Effect of High-Intensity Interval Training on Fitness, Fat Mass and Cardiometabolic Biomarkers in Children with Obesity: A Randomised Controlled Trial

  • Katrin A. Dias
  • Charlotte B. Ingul
  • Arnt E. Tjønna
  • Shelley E. Keating
  • Sjaan R. Gomersall
  • Turid Follestad
  • Mansoureh S. Hosseini
  • Siri M. Hollekim-Strand
  • Torstein B. Ro
  • Margrete Haram
  • Else Marie Huuse
  • Peter S. W. Davies
  • Peter A. Cain
  • Gary M. Leong
  • Jeff S. Coombes
Original Research Article

Abstract

Background

Paediatric obesity significantly increases the risk of developing cardiometabolic diseases across the lifespan. Increasing cardiorespiratory fitness (CRF) could mitigate this risk. High-intensity interval training (HIIT) improves CRF in clinical adult populations but the evidence in paediatric obesity is inconsistent.

Objectives

The objectives of this study were to determine the efficacy of a 12-week, HIIT intervention for increasing CRF and reducing adiposity in children with obesity.

Methods

Children with obesity (n = 99, 7–16 years old) were randomised into a 12-week intervention as follows: (1) HIIT [n = 33, 4 × 4-min bouts at 85–95% maximum heart rate (HRmax), interspersed with 3 min of active recovery at 50–70% HRmax, 3 times/week] and nutrition advice; (2) moderate-intensity continuous training (MICT) [n = 32, 44 min at 60–70% HRmax, 3 times/week] and nutrition advice; and (3) nutrition advice only (nutrition) [n = 34]. CRF was quantified through a maximal exercise test (\( \dot{V}{\text{O}}_{{2_{\text{peak}} }} \)) while adiposity was assessed using magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry (DXA) and air-displacement plethysmography.

Results

HIIT stimulated significant increases in relative \( \dot{V}{\text{O}}_{{2_{\text{peak}} }} \) compared with MICT (+3.6 mL/kg/min, 95% CI 1.1–6.0, P = 0.004) and the nutrition intervention (+5.4 mL/kg/min, 95% CI 2.9–7.9, P = 0.001). However, the intervention had no significant effect on visceral and subcutaneous adipose tissue, whole body composition or cardiometabolic biomarkers (P > 0.05).

Conclusion

A 12-week, HIIT intervention was highly effective in increasing cardiorespiratory fitness when compared with MICT and nutrition interventions. While there were no concomitant reductions in adiposity or blood biomarkers, the cardiometabolic health benefit conferred through increased CRF should be noted.

Clinical trials registration number

Clinicaltrials.gov; NCT01991106.

Supplementary material

40279_2017_777_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (DOCX 114 kb)

References

  1. 1.
    Sabin MA, Kao K-T, Juonala M, Baur LA, Wake M. Viewpoint article: childhood obesity: looking back over 50 years to begin to look forward. J Paediatr Child Health. 2015;51:82–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond). 2010;35:891–8.CrossRefGoogle Scholar
  3. 3.
    Westphal SA. Obesity, abdominal obesity, and insulin resistance. Clin Cornerstone. 2008;9:23–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Kuk J, Katzmarzyk P, Nichaman M, Church T, Blair S, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14:336–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Benfield LL, Fox KR, Peters DM, Blake H, Rogers I, Grant C, et al. Magnetic resonance imaging of abdominal adiposity in a large cohort of British children. Int J Obes (Lond). 2008;32:91–9.CrossRefGoogle Scholar
  6. 6.
    Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56:382–90.CrossRefPubMedGoogle Scholar
  7. 7.
    LaMonte MJ, Eisenman PA, Adams TD, Shultz BB, Ainsworth BE, Yanowitz FG. Cardiorespiratory fitness and coronary heart disease risk factors: the LDS Hospital Fitness Institute cohort. Circulation. 2000;102:1623–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Breneman CB, Polinski K, Sarzynski MA, Lavie CJ, Kokkinos PF, Ahmed A, et al. The impact of cardiorespiratory fitness levels on the risk of developing atherogenic dyslipidemia. Am J Med. 2016;129(10):1060–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Raitakari OT, Taimela S, Porkka KV, Telama R, Välimäki I, Akerblom HK, et al. Associations between physical activity and risk factors for coronary heart disease: the Cardiovascular Risk in Young Finns Study. Med Sci Sports Exerc. 1997;29:1055–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Katzmarzyk PT, Malina RM, Bouchard C. Physical activity, physical fitness, and coronary heart disease risk factors in youth: the Quebec Family Study. Prev Med. 1999;29:555–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu W-C, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4:1–28.Google Scholar
  13. 13.
    Vissers D, Hens W, Hansen D, Taeymans J. The effect of diet or exercise on visceral adipose tissue in overweight youth. Med Sci Sports Exerc. 2016;48:1415–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Vissers D, Hens W, Taeymans J, Baeyens J-P, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One. 2013;8:e56415.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Atlantis E, Barnes EH, Singh MAF. Efficacy of exercise for treating overweight in children and adolescents: a systematic review. Int J Obes (Lond). 2006;30:1027–40.CrossRefGoogle Scholar
  16. 16.
    Tremblay MS, Gray CE, Akinroye K, Harrington DM, Katzmarzyk PT, Lambert EV, et al. Physical activity of children: a global matrix of grades comparing 15 countries. J Phys Act Health. 2014;11(Suppl. 1):S113–25.CrossRefPubMedGoogle Scholar
  17. 17.
    McManus AM, Mellecker RR. Physical activity and obese children. J Sport Health Sci. 2012;1:141–8.CrossRefGoogle Scholar
  18. 18.
    Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Ingul CB, Tjonna AE, Stolen TO, Stoylen A, Wisloff U. Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch Pediatr Adolesc Med. 2010;164:852–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Corte de Araujo AC, Roschel H, Picanço AR, Do D, Villares SMF, de Sá Pinto AL, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS One. 2012;7:e42747.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Racil G, Ben Ounis O, Hammouda O, Kallel A, Zouhal H, Chamari K, et al. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol. 2013;113:2531–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Koubaa A, Trabelsi H, Masmoudi L, Elloumi M, Sahnoun Z, Zeghal KM, et al. Effect of intermittent and continuous training on body composition cardio-respiratory fitness and lipid profile in obese adolescents. IOSR-JPBS. 2013;3:31–7.Google Scholar
  23. 23.
    Racil G, Coquart JB, Elmontassar W, Haddad M, Goebel R, Chaouachi A, et al. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol Sport. 2016;33:145–52.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Logan GRM, Harris N, Duncan S, Schofield G. A review of adolescent high-intensity interval training. Sports Med. 2014;44:1071–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Brambilla P, Pozzobon G, Pietrobelli A. Physical activity as the main therapeutic tool for metabolic syndrome in childhood. Int J Obes (Lond). 2011;35:16–28.CrossRefGoogle Scholar
  26. 26.
    Craike MJ, Hibbins R, Cuskelly G. The influence of various aspects of enjoyment on participation in leisure time physical activity. World Leis J. 2010;1:20–33.CrossRefGoogle Scholar
  27. 27.
    Deforche B, Haerens L, De Bourdeaudhuij I. How to make overweight children exercise and follow the recommendations. Int J Pediatr Obes. 2011;6(Suppl. 1):35–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Trapp EG, Chisholm DJ, Boutcher SH. Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2370–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Burguera B, Proctor D, Dietz N, Guo Z, Joyner M, Jensen MD. Leg free fatty acid kinetics during exercise in men and women. Am J Physiol Endocrinol Metab. 2000;278:E113–7.PubMedGoogle Scholar
  30. 30.
    Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Dias KA, Coombes JS, Green DJ, Gomersall SR, Keating SE, Tjonna AE, et al. Effects of exercise intensity and nutrition advice on myocardial function in obese children and adolescents: a multicentre randomised controlled trial study protocol. BMJ Open. 2016;6:e010929.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–303.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    University of Oxford. Diabetes Trials Unit, The Oxford Centre for Diabetes, Endocrinology and Metabolism. http://www.dtu.ox.ac.uk. Accessed 17 Aug 2016.
  35. 35.
    Helsedirektoratet. Anbefalinger om kosthold, ernæring og fysisk aktivitet; 2014. Norwegian Directorate of Health, Oslo, p. 1–28.Google Scholar
  36. 36.
    National Health and Medical Research Council. Australian dietary guidelines. Canberra: National Health and Medical Research Council; 2013. National Health and Medical Research Council, p. 1–226.Google Scholar
  37. 37.
    Irving BA, Davis CK, Brock DW, Weltman JY, Swift D, Barrett EJ, et al. Effect of exercise training intensity on abdominal visceral fat and body composition. Med Sci Sports Exerc. 2008;40:1863–72.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Starkoff BE, Eneli IU, Bonny AE, Hoffman RP, Devor ST. Estimated aerobic capacity changes in adolescents with obesity following high intensity interval exercise. IJKSS. 2014;2:1–8.CrossRefGoogle Scholar
  39. 39.
    Murphy A, Kist C, Gier AJ, Edwards NM, Gao Z, Siegel RM. The feasibility of high-intensity interval exercise in obese adolescents. Clin Pediatr (Phila). 2015;54:87–90.CrossRefGoogle Scholar
  40. 40.
    Ross R, Blair SN, Arena R, Church TS, Després JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a Scientific statement from the American Heart Association. Circulation. 2016;134:e653–99.CrossRefPubMedGoogle Scholar
  41. 41.
    Vanhala M, Vanhala P, Kumpusalo E, Halonen P, Takala J. Relation between obesity from childhood to adulthood and the metabolic syndrome: population based study. BMJ. 1998;317:319.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hay J, Wittmeier K, MacIntosh A, Wicklow B, Duhamel T, Sellers E, et al. Physical activity intensity and type 2 diabetes risk in overweight youth: a randomized trial. Int J Obes (Lond). 2016;40:607–14.CrossRefGoogle Scholar
  43. 43.
    Gutin B, Barbeau P, Owens S, Lemmon CR, Bauman M, Allison J, et al. Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am J Clin Nutr. 2002;75:818–26.PubMedGoogle Scholar
  44. 44.
    Mora-Rodriguez R, Coyle EF. Effects of plasma epinephrine on fat metabolism during exercise: interactions with exercise intensity. Am J Physiol Endocrinol Metab. 2000;278:E669–76.PubMedGoogle Scholar
  45. 45.
    Kanaley JA, Weatherup-Dentes MM, Jaynes EB, Hartman ML. Obesity attenuates the growth hormone response to exercise. J Clin Endocrinol Metab. 1999;84:3156–61.PubMedGoogle Scholar
  46. 46.
    Vettor R, Macor C, Rossi E, Piemonte G, Federspil G. Impaired counterregulatory hormonal and metabolic response to exhaustive exercise in obese subjects. Acta Diabetol. 1997;34:61–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Eliakim A, Nemet D, Zaldivar F, McMurray RG, Culler FL, Galassetti P, et al. Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents. J Appl Physiol. 2006;100:1630–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Verheggen RJHM, Maessen MFH, Green DJ, Hermus ARMM, Hopman MTE, Thijssen DHT. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17:664–90.CrossRefPubMedGoogle Scholar
  49. 49.
    Lee S, Deldin AR, White D, Kim Y, Libman I, Rivera-Vega M, et al. Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Prev Med. 2013;305:E1222–9.Google Scholar
  50. 50.
    Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, Arslanian S. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. Diabetes. 2012;61:2787–95.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee report. Washington, DC: Department of Health and Human Services; 2008.Google Scholar
  52. 52.
    Cassidy S, Thoma C, Houghton D, Trenell MI. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia. 2017;60(1):7–23.CrossRefPubMedGoogle Scholar
  53. 53.
    Thomas DE, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;(3):CD002968.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katrin A. Dias
    • 1
  • Charlotte B. Ingul
    • 2
    • 3
  • Arnt E. Tjønna
    • 2
  • Shelley E. Keating
    • 1
  • Sjaan R. Gomersall
    • 4
  • Turid Follestad
    • 5
  • Mansoureh S. Hosseini
    • 2
  • Siri M. Hollekim-Strand
    • 2
  • Torstein B. Ro
    • 6
    • 7
  • Margrete Haram
    • 8
  • Else Marie Huuse
    • 8
  • Peter S. W. Davies
    • 9
  • Peter A. Cain
    • 10
  • Gary M. Leong
    • 11
    • 12
  • Jeff S. Coombes
    • 1
  1. 1.School of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Helse Midt-Norge RHFStjørdalNorway
  4. 4.School of Health and Rehabilitation SciencesThe University of QueenslandBrisbaneAustralia
  5. 5.Department of Public Health and General Practice, Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
  6. 6.Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  7. 7.Department of PediatricsSt. Olav’s University HospitalTrondheimNorway
  8. 8.Department of Radiology and Nuclear MedicineTrondheim University HospitalTrondheimNorway
  9. 9.Children’s Nutrition Research CentreThe University of QueenslandBrisbaneAustralia
  10. 10.Heart Care PartnersThe Wesley HospitalBrisbaneAustralia
  11. 11.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
  12. 12.Department of Paediatric EndocrinologyLady Cilento Children’s HospitalBrisbaneAustralia

Personalised recommendations