Abstract
Accentuated eccentric loading (AEL) prescribes eccentric load magnitude in excess of the concentric prescription using movements that require coupled eccentric and concentric actions, with minimal interruption to natural mechanics. This method has been theorized to potentiate concentric performance through higher eccentric loading and, thus, higher concentric force production. There is also evidence for favorable chronic adaptations, namely shifts to faster myosin heavy chain isoforms and changes in IIx-specific muscle cross-sectional area. However, research concerning the acute and chronic responses to AEL is inconclusive, likely due to inconsistencies in subjects, exercise selection, load prescription, and method of providing AEL. Therefore, the purpose of this review is to summarize: (1) the magnitudes and methods of AEL application; (2) the acute and chronic implications of AEL as a means to enhance force production; (3) the potential mechanisms by which AEL enhances acute and chronic performance; and (4) the limitations of current research and the potential for future study.
Similar content being viewed by others
References
Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi P. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol. 1988;65(6):2406–12.
Kraemer WJ, Ratamess NA, French DN. Resistance training for health and performance. Curr Sports Med Rep. 2002;1(3):165–71.
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):1318–26.
Pensini M, Martin A, Maffiuletti N. Central versus peripheral adaptations following eccentric resistance training. Int J Sports Med. 2002;23(08):567–74.
Sale DG. 5 Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15(1):95–152.
Tesch P. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):S132–4.
Jorgensen K. Force-velocity relationship in human elbow flexors and extensors. Int Ser Biomech. 1976;1:145–51.
Westing SH, Seger JY, Karlson E, Ekblom B. Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur J Appl Physiol Occup Physiol. 1988;58(1–2):100–4.
Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939;96(1):45.
Hortobagyi T, Barrier J, Beard D, Braspennincx J, Koens P, Devita P, et al. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. J Appl Physiol. 1996;81(4):1677–82.
Vikne H, Refsnes PE, Ekmark M, Medbø JI, Gundersen V, Gundersen K. Muscular performance after concentric and eccentric exercise in trained men. Med Sci Sports Exerc. 2006;38(10):1770–81.
Nardone A, Schieppati M. Selective recruitment of high threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol. 1989;409:451–71.
Higbie EJ, Cureton KJ, Warren GL III, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81(5):2173–81.
Friedmann B, Kinscherf R, Vorwald S, Muller H, Kucera K, Borisch S, et al. Muscular adaptations to computer-guided strength training with eccentric overload. Acta Physiol Scand J. 2004;182:77–88.
Friedmann-Bette B, Bauer T, Kinscherf R, Vorwald S, Klute K, Bischoff D, et al. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur J Appl Physiol. 2010;108(4):821–36.
Brandenburg JP, Docherty D. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J Strength Cond Res. 2002;16(1):25.
Doan BK, Newton RU, Marsit JL, Triplett-McBride NT, Koziris LP, Fry AC, et al. Effects of increased eccentric loading on bench press 1RM. J Strength Cond Res. 2002;16(1):9–13.
Godard MP, Wygand JW, Carpinelli RN, Catalano S, Otto RM. Effects of accentuated eccentric resistance training on concentric knee extensor strength. J Strength Cond Res. 1998;12(1):26–9.
Kaminski TW, Wabbersen CV, Murphy RM. Concentric versus enhanced eccentric hamstring strength training: clinical implications. J Athl Train. 1998;33(3):216–21.
Ojasto T, Hakkinen K. Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J Strength Cond Res. 2009;23(3):996–1004.
Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Hakkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol. 2016;7:149.
Aboodarda SJ, Byrne JM, Samson M, Wilson BD, Mokhtar AH, Behm DG. Does performing drop jumps with additional eccentric loading improve jump performance? J Strength Cond Res. 2014;28(8):2314–23.
Aboodarda SJ, Yusof A, Osman NAA, Thompson MW, Mokhtar AH. Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump. Int J Sports Physiol Perform. 2013;8:181–7.
Bridgeman LA, Gill ND, Dulson DK, McGuigan MR. The effect of exercise-induced muscle damage after a bout of accentuated eccentric load drop jumps and the repeated bout effect. J Strength Cond Res. 2017;31(2):386–94.
Bridgeman LA, McGuigan MR, Gill ND, Dulson DK. The effects of accentuated eccentric loading on the drop jump exercise and the subsequent postactivation potentiation response. J Strength Cond Res. 2017;31(6):1620–26.
Hughes JD, Massiah RG, Clarke RD. The potentiating effect of an accentuated eccentric load on countermovement jump performance. J Strength Cond Res. 2016;30(12):3450–5.
Sheppard J, Hobson S, Barker M, Taylor K, Chapman D, McGuigan M, et al. The effect of training with accentuated eccentric load counter-movement jumps on strength and power characteristics of high-performance volleyball players. Int J Sports Sci Coach. 2008;3(3):355–63.
Sheppard J, Newton R, McGuigan M. The effect of accentuated eccentric load on jump kinetics in high-performance volleyball players. Int J Sports Sci Coach. 2007;2(3):267–73.
Sheppard JM, Young K. Using additional eccentric loads to increase concentric performance in the bench throw. J Strength Cond Res. 2010;24(10):2853–6.
Barstow IK, Bishop MD, Kaminski TW. Is enhanced-eccentric resistance training superior to traditional training for increasing elbor flexor strength? J Sports Sci Med. 2003;2:62–9.
Moore CA, Weiss LW, Schilling BK, Fry AC, Li Y. Acute effects of augmented eccentric loading on jump squat performance. J Strength Cond Res. 2007;21(2):372–7.
Ojasto T, Hakkinen K. Effects of different accentuated eccentric loads on acute neuromuscular, growth hormone, and blood lactate responses during a hypertrophic protocol. J Strength Cond Res. 2009;23(3):946–53.
Yarrow JF, Borsa PA, Borst SE, Sitren HS, Stevens BR, White LJ. Neuroendocrine responses to an acute bout of eccentric-enhanced resistance exercise. Med Sci Sports Exerc. 2007;39(6):941–7.
Yarrow JF, Borsa PA, Borst SE, Sitren HS, Stevens BR, White LJ. Early-phase neuroendocrine responses and strength adaptations following eccentric-enhanced resistance training. J Strength Cond Res. 2008;22(4):1205–14.
Colliander EB, Tesch PA. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand J. 1990;140:31–9.
Duchateau J, Enoka RM. Neural control of lengthening contractions. J Exp Biol. 2016;219(Pt 2):197–204.
Enoka RM. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol. 1996;81(6):2339–46.
Kay D, St Clair Gibson A, Mitchell MJ, Lambert MI, Noakes TD. Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. J Electromyogr Kinesiol. 2000;10:425–31.
Nardone A, Schieppati M. Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscles in humans. J Physiol. 1988;395:363–81.
Saxton JM, Clarkson PM, James R, Miles M, Westerfer M, Clark S, et al. Neuromuscular dysfunction following eccentric exercise. Med Sci Sports Exerc. 1995;27(8):1185–93.
Dietz V, Schmidtbleicher D, Noth J. Neuronal mechanisms of human locomotion. J Neurophysiol. 1979;42(5):1212–22.
Sweeney H, Bowman B, Stull J. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol Cell Physiol. 1993;264(5):C1085–95.
Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138–43.
Rassier D, Macintosh B. Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res. 2000;33(5):499–508.
Cavagna GA, Dusman B, Margaria R. Positive work done by a previously stretched muscle. J Appl Physiol. 1968;24(1):21–32.
Komi PV, Bosco C. Muscles by men and women. Med Sci Sports Exerc. 1978;10:261–5.
Hortobagyi T, Devita P, Money J, Barrier J. Effects of standard and eccentric overload strength training in young women. Med Sci Sports Exerc. 2001;33(7):1206–12.
Bobbert MF, Huijing PA, Van Ingen Schenau GJ. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc. 1987;19(4):339–46.
Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28:1402–12.
Komi PV, Bosco C. Muscles by men and women. Med Sci Sport. 1978;10:261–5.
Thys H, Faraggiana T, Margaria R. Utilization of muscle elasticity in exercise. J Appl Physiol. 1972;32(4):491–4.
Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev. 1984;12(1):81–122.
LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003;33(10):557–71.
Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–49.
Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31(2):61–7.
Häkkinen K. Research overview: factors influencing trainability of muscular strength during short term and prolonged training. Strength Cond J. 1985;7(2):32–7.
Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177–86.
Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42(8):1566–81.
Stone MH, O’bryant HS, Mccoy L, Coglianese R, Lehmkuhl M, Schilling B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J Strength Cond Res. 2003;17(1):140–7.
Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol. 2003;89(6):578–86.
Liu C, Chen C-S, Ho W-H, Füle RJ, Chung P-H, Shiang T-Y. The effects of passive leg press training on jumping performance, speed, and muscle power. J Strength Cond Res. 2013;27(6):1479–86.
Pasquet B, Carpentier A, Duchateau J, Hainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23(11):1727–35.
Tesch P, Dudley G, Duvoisin M, Hather B, Harris R. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol. 1990;138(3):263–71.
Gruber M, Linnamo V, Strojnik V, Rantalainen T, Avela J. Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J Neurophysiol. 2009;101(4):2030–40.
Gans C, Gaunt AS. Muscle architecture in relation to function. J Biomech. 1991;24:53–65.
Griffiths R. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991;436:219.
Cronin J, McNair PJ, Marshall RN. Velocity specificity, combination training and sport specific tasks. J Sci Med Sport. 2001;4(2):168–78.
Balshaw TG. Acute neuromuscular, kinetic, and kinematic responses to accentuated eccentric load resistance exercise. University of Stirling; 2013.
Abbruzzese G, Morena M, Spadavecchia L, Schieppati M. Response of arm flexor muscles to magnetic and electrical brain stimulation during shortening and lengthening tasks in man. J Physiol. 1994;481(Pt 2):499.
Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training. Sports Med. 2010;40(12):1037–53.
Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757–67.
Sorichter S, Mair J, Koller A, Gebert W, Rama D, Calzolari C, et al. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol. 1997;83(4):1076–82.
Johnson RM. Effects of manual negative accentuated resistance on strength and/or muscular endurance. 1974.
Antonio J. Nonuniform response of skeletal muscle to heavy resistance training: can bodybuilders induce regional muscle hypertrophy? J Strength Cond Res. 2000;14(1):102–13.
Fisher J, Steele J, Smith D. Evidence-based resistance training recommendations for muscular hypertrophy. Sports Med. 2013;17(4):217–35.
Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210(3):642–54.
Seger JY, Arvidsson B, Thorstensson A, Seger JY. Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur J Appl Physiol Occup Physiol. 1998;79(1):49–57.
Abe T, Kawakami Y, Kondo M, Fukunaga T. Comparison of ultrasound-measured age-related, site-specific muscle loss between healthy Japanese and German men. Clin Physiol Funct Imaging. 2011;31(4):320–5.
Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):1125–9.
Reeves ND, Maganaris CN, Longo S, Narici MV. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp Physiol. 2009;94(7):825–33.
Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab. 2001;280(3):E383–90.
Matheny RW Jr, Nindl BC, Adamo ML. Minireview: Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology. 2010;151(3):865–75.
Jacobs-El J, Zhou M-Y, Russell B. MRF4, Myf-5, and myogenin mRNAs in the adaptive responses of mature rat muscle. Am J Physiol Cell Physiol. 1995;268(4):C1045–52.
Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663–79.
Fry AC, Schilling BK, Staron RS, Hagerman FC, Hikida RS, Thrush JT. Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters. J Strength Cond Res. 2003;17(4):746–54.
Gehlert S, Suhr F, Gutsche K, Willkomm L, Kern J, Jacko D, et al. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflügers Archiv Eur J Physiol. 2015;467(6):1343–56.
Yan Z, Biggs R, Booth FW. Insulin-like growth factor immunoreactivity increases in muscle after acute eccentric contractions. J Appl Physiol. 1993;74(1):410–4.
Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.
Staron R, Karapondo D, Kraemer W, Fry A, Gordon S, Falkel J, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol. 1994;76(3):1247–55.
Baumann H, Jäggi M, Soland F, Howald H, Schaub MC. Exercise training induces transitions of myosin isoform subunits within histochemically typed human muscle fibres. Pflügers Archiv Eur J Physiol. 1987;409(4):349–60.
Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000;50(6):500–9.
Pette D, Staron RS. Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol. 2001;115(5):359–72.
Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol Cell Physiol. 1994;267(6):C1723–8.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest and study funding
John P. Wagle, Christopher B. Taber, Aaron J. Cunanan, Garett E. Bingham, Kevin M. Carroll, Brad H. DeWeese, Kimitake Sato, and Michael H. Stone declare that they have no conflicts of interest. No financial support was received for the conduct of the study or preparation of this manuscript.
Rights and permissions
About this article
Cite this article
Wagle, J.P., Taber, C.B., Cunanan, A.J. et al. Accentuated Eccentric Loading for Training and Performance: A Review. Sports Med 47, 2473–2495 (2017). https://doi.org/10.1007/s40279-017-0755-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40279-017-0755-6