Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis

Abstract

Background

Low-load resistance training (< 50% of one-repetition maximum [1RM]) associated with blood-flow restriction (BFR-RT) has been thought to promote increases in muscle strength and mass. However, it remains unclear if the magnitude of these adaptations is similar to conventional high-load resistance training (> 65% 1RM; HL-RT).

Objective

To compare the effects of HL- versus BFR-RT on muscle adaptations using a systematic review and meta-analysis procedure.

Methods

Studies were identified via electronic databases based on the following inclusion criteria: (a) pre- and post-training assessment of muscular strength; (b) pre- and post-training assessment of muscle hypertrophy; (c) comparison of HL-RT vs. BFR-RT; (d) score ≥ 4 on PEDro scale; (e) means and standard deviations (or standard errors) are reported from absolute values or allow estimation from graphs. If this last criterion was not met, data were directly requested from the authors.

Results

The main results showed higher increases in muscle strength for HL- as compared with BFR-RT, even when considering test specificity, absolute occlusion pressure, cuff width, and occlusion pressure prescription. Regarding the hypertrophic response, results revealed similar effects between HL- and BFR-RT, regardless of the absolute occlusion pressure, cuff width, and occlusion pressure prescription.

Conclusions

Based on the present data, maximum muscle strength may be optimized by specific training methods (i.e., HL-RT) while both HL- and BFR-RT seem equally effective in increasing muscle mass. Importantly, BFR-RT is a valid and effective approach for increasing muscle strength in a wide spectrum of ages and physical capacity, although it may seem particularly of interest for those individuals with physical limitations to engage in HL-RT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Coffey TH. Delorme method of restoration of muscle power by heavy resistance exercises. Treat Serv Bull. 1946;1(2):8–11.

    CAS  PubMed  Google Scholar 

  2. 2.

    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60. doi:10.1007/s00421-002-0681-6.

    Article  PubMed  Google Scholar 

  3. 3.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.

    Article  PubMed  Google Scholar 

  4. 4.

    Schoenfeld BJ, Wilson JM, Lowery RP, et al. Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2016;16(1):1–10. doi:10.1080/17461391.2014.989922.

    Article  PubMed  Google Scholar 

  5. 5.

    ACSM. ACSM clinician profile. David T. Bernhardt, M.D. Curr Sports Med Rep. 2009;8(4):161. doi:10.1249/JSR.0b013e3181adff73.

  6. 6.

    Lixandrao ME, Ugrinowitsch C, Laurentino G, et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015;115(12):2471–80. doi:10.1007/s00421-015-3253-2.

    Article  PubMed  Google Scholar 

  7. 7.

    Vechin FC, Libardi CA, Conceicao MS, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071–6. doi:10.1519/JSC.0000000000000703.

    Article  PubMed  Google Scholar 

  8. 8.

    Manimmanakorn A, Hamlin MJ, Ross JJ, et al. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42. doi:10.1016/j.jsams.2012.08.009.

    Article  PubMed  Google Scholar 

  9. 9.

    Mattar MA, Gualano B, Perandini LA, et al. Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Res Ther. 2014;16(5):473. doi:10.1186/s13075-014-0473-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: a systematic review and meta-analysis. J Sci Med Sport. 2016;19(8):669–75. doi:10.1016/j.jsams.2015.09.005.

    Article  PubMed  Google Scholar 

  11. 11.

    Kubo K, Komuro T, Ishiguro N, et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech. 2006;22(2):112–9.

    Article  PubMed  Google Scholar 

  12. 12.

    Karabulut M, Abe T, Sato Y, et al. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147–55. doi:10.1007/s00421-009-1204-5.

    Article  PubMed  Google Scholar 

  13. 13.

    Yasuda T, Ogasawara R, Sakamaki M, et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol. 2011;111(10):2525–33. doi:10.1007/s00421-011-1873-8.

    Article  PubMed  Google Scholar 

  14. 14.

    Martin-Hernandez J, Marin PJ, Menendez H, et al. Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports. 2013;23(2):e114–20. doi:10.1111/sms.12036.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Clark BC, Manini TM, Hoffman RL, et al. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. 2011;21(5):653–62. doi:10.1111/j.1600-0838.2010.01100.x.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Laurentino GC, Ugrinowitsch C, Roschel H, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–12. doi:10.1249/MSS.0b013e318233b4bc.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ozaki H, Yasuda T, Ogasawara R, et al. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur J Appl Physiol. 2013;113(1):167–74. doi:10.1007/s00421-012-2422-9.

    Article  PubMed  Google Scholar 

  18. 18.

    Thiebaud RS, Loenneke JP, Fahs CA, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344–52. doi:10.1111/cpf.12033.

    Article  PubMed  Google Scholar 

  19. 19.

    Ellefsen S, Hammarstrom D, Strand TA, et al. Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am J Physiol Regul Integr Comp Physiol. 2015;309(7):R767–79. doi:10.1152/ajpregu.00497.2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Libardi CA, Chacon-Mikahil MP, Cavaglieri CR, et al. Effect of concurrent training with blood flow restriction in the elderly. Int J Sports Med. 2015;36(5):395–9. doi:10.1055/s-0034-1390496.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Buckner SL, Jessee MB, Mattocks KT, et al. Determining strength: a case for multiple methods of measurement. Sports Med. 2017;47(2):193–5. doi:10.1007/s40279-016-0580-3.

    Article  PubMed  Google Scholar 

  22. 22.

    Loenneke JP, Kim D, Fahs CA, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve. 2014;. doi:10.1002/mus.24448.

    Google Scholar 

  23. 23.

    Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903–12. doi:10.1007/s00421-011-2266-8.

    Article  PubMed  Google Scholar 

  24. 24.

    Loenneke JP, Fahs CA, Rossow LM, et al. Blood flow restriction pressure recommendations: a tale of two cuffs. Front Physiol. 2013;4:249. doi:10.3389/fphys.2013.00249.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi:10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2016. doi:10.1080/02640414.2016.1210197.

  28. 28.

    Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000;88(6):2097–106.

    CAS  Article  Google Scholar 

  29. 29.

    Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2013;45(1):67–74. doi:10.1249/MSS.0b013e31826c6fa8.

    Article  PubMed  Google Scholar 

  30. 30.

    Becker R, Awiszus F. Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. Muscle Nerve. 2001;24(5):667–72.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406. doi:10.1007/s00421-004-1072-y.

    PubMed  Google Scholar 

  32. 32.

    Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985). 2012;113(1):71–7. doi:10.1152/japplphysiol.00307.2012.

    CAS  Article  PubMed Central  Google Scholar 

  33. 33.

    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121(1):129–38. doi:10.1152/japplphysiol.00154.2016.

    CAS  Article  PubMed Central  Google Scholar 

  34. 34.

    Sugaya M, Yasuda T, Suga T, et al. Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging. 2011;31(5):411–3. doi:10.1111/j.1475-097X.2011.01033.x.

    Article  PubMed  Google Scholar 

  35. 35.

    Yasuda T, Brechue WF, Fujita T, et al. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27(5):479–89. doi:10.1080/02640410802626567.

    Article  PubMed  Google Scholar 

  36. 36.

    Crenshaw AG, Hargens AR, Gershuni DH, et al. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988;59(4):447–51.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Counts BR, Dankel SJ, Barnett BE, et al. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438–45. doi:10.1002/mus.24756.

    Article  PubMed  Google Scholar 

  38. 38.

    Laurentino GC, Loenneke JP, Teixeira EL, et al. The effect of cuff cidth on cuscle adaptations after blood blow restriction training. Med Sci Sports Exerc. 2016;48(5):920–5. doi:10.1249/MSS.0000000000000833.

    Article  PubMed  Google Scholar 

  39. 39.

    Loenneke JP, Fahs CA, Wilson JM, et al. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011;77(5):748–52. doi:10.1016/j.mehy.2011.07.029.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985). 1996;81(5):2004–12.

    CAS  Article  Google Scholar 

  41. 41.

    Takada S, Okita K, Suga T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol (1985). 2012;113(2):199–205. doi:10.1152/japplphysiol.00149.2012.

    CAS  Article  Google Scholar 

  42. 42.

    Cumming KT, Paulsen G, Wernbom M, et al. Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol (Oxf). 2014;211(4):634–46. doi:10.1111/apha.12305.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Nielsen JL, Aagaard P, Bech RD, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(Pt 17):4351–61. doi:10.1113/jphysiol.2012.237008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yasuda T, Abe T, Sato Y, et al. Muscle fiber cross-section area is increased after two weeks of twice daily KAATSU-resistance training. Int J Kaatsu Train Res. 2005;1:65–70.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamilton Roschel.

Ethics declarations

Funding

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support and Fundação de Amparo à Pesquisa (FAPESP). Manoel Lixandrão is supported by CNPq and FAPESP (141733/2016-0 and 2016/22635-6, respectively). Hamilton Roschel is supported by CNPq and FAPESP (307023/2014-1 and 2016/10993-5, respectively). Carlos Ugrinowitsch is supported by CNPq (304205/2011-7 and 2016/09759-8, respectively).

Conflict of interest

Manoel Lixandrão, Carlos Ugrinowitsch, Ricardo Berton, Felipe Vechin, Miguel Conceição, Felipe Damas, Cleiton Libardi, and Hamilton Roschel declare that they have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lixandrão, M.E., Ugrinowitsch, C., Berton, R. et al. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med 48, 361–378 (2018). https://doi.org/10.1007/s40279-017-0795-y

Download citation