Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals

Abstract

Background

Increased muscle mitochondrial mass is characteristic of elite professional endurance athletes (PAs), whereas increased blood lactate levels (lactatemia) at the same absolute submaximal exercise intensities and decreased mitochondrial oxidative capacity are characteristics of individuals with low aerobic power. In contrast to PAs, patients with metabolic syndrome (MtS) are characterized by a decreased capacity to oxidize lipids and by early transition from fat to carbohydrate oxidation (FATox/CHOox), as well as elevated blood lactate concentration [La] as exercise power output (PO) increases, a condition termed ‘metabolic inflexibility’.

Objective

The aim of this study was to assess metabolic flexibility across populations with different metabolic characteristics.

Methods

We used indirect calorimetry and [La] measurements to study the metabolic responses to exercise in PAs, moderately active individuals (MAs), and MtS individuals.

Results

FATox was significantly higher in PAs than MAs and patients with MtS (p < 0.01), while [La] was significantly lower in PAs compared with MAs and patients with MtS. FATox and [La] were inversely correlated in all three groups (PA: r = −0.97, p < 0.01; MA: r = −0.98, p < 0.01; MtS: r = −0.92, p < 0.01). The correlation between FATox and [La] for all data points corresponding to all populations studied was r = −0.76 (p < 0.01).

Conclusions

Blood lactate accumulation is negatively correlated with FATox and positively correlated with CHOox during exercise across populations with widely ranging metabolic capabilities. Because both lactate and fatty acids are mitochondrial substrates, we believe that measurements of [La] and FATox rate during exercise provide an indirect method to assess metabolic flexibility and oxidative capacity across individuals of widely different metabolic capabilities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Messonnier LA, Emhoff C-AW, Fattor JA, Horning MA, Carlson TJ, Brooks GA. Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol. 2013;114:1593–602.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Emhoff C-AW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Direct and indirect lactate oxidation in trained and untrained men. J Appl Physiol. 2013;115:829–38.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Emhoff C-AW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol. 2013;114:297–306.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, et al. Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol. 1999;87:1684–96.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD, Brooks GA. Evaluation of exercise and training on muscle lipid metabolism. Am J Appl Physiol. 1999;276:E106–17.

    CAS  Google Scholar 

  6. 6.

    Bergman BC, Butterfield GE, Wolfel EE, Lopaschuk GD, Casazza GA, Horning MA, et al. Muscle net glucose uptake and glucose kinetics after endurance training in men. Am J Appl Physiol. 1999;277:E81–92.

    CAS  Google Scholar 

  7. 7.

    Nogales-Gadea G, Pinós T, Ruiz JR, Marzo PF, Fiuza-Luces C, López-Gallardo E, et al. Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion. 2011;11:905–8.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Maruszak A, Adamczyk JG, Siewierski M, Sozański H, Gajewski A, Żekanowski C. Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scand J Med Sci Sports. 2014;24:311–8.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Mikami E, Fuku N, Takahashi H, Ohiwa N, Pitsiladis YP, Higuchi M, et al. Polymorphisms in the control region of mitochondrial DNA associated with elite Japanese athlete status. Scand J Med Sci Sports. 2013;23:593–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Jacobs RA, Rasmussen P, Siebenmann C, Díaz V, Gassmann M, Pesta D, et al. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol. 2011;111:1422–30.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Jacobs RA, Lundby C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol. 2013;114:344–50.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hoppeler H, Lüthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle. Pflug Arch. 1973;344:217–32.

    CAS  Article  Google Scholar 

  13. 13.

    Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73:627–31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kim J-A, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Goodpaster BH. Mitochondrial deficiency is associated with insulin resistance. Diabetes. 2013;62:1032–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Toledo FGS, Goodpaster BH. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging. Mol Cell Endocrinol. 2013;379:30–4.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Phielix E, Meex R, Moonen-Kornips E, Hesselink MKC, Schrauwen P. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia. 2010;53:1714–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diabetes Rep. 2008;8:173–8.

    CAS  Article  Google Scholar 

  22. 22.

    Thorburn AW, Gumbiner B, Bulacan F, Wallace P, Henry RR. Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake. J Clin Investig. 1990;85:522–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest. 1995;96:1261–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Blaak EE, Wagenmakers A, Glatz J. Plasma free fatty acid utilisation and fatty acid binding protein content are diminished in forearm skeletal muscle of type 2 diabetic subjects. Am J Physiol. 2000;279:E146–54.

    CAS  Google Scholar 

  25. 25.

    Kelley DE, Goodpaster B, Wing RR, Simoneau J-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol Endocrinol Metab. 1999;277:E1130–41.

    CAS  Article  Google Scholar 

  26. 26.

    Blaak EE, van Aggel-Leijssen DP, Wagenmakers AJ, Saris WH, van Baak MA. Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise. Diabetes. 2000;49:2102–7.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kelley DE, Simoneau JA. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Investig. 1994;94:2349–56.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7–18.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999;13:2051–60.

    CAS  PubMed  Google Scholar 

  30. 30.

    Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc. 2004;63:363–8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Investig. 2005;115:1699–702.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000;49:677–83.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005;54:8–14.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76:2253–61.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem. 1994;269:25871–8.

    CAS  PubMed  Google Scholar 

  36. 36.

    Brooks GA. Master regulator or readout: the wisdom of distributed control. Focus on “Pyruvate suppresses PGC1 expression and substrate utilization despite increased respiratory chain content in C2C12 myotubes”. Am J Physiol. 2010;299:C216–7.

    CAS  Article  Google Scholar 

  37. 37.

    Eckel RH, Alberti K, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375:181–3.

    Article  PubMed  Google Scholar 

  38. 38.

    Randle PI, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Boden G. Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc Assoc Am Physicians. 1999;111:241–8.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2003;111:121–4.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun. 2008;377:987–91.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem. 2009;284:2811–22.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ahmed K, Tunaru S, Tang C, Müller M, Gille A, Sassmann A, et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 2010;11:311–9.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Nikooie R, Samaneh S. Exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways. Mol Cell Endocrinol. 2016;419:244–51.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242:2278–82.

    CAS  PubMed  Google Scholar 

  46. 46.

    Davies KJA, Packer L, Brooks GA. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys. 1981;209:539–54.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Holloszy JO, Oscai LB, Don IJ, Mole PA. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem Biophys Res Commun. 1970;40:1368–73.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Gollnick PD, Armstrong RB, Saubert CW IV. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol. 1972;33:312–9.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Gollnick PD, King DW. Effect of exercise and training on mitochondria of rat skeletal muscle. Am J Physiol. 1969;216:1502–9.

    CAS  PubMed  Google Scholar 

  50. 50.

    Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59:320–7.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Turcotte LP, Richter EA, Kiens B. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol. 1992;262:791–9.

    Google Scholar 

  52. 52.

    Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol. 1987;62:999–1005.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol. 1977;270:661.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kiens B, Essen Gustavsson B, Christensen NJ, Saltin B. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol. 1993;469:459–78.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol. 1996;81:2182–91.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Donovan CM, Brooks GA. Endurance training affects lactate clearance, not lactate production. Am J Physiol. 1983;244:83–92.

    Google Scholar 

  57. 57.

    Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metabol. 2000;278:E571–9.

    CAS  Article  Google Scholar 

  58. 58.

    Billat V, Sirvent P, Lepretre P-M, Koralsztein JP. Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance-runners. Pflug Arch. 2004;447:875–83.

    CAS  Article  Google Scholar 

  59. 59.

    Neal CM, Hunter AM, Brennan L, O’Sullivan A, Hamilton DL, DeVito G, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114:461–71.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc. 1989;21:563–8.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    McDermott JC, Bonen A. Endurance training increases skeletal muscle lactate transport. Acta Physiol Scand. 1993;147:323–7.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    San Millán I, González-Haro C, Sagasti M. Physiological differences between road cyclists of different categories. A new approach. Med Sci Sports Exerc. 2009;41:64–5.

    Article  Google Scholar 

  63. 63.

    Brooks GA, Wolfel EE, Groves BM, Bender PR, Butterfield GE, Cymerman A, et al. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J Appl Physiol. 1992;72:2435–45.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Mazzeo RS, Brooks GA, Schoeller DA, Budinger TF. Disposal of blood [1-13C]lactate in humans during rest and exercise. J Appl Physiol. 1986;60:232–41.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Stanley WC, Gertz EW, Wisneski JA, Neese RA, Morris DL, Brooks GA. Lactate extraction during net lactate release in legs of humans during exercise. J Appl Physiol. 1986;60:1116–20.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Brooks GA. Lactate shuttles in nature. Biochem Soc Trans. 2002;30:258–64.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21:2602–12.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Ghatak S, Banerjee A, Sikdar SK. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol. 2016;594:59–81.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Investig. 1988;82:2017–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Miller BF, Fattor JA, Jacobs KA, Horning MA, Suh SH. Lactate–glucose interaction in men during rest and exercising using lactate clamp procedure. J Physiol. 2002;544:963–75.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Miller BF, Fattor JA, Jacobs KA, Horning MA, Suh S-H, Navazio F, et al. Metabolic and cardiorespiratory responses to “the lactate clamp”. Am J Physiol Endocrinol Metabol. 2002;283:E889–98.

    CAS  Article  Google Scholar 

  72. 72.

    Glenn TC, Martin NA, Honing MA, McArthur DL, Hodva DA, Vespa P, et al. Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 2015;32:820–32.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metabol. 2006;290:E1237–44.

    CAS  Article  Google Scholar 

  74. 74.

    Hashimoto T, Brooks GA. Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med Sci Sports Exerc. 2008;40:486.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628–34.

    CAS  PubMed  Google Scholar 

  76. 76.

    Reaven GM, Hollenbeck C, Jeng C-Y, Wu MS, Chen Y-DI. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988;37:1020–4.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Konrad T, Vicini P, Kusterer K, Höflich A, Assadkhani A, Böhles HJ, et al. alpha-Lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care. 1999;22:280–7.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol. 1987;62:999–1005.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Issekutz B, Miller H. Plasma free fatty acids during exercise and the effect of lactic acid. Exp Biol Med. 1962;110:237–9.

    CAS  Article  Google Scholar 

  80. 80.

    Rodahl K, Miller HI, Issekutz B. Plasma free fatty acids in exercise. J Appl Physiol. 1964;19:489–92.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Brooks GA. Intra-and extra-cellular lactate shuttles. Med Sci Sports Exerc. 2000;32:790–9.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Brooks GA. Cell–cell and intracellular lactate shuttles. J Physiol. 2009;587:5591–600.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iñigo San-Millán.

Ethics declarations

Conflict of interest

Iñigo San-Millán and George A. Brooks declare that they have no conflicts of interest that are directly relevant to the content of this article.

Funding

The authors declare that no financial support was received for the conduct of this study or the preparation of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

San-Millán, I., Brooks, G.A. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Med 48, 467–479 (2018). https://doi.org/10.1007/s40279-017-0751-x

Download citation