amino acids in reducing central fatigue. J Nutr. 2006;136(2):544S–7S.PubMedGoogle Scholar
  225. 225.
    Marques-Jimenez D, Calleja-Gonzalez J, Arratibel I, Delextrat A, Terrados N. Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiol Behav. 2016;153:133–48.PubMedCrossRefGoogle Scholar
  226. 226.
    Poppendieck W, Wegmann M, Ferrauti A, Kellmann M, Pfeiffer M, Meyer T. Massage and performance recovery: a meta-analytical review. Sports Med. 2016;46(2):183–204.PubMedCrossRefGoogle Scholar
  227. 227.
    Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233–40.PubMedCrossRefGoogle Scholar
  228. 228.
    Schmitt B, Tim T, McHugh M. Hamstring injury rehabilitation and prevention of reinjury using lengthened state eccentric training: a new concept. Int J Sports Phys Therap. 2012;7(3):333–41.Google Scholar
  229. 229.
    Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.PubMedCrossRefGoogle Scholar
  230. 230.
    Mendez-Villanueva A, Suarez-Arrones L, Rodas G, Fernandez-Gonzalo R, Tesch P, Linnehan R, et al. MRI-based regional muscle use during hamstring strengthening exercises in elite soccer players. PLoS One. 2016;11(9):e0161356.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Paul D, Brito J, Nassis GP. Injury prevention training in football. Time to consider training under fatigue. Aspetar Sports Med J 2014;3(3):578-81.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. R. Silva
    • 1
    • 2
  • M. C. Rumpf
    • 1
    • 3
  • M. Hertzog
    • 1
  • C. Castagna
    • 4
  • A. Farooq
    • 5
  • O. Girard
    • 5
    • 6
  • K. Hader
    • 1
    • 7
  1. 1.National Sports Medicine Programme, Excellence in Football ProjectAspetar - Qatar Orthopaedic and Sports Medicine HospitalDohaQatar
  2. 2.Center of Research, Education, Innovation and Intervention in Sport (CIFI2D)PortoPortugal
  3. 3.Sport Performance Research Institute New ZealandAuckland University of TechnologyAucklandNew Zealand
  4. 4.Football Training and Biomechanics Laboratory, Technical DepartmentItalian Football Federation (FIGC)FlorenceItaly
  5. 5.Athlete Health and Performance Research CentreAspetar Orthopaedic and Sports Medicine HospitalDohaQatar
  6. 6.ISSUL, Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
  7. 7.Laboratory of Exercise Physiology and Rehabilitation, EA 3300, Faculty of Sport SciencesUniversity of PicardieAmiensFrance

Personalised recommendations