Advertisement

Sports Medicine

, Volume 47, Issue 11, pp 2187–2200 | Cite as

Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective

  • Kenji DomaEmail author
  • Glen B. Deakin
  • David J. Bentley
Review Article

Abstract

A single bout of resistance training induces residual fatigue, which may impair performance during subsequent endurance training if inadequate recovery is allowed. From a concurrent training standpoint, such carry-over effects of fatigue from a resistance training session may impair the quality of a subsequent endurance training session for several hours to days with inadequate recovery. The proposed mechanisms of this phenomenon include: (1) impaired neural recruitment patterns; (2) reduced movement efficiency due to alteration in kinematics during endurance exercise and increased energy expenditure; (3) increased muscle soreness; and (4) reduced muscle glycogen. If endurance training quality is consistently compromised during the course of a specific concurrent training program, optimal endurance development may be limited. Whilst the link between acute responses of training and subsequent training adaptation has not been fully established, there is some evidence suggesting that cumulative effects of fatigue may contribute to limiting optimal endurance development. Thus, the current review will (1) explore cross-sectional studies that have reported impaired endurance performance following a single, or multiple bouts, of resistance training; (2) identify the potential impact of fatigue on chronic endurance development; (3) describe the implications of fatigue on the quality of endurance training sessions during concurrent training, and (4) explain the mechanisms contributing to resistance training-induced attenuation on endurance performance from neurological, biomechanical and metabolic standpoints. Increasing the awareness of resistance training-induced fatigue may encourage coaches to consider modulating concurrent training variables (e.g., order of training mode, between-mode recovery period, training intensity, etc.) to limit the carry-over effects of fatigue from resistance to endurance training sessions.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article

Conflict of interest

Kenji Doma, Glen Deakin and David Bentley declare that they have no conflicts of interest relevant to the content of this review.

References

  1. 1.
    Hickson RC. The interference effects of training for strength and endurance simultaneously. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. doi: 10.1249/MSS.0b013e318213fefb.PubMedCrossRefGoogle Scholar
  3. 3.
    Ronnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603–12. doi: 10.1111/sms.12104.PubMedCrossRefGoogle Scholar
  4. 4.
    Ronnestad BR, Hansen EA, Raastad T. Strength training improves 5-min all-out performance following 185 min of cycling. Scand J Med Sci Sports. 2011;21(2):250–9. doi: 10.1111/j.1600-0838.2009.01035.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21(6):e298–307. doi: 10.1111/j.1600-0838.2010.01283.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol Occup Physiol. 2005;94(5–6):652–8. doi: 10.1007/s00421-005-1357-9.CrossRefGoogle Scholar
  7. 7.
    Doma K, Deakin GB. The effects of combined strength and endurance training on running performance the following day. Int J Sport Health Sci. 2013;11:1–9.CrossRefGoogle Scholar
  8. 8.
    Doncaster GG, Twist C. Exercise-induced muscle damage from bench press exercise impairs arm cranking endurance performance. Eur J Appl Physiol. 2012;112(12):4135–42. doi: 10.1007/s00421-012-2404-y.PubMedCrossRefGoogle Scholar
  9. 9.
    Burt DG, Twist C. The effects of exercise-induced muscle damage on cycling time-trial performance. J Strength Cond Res. 2011;25(8):2185–92. doi: 10.1519/JSC.0b013e3181e86148.PubMedCrossRefGoogle Scholar
  10. 10.
    Coutts AJ, Wallace LK, Slattery KM. Monitoring changes in performance, physiology, biochemistry, and psychology during over-reaching and recovery in triathletes. Int J Sports Med. 2007;28(2):125–34. doi: 10.1055/s-2006-924146.PubMedCrossRefGoogle Scholar
  11. 11.
    Aubry A, Hausswirth C, Louis J, et al. Functional over-reaching: the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):1769–77. doi: 10.1249/MSS.0000000000000301.PubMedCrossRefGoogle Scholar
  12. 12.
    Bompa TO. Theory and methodology of training. The key to athletic performance. 3rd ed. Dubuque: Kendall/Hunt Publishing Company; 2005.Google Scholar
  13. 13.
    Halson SL, Bridge MW, Meeusen R, et al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol (1985). 2002;93(3):947–56. doi: 10.1152/japplphysiol.01164.2001.CrossRefGoogle Scholar
  14. 14.
    Doma K, Deakin GB. The effects of strength training and endurance training order on running economy and performance. Appl Physiol Nutr Metab. 2013;38(6):651–6. doi: 10.1139/apnm-2012-0362.PubMedCrossRefGoogle Scholar
  15. 15.
    Doma K, Deakin G. The acute effect of concurrent training on running performance over 6 days. Res Q Exerc Sport. 2015;86(4):387–96. doi: 10.1080/02701367.2015.1053104.PubMedCrossRefGoogle Scholar
  16. 16.
    Doma K, Deakin GB. The acute effects intensity and volume of strength training on running performance. Eur J Sport Sci. 2014;14(2):107–15. doi: 10.1080/17461391.2012.726653.PubMedCrossRefGoogle Scholar
  17. 17.
    Burt D, Lamb K, Nicholas C, et al. Lower-volume muscle-damaging exercise protects against high-volume muscle-damaging exercise and the detrimental effects on endurance performance. Eur J Appl Physiol. 2015;115(7):1523–32. doi: 10.1007/s00421-015-3131-y.PubMedCrossRefGoogle Scholar
  18. 18.
    Gee TI, French DN, Howatson G, et al. Does a bout of strength training affect 2,000 m rowing ergometer performance and rowing-specific maximal power 24 h later? Eur J Appl Physiol. 2011;111(11):2653–62. doi: 10.1007/s00421-011-1878-3.PubMedCrossRefGoogle Scholar
  19. 19.
    Doma K, Schumann M, Sinclair WH, et al. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol. 2015;115(8):1789–99. doi: 10.1007/s00421-015-3159-z.PubMedCrossRefGoogle Scholar
  20. 20.
    Burt D, Lamb K, Nicholas C, et al. Effects of repeated bouts of squatting exercise on submaximal endurance running performance. Eur J Appl Physiol. 2013;113(2):285–93. doi: 10.1007/s00421-012-2437-2.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoogkamer W, Kipp S, Spiering BA, et al. Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc. 2016;48(11):2175–80. doi: 10.1249/MSS.0000000000001012.PubMedCrossRefGoogle Scholar
  22. 22.
    Doma K, Deakin BD, Leicht AS, et al. The reliability of running economy among trained distance runners and field-based players. J Exerc Sci Fit. 2012;10(2):90–6.CrossRefGoogle Scholar
  23. 23.
    Chen TC, Nosaka K, Lin MJ, et al. Changes in running economy at different intensities following downhill running. J Sports Sci. 2009;27(11):1137–44. doi: 10.1080/02640410903062027.PubMedCrossRefGoogle Scholar
  24. 24.
    Lamberts RP, Swart J, Capostagno B, et al. Heart rate recovery as a guide to monitor fatigue and predict changes in performance parameters. Scand J Med Sci Sports. 2010;20(3):449–57. doi: 10.1111/j.1600-0838.2009.00977.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Bentley DJ, Zhou S, Davie AJ. The effect of endurance exercise on muscle force generating capacity of the lower limbs. J Sci Med Sport. 1998;1(3):179–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Bentley DJ, Smith PA, Davie AJ, et al. Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol. 2000;81(4):297–302. doi: 10.1007/s004210050046.PubMedCrossRefGoogle Scholar
  27. 27.
    Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–77. doi: 10.1007/s40279-013-0083-4.PubMedCrossRefGoogle Scholar
  28. 28.
    Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med. 2014;44(8):1113–24. doi: 10.1007/s40279-014-0197-3.PubMedCrossRefGoogle Scholar
  29. 29.
    Fluck M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol. 2006;209(Pt 12):2239–48. doi: 10.1242/jeb.02149.PubMedCrossRefGoogle Scholar
  30. 30.
    Chtara M, Chamari K, Chaouachi M, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39(8):555–60. doi: 10.1136/bjsm.2004.015248.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Izquierdo-Gabarren M, De Txabarri Gonzalez, Exposito R, Garcia-Pallares J, et al. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc. 2010;42(6):1191–9. doi: 10.1249/MSS.0b013e3181c67eec.PubMedGoogle Scholar
  32. 32.
    Robineau J, Babault N, Piscione J, et al. Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. J Strength Cond Res. 2016;30(3):672–83. doi: 10.1519/JSC.0000000000000798.PubMedCrossRefGoogle Scholar
  33. 33.
    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44. doi: 10.1113/jphysiol.2007.143834.PubMedCrossRefGoogle Scholar
  34. 34.
    Robson-Ansley PJ, Gleeson M, Ansley L. Fatigue management in the preparation of Olympic athletes. J Sports Sci. 2009;27(13):1409–20. doi: 10.1080/02640410802702186.PubMedCrossRefGoogle Scholar
  35. 35.
    Rowsell GJ, Reaburn P, Toone R, et al. Effect of run training and cold-water immersion on subsequent cycle training quality in high-performance triathletes. J Strength Cond Res. 2014;28(6):1664–72. doi: 10.1519/JSC.0000000000000455.PubMedCrossRefGoogle Scholar
  36. 36.
    Hayter KJ, Doma K, Schumann M, et al. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises. PeerJ. 2016;4:e1841. doi: 10.7717/peerj.1841.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Halson SL, Bartram J, West N, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):1631–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Stock MS, Young JC, Golding LA, et al. The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J Strength Cond Res. 2010;24(8):2211–9. doi: 10.1519/JSC.0b013e3181dc3a10.PubMedCrossRefGoogle Scholar
  39. 39.
    Bird SP, Mabon T, Pryde M, et al. Triphasic multinutrient supplementation during acute resistance exercise improves session volume load and reduces muscle damage in strengthtrained athletes. Nutr Res. 2013;33(5):376–87. doi: 10.1016/j.nutres.2013.03.002.PubMedCrossRefGoogle Scholar
  40. 40.
    Hakkinen K, Pakarinen A, Alen M, et al. Daily hormonal and neuromuscular responses to intensive strength training in 1 week. Int J Sports Med. 1988;9(6):422–8. doi: 10.1055/s-2007-1025044.PubMedCrossRefGoogle Scholar
  41. 41.
    Michaut A, Pousson M, Ballay Y, et al. Effects of an eccentric exercise session short-term recovery of muscle contractility. J Soc Biol. 2000;194(3–4):171–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol. 2006;33(4):400–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc. 2011;43(11):2039–45. doi: 10.1249/MSS.0b013e31821f59ab.PubMedCrossRefGoogle Scholar
  44. 44.
    Millet GY, Lepers R. Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med. 2004;34(2):105–16 (pii:3424).PubMedCrossRefGoogle Scholar
  45. 45.
    Petersen K, Hansen CB, Aagaard P, et al. Muscle mechanical characteristics in fatigue and recovery from a marathon race in highly trained runners. Eur J Appl Physiol. 2007;101(3):385–96. doi: 10.1007/s00421-007-0504-x.PubMedCrossRefGoogle Scholar
  46. 46.
    Romer LM, Haverkamp HC, Amann M, et al. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R598–606. doi: 10.1152/ajpregu.00269.2006.PubMedCrossRefGoogle Scholar
  47. 47.
    Girard O, Millet GP. Neuromuscular fatigue in racquet sports. Neurol Clin. 2008;26(1):181–94. doi: 10.1016/j.ncl.2007.11.011.PubMedCrossRefGoogle Scholar
  48. 48.
    Ansley L, Schabort E, St Clair Gibson A, et al. Regulation of pacing strategies during successive 4-km time trials. Med Sci Sports Exerc. 2004;36(10):1819–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Decorte N, Lafaix PA, Millet GY, et al. Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports. 2012;22(3):381–91. doi: 10.1111/j.1600-0838.2010.01167.PubMedCrossRefGoogle Scholar
  50. 50.
    Paschalis V, Koutedakis Y, Jamurtas AZ, et al. Equal volumes of high and low intensity of eccentric exercise in relation to muscle damage and performance. J Strength Cond Res. 2005;19(1):184–8. doi: 10.1519/R-14763.1.PubMedGoogle Scholar
  51. 51.
    Newton MJ, Morgan GT, Sacco P, et al. Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res. 2008;22(2):597–607. doi: 10.1519/JSC.0b013e3181660003.PubMedCrossRefGoogle Scholar
  52. 52.
    Plattner K, Baumeister J, Lamberts RP, et al. Dissociation in changes in EMG activation during maximal isometric and submaximal low force dynamic contractions after exerciseinduced muscle damage. J Electromyogr Kinesiol. 2011;21(3):542–50. doi: 10.1016/j.jelekin.2011.01.008.PubMedCrossRefGoogle Scholar
  53. 53.
    Brockett C, Warren N, Gregory JE, et al. A comparison of the effects of concentric versus eccentric exercise on force and position sense at the human elbow joint. Brain Res. 1997;771(2):251–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Saxton JM, Clarkson PM, James R, et al. Neuromuscular dysfunction following eccentric exercise. Med Sci Sports Exerc. 1995;27(8):1185–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Doma K, Deakin GB, Ness KF. Kinematic and electromyographic comparisons between chin-ups and lat-pull down exercises. Sports Biomech. 2013;12(3):302–13. doi: 10.1080/14763141.2012.760204.PubMedCrossRefGoogle Scholar
  56. 56.
    Williams KR, Cavanagh PR, Ziff JL. Biomechanical studies of elite female distance runners. Int J Sports Med. 1987;8(Suppl 2):107–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Dutto DJ, Braun WA. DOMS-associated changes in ankle and knee joint dynamics during running. Med Sci Sports Exerc. 2004;36(4):560–6 (pii:00005768-200404000-00002).PubMedCrossRefGoogle Scholar
  58. 58.
    Hamill J, Freedson PS, Clarkson PM. Muscle soreness during running: biomechanical and physiological considerations. Int J Sport Biomech. 1991;7(2):125–37.CrossRefGoogle Scholar
  59. 59.
    Chen TC, Nosaka K, Tu JH. Changes in running economy following downhill running. J Sports Sci. 2007;25(1):55–63. doi: 10.1080/02640410600718228.PubMedCrossRefGoogle Scholar
  60. 60.
    Kellis E, Liassou C. The effect of selective muscle fatigue on sagittal lower limb kinematics and muscle activity during level running. J Orthop Sports Phys Ther. 2009;39(3):210–20. doi: 10.2519/jospt.2009.2859.PubMedCrossRefGoogle Scholar
  61. 61.
    Paschalis V, Giakas G, Baltzopoulos V, et al. The effects of muscle damage following eccentric exercise on gait biomechanics. Gait Posture. 2007;25(2):236–42. doi: 10.1016/j.gaitpost.2006.04.002.PubMedCrossRefGoogle Scholar
  62. 62.
    Braun WA, Dutto DJ. The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur J Appl Physiol. 2003;90(1–2):29–34. doi: 10.1007/s00421-003-0857-8.PubMedCrossRefGoogle Scholar
  63. 63.
    Bonacci J, Green D, Saunders PU, et al. Change in running kinematics after cycling are related to alterations in running economy in triathletes. J Sci Med Sport. 2010;13(4):460–4. doi: 10.1016/j.jsams.2010.02.002.PubMedCrossRefGoogle Scholar
  64. 64.
    Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4(4):447–59.PubMedCrossRefGoogle Scholar
  65. 65.
    Deakin BD. Concurrent training in endurance athletes: the acute effects on muscle recovery capacity, physiological, hormonal and gene expression responses post-exercise. Lismore: Southern Cross University; 2004.Google Scholar
  66. 66.
    Marcora SM, Bosio A. Effect of exercise-induced muscle damage on endurance running performance in humans. Scand J Med Sci Sports. 2007;17(6):662–71. doi: 10.1111/j.1600-0838.2006.00627.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Brentano MA, Martins Kruel LF. A review on strength exercise-induced muscle damage: applications, adaptation mechanisms and limitations. J Sports Med Phys Fit. 2011;51(1):1–10 (pii:R40113061).Google Scholar
  68. 68.
    Austin KG, Deuster P. Monitoring training for human performance optimization. J Spec Oper Med. 2015;15(2):102–8.PubMedGoogle Scholar
  69. 69.
    Doma K, Schumann M, Leicht AS, et al. The repeated bout effect of lower body resistance exercises on running performance across three bouts. Appl Physiol Nutr Metab. 2017. doi: 10.1139/apnm-2017-0214 (in press).PubMedGoogle Scholar
  70. 70.
    Skurvydas A, Brazaitis M, Venckunas T, et al. The effect of sports specialization on musculus quadriceps function after exercise-induced muscle damage. Appl Physiol Nutr Metab. 2011;36(6):873–80. doi: 10.1139/h11-112.PubMedCrossRefGoogle Scholar
  71. 71.
    Meneghel AJ, Verlengia R, Crisp AH, et al. Muscle damage of resistance-trained men after two bouts of eccentric bench press exercise. J Strength Cond Res. 2014;28(10):2961–6. doi: 10.1519/JSC.0000000000000494.PubMedCrossRefGoogle Scholar
  72. 72.
    Chaves CP, Simao R, Miranda H, et al. Influence of exercise order on muscle damage during moderate-intensity resistance exercise and recovery. Res Sports Med. 2013;21(2):176–86. doi: 10.1080/15438627.2012.738439.PubMedGoogle Scholar
  73. 73.
    Soares S, Ferreira-Junior JB, et al. Dissociated time course of muscle damage recovery between single- and multi-joint exercises in highly resistance-trained men. J Strength Cond Res. 2015;29(9):2594–9. doi: 10.1519/JSC.0000000000000899.PubMedCrossRefGoogle Scholar
  74. 74.
    Snieckus A, Kamandulis S, Venckūnas T, et al. Concentrically trained cyclists are not more susceptible to eccentric exercise-induced muscle damage than are stretch-shortening exercise-trained runners. Eur J Appl Physiol. 2013;113(3):621–8. doi: 10.1007/s00421-012-2470-1.PubMedCrossRefGoogle Scholar
  75. 75.
    Nosaka K, Sakamoto K, Newton M, et al. How long does the protective effect on eccentric exercise-induced muscle damage last? Med Sci Sport Exerc. 2001;33(9):1490–5.CrossRefGoogle Scholar
  76. 76.
    Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483–503 (pii:3864).PubMedCrossRefGoogle Scholar
  77. 77.
    Nguyen D, Brown LE, Coburn JW, et al. Effect of delayed-onset muscle soreness on elbow flexion strength and rate of velocity development. J Strength Cond Res. 2009;23(4):1282–6. doi: 10.1519/JSC.0b013e3181970017.PubMedCrossRefGoogle Scholar
  78. 78.
    Evans WJ, Meredith CN, Cannon JG, et al. Metabolic changes following eccentric exercise in trained and untrained men. J Appl Physiol (1985). 1986;61(5):1864–8.Google Scholar
  79. 79.
    Friden J, Sfakianos PN, Hargens AR. Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J Appl Physiol (1985). 1986;61(6):2175–9.Google Scholar
  80. 80.
    Molina R, Denadai BS. Dissociated time course recovery between rate of force development and peak torque after eccentric exercise. Clin Physiol Funct Imaging. 2012;32(3):179–84. doi: 10.1111/j.1475-097X.2011.01074.x.PubMedCrossRefGoogle Scholar
  81. 81.
    Skurvydas A, Brazaitis M, Kamandulis S, et al. Peripheral and central fatigue after muscle-damaging exercise is muscle length dependent and inversely related. J Electromyogr Kinesiol. 2010;20(4):655–60. doi: 10.1016/j.jelekin.2010.02.009.PubMedCrossRefGoogle Scholar
  82. 82.
    Thompson HS, Maynard EB, Morales ER, et al. Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand. 2003;178(1):61–72. doi: 10.1046/j.1365-201X.2003.01112.x.PubMedCrossRefGoogle Scholar
  83. 83.
    Nosaka K, Clarkson PM. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc. 1996;28(8):953–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Bentley DJ, Millet GP, Vleck VE, et al. Specific aspects of contemporary triathlon: implications for physiological analysis and performance. Sports Med. 2002;32(6):345–59 (pii:320601).PubMedCrossRefGoogle Scholar
  85. 85.
    Paschalis V, Koutedakis Y, Baltzopoulos V, et al. The effects of muscle damage on running economy in healthy males. Int J Sports Med. 2005;26(10):827–31. doi: 10.1055/s-2005-837461.PubMedCrossRefGoogle Scholar
  86. 86.
    Byrne C, Eston R. Maximal-intensity isometric and dynamic exercise performance after eccentric muscle actions. J Sports Sci. 2002;20(12):951–9. doi: 10.1080/026404102321011706.PubMedCrossRefGoogle Scholar
  87. 87.
    Smith MR, Marcora SM, Coutts AJ. Mental fatigue impairs intermittent running performance. Med Sci Sports Exerc. 2015;47(8):1682–90. doi: 10.1249/MSS.0000000000000592.PubMedCrossRefGoogle Scholar
  88. 88.
    DellaValle DM, Haas JD. Quantification of training load and intensity in female collegiate rowers: validation of a daily assessment tool. J Strength Cond Res. 2013;27(2):540–8. doi: 10.1519/JSC.0b013e3182577053.PubMedCrossRefGoogle Scholar
  89. 89.
    Hampson DB, St Clair Gibson A, Lambert MI, et al. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med. 2001;31(13):935–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Elmer SJ, McDaniel J, Martin JC. Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise. Eur J Appl Physiol. 2010;110(6):1225–33. doi: 10.1007/s00421-010-1619-z.PubMedCrossRefGoogle Scholar
  91. 91.
    Jameson C, Ring C. Contributions of local and central sensations to the perception of exertion during cycling: effects of work rate and cadence. J Sports Sci. 2000;18(4):291–8. doi: 10.1080/026404100365027.PubMedCrossRefGoogle Scholar
  92. 92.
    Scott KE, Rozenek R, Russo AC, et al. Effects of delayed onset muscle soreness on selected physiological responses to submaximal running. J Strength Cond Res. 2003;17(4):652–8 (pii:R-12582).PubMedGoogle Scholar
  93. 93.
    Hassan ES. Muscle damage and adaptation after the second bout of eccentric exercise of the knee extensors. J Sports Med Phys Fit. 2014;54(5):644–50.Google Scholar
  94. 94.
    Lund H, Vestergaard-Poulsen P, Kanstrup IL, et al. Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness. Scand J Med Sci Sports. 1998;8(4):208–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Lund H, Vestergaard-Poulsen P, Kanstrup IL, et al. The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise. Scand J Med Sci Sports. 1998;8(4):216–21.PubMedCrossRefGoogle Scholar
  96. 96.
    McCully K, Posner J. Measuring exercise-induced adaptations and injury with magnetic resonance spectroscopy. Int J Sports Med. 1992;13(Suppl 1):S147–9. doi: 10.1055/s-2007-1024621.PubMedCrossRefGoogle Scholar
  97. 97.
    Davies RC, Eston RG, Fulford J, et al. Muscle damage alters the metabolic response to dynamic exercise in humans: a 31P-MRS study. J Appl Physiol. 2011;111(3):782–90. doi: 10.1152/japplphysiol.01021.2010.PubMedCrossRefGoogle Scholar
  98. 98.
    Walsh B, Tonkonogi M, Malm C, et al. Effect of eccentric exercise on muscle oxidative metabolism in humans. Med Sci Sports Exerc. 2001;33(3):436–41.PubMedCrossRefGoogle Scholar
  99. 99.
    Del Aguila LF, Krishnan RK, Ulbrecht JS, et al. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279(1):E206–12.PubMedGoogle Scholar
  100. 100.
    Tuominen JA, Ebeling P, Bourey R, et al. Postmarathon paradox: insulin resistance in the face of glycogen depletion. Am J Physiol. 1996;270(2 Pt 1):E336–43.PubMedGoogle Scholar
  101. 101.
    Asp S, Kristiansen S, Richter EA. Eccentric muscle damage transiently decreases rat skeletal muscle GLUT-4 protein. J Appl Physiol. 1995;79(4):1338–45.PubMedGoogle Scholar
  102. 102.
    Kristiansen S, Asp S, Richter EA. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions. Am J Physiol. 1996;271(2 Pt 2):R477–82.PubMedGoogle Scholar
  103. 103.
    Kristiansen S, Jones J, Handberg A, et al. Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle. Am J Physiol. 1997;272(5 Pt 1):C1734–8.PubMedGoogle Scholar
  104. 104.
    Green HJ. How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can J Physiol Pharmacol. 1990;69(2):290–7.CrossRefGoogle Scholar
  105. 105.
    Luckin KA, Biedermann MC, Jubrias SA, et al. Muscle fatigue: conduction or mechanical failure? Biomech Med Metabol Biol. 1991;46(3):299–316.CrossRefGoogle Scholar
  106. 106.
    Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265(3 Pt 1):E380–91.PubMedGoogle Scholar
  107. 107.
    van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, et al. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304 (pii:PHY_12382).PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Laurent D, Schneider KE, Prusaczyk WK, et al. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J Clin Endocrinol Metab. 2000;85(6):2170–5.PubMedGoogle Scholar
  109. 109.
    Williams MB, Raven PB, Fogt DL, et al. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res. 2003;17(1):12–9.PubMedGoogle Scholar
  110. 110.
    Wilson RJ, Gusba JE, Robinson DL, et al. Glycogenin protein and mRNA expression in response to changing glycogen concentration in exercise and recovery. Am J Physiol Endocrinol Metab. 2007;292(6):E1815–22. doi: 10.1152/ajpendo.00598.2006.PubMedCrossRefGoogle Scholar
  111. 111.
    Bosch AN, Weltan SM, Dennis SC, et al. Fuel substrate kinetics of carbohydrate loading differs from that of carbohydrate ingestion during prolonged exercise. Metabolism. 1996;45(4):415–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Lima-Silva AE, De-Oliveira FR, Nakamura FY, et al. Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities. Braz J Med Biol Res. 2009;42(5):404–12.PubMedCrossRefGoogle Scholar
  113. 113.
    McConell G, Snow RJ, Proietto J, et al. Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol. 1999;87(3):1083–6.PubMedGoogle Scholar
  114. 114.
    Coyle EF, Montain SJ. Carbohydrate and fluid ingestion during exercise: are there tradeoffs? Med Sci Sports Exerc. 1992;24(6):671–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89(6):548–54. doi: 10.1007/s00421-003-0834-2.PubMedCrossRefGoogle Scholar
  116. 116.
    MacDougall JD, Ray S, McCarteny N. Substrate utilization during weight lifting [abstract]. Med Sci Sports Exerc. 1988;20(2):S66.Google Scholar
  117. 117.
    MacDougall JD, Ray S, Sale DG, et al. Muscle substrate utilization and lactate production during weightlifting. Can J Appl Physiol. 1999;24(3):209–15.PubMedCrossRefGoogle Scholar
  118. 118.
    Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1986;55(4):362–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Robergs RA, Pearson DR, Costill DL, et al. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991;70(4):1700–6.PubMedGoogle Scholar
  120. 120.
    Pascoe DD, Costill DL, Fink WJ, et al. Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc. 1993;25(3):349–54.PubMedCrossRefGoogle Scholar
  121. 121.
    Campos-Ferraz PL, Bozza T, Nicastro H, et al. Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats. Nutrition. 2013;29(11–12):1388–94. doi: 10.1016/j.nut.2013.05.003.PubMedCrossRefGoogle Scholar
  122. 122.
    Knuiman P, Hopman MT, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (Lond). 2015;12:59. doi: 10.1186/s12986-015-0055-9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Carter H, Pringle JS, Boobis L, et al. Muscle glycogen depletion alters oxygen uptake kinetics during heavy exercise. Med Sci Sports Exerc. 2004;36(6):965–72.PubMedCrossRefGoogle Scholar
  124. 124.
    Gualano AB, Bozza T, Lopes De Campos P, et al. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J Sports Med Phys Fit. 2011;51(1):82–8.Google Scholar
  125. 125.
    Suriano R, Edge J, Bishop D. Effects of cycle strategy and fibre composition on muscle glycogen depletion pattern and subsequent running economy. Br J Sports Med. 2010;44(6):443–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Barry BK, Riley ZA, Pascoe MA, et al. A spinal pathway between synergists can modulate activity in human elbow flexor muscles. Exp Brain Res. 2008;190(3):347–59. doi: 10.1007/s00221-008-1479-5.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Philp A, MacKenzie MG, Belew MY, et al. Glycogen content regulates peroxisome proliferator activated receptor- partial differential (PPAR- partial differential) activity in rat skeletal muscle. PLoS One. 2013;8(10):e77200. doi: 10.1371/journal.pone.0077200.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wojtaszewski JF, MacDonald C, Nielsen JN, et al. Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 2003;284(4):E813–22. doi: 10.1152/ajpendo.00436.2002.PubMedCrossRefGoogle Scholar
  129. 129.
    Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports: the metabolism alteration process syndrome. Sports Med. 2003;33(2):83–94.PubMedCrossRefGoogle Scholar
  130. 130.
    Achten J, Halson SL, Moseley L, et al. Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J Appl Physiol (1985). 2004;96(4):1331–40. doi: 10.1152/japplphysiol.00973.2003.CrossRefGoogle Scholar
  131. 131.
    Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000. Abstract proceeding.Google Scholar
  132. 132.
    Schumann M, Mykkänen OP, Doma K, et al. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Appl Physiol Nutr Metab. 2015;40(1):28–36. doi: 10.1139/apnm-2014-0262.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.James Cook UniversityTownsvilleAustralia
  2. 2.James Cook UniversityCairnsAustralia
  3. 3.Social Health Sciences, Flinders UniversityFlindersAustralia

Personalised recommendations