Compression Garments and Recovery from Exercise: A Meta-Analysis

Abstract

Background

Adequate recovery from exercise is essential to maintain performance throughout training and competition. While compression garments (CG) have been demonstrated to accelerate recovery, the literature is clouded by conflicting results and uncertainty over the optimal conditions of use.

Objectives

A meta-analysis was conducted to assess the effects of CG on the recovery of strength, power and endurance performance following an initial bout of resistance, running, or non-load-bearing endurance (metabolic) exercise.

Methods

Change-score data were extracted from 23 peer-reviewed studies on healthy participants. Recovery was quantified by converting into standardized mean effect sizes (ES) [±95% confidence interval (CI)]. The effects of time (0–2, 2–8, 24, >24 h), pressure (<15 vs. ≥15 mmHg) and training status (trained vs. untrained) were also assessed.

Results

CG demonstrated small, very likely benefits [p < 0.001, ES = 0.38 (95% CI 0.25, 0.51)], which were not influenced by pressure (p = 0.06) or training status (p = 0.64). Strength recovery was subject to greater benefits than other outcomes [p < 0.001, ES = 0.62 (95% CI 0.39, 0.84)], displaying large, very likely benefits at 2–8 h [p < 0.001, ES = 1.14 (95% CI 0.72, 1.56)] and >24 h [p < 0.001, ES = 1.03 (95% CI 0.48, 1.57)]. Recovery from using CG was greatest following resistance exercise [p < 0.001, ES = 0.49 (95% CI 0.37, 0.61)], demonstrating the largest, very likely benefits at >24 h [p < 0.001, ES = 1.33 (95% CI 0.80, 1.85)]. Recovery from metabolic exercise (p = 0.01) was significant, although large, very likely benefits emerged only for cycling performance at 24 h post-exercise [p = 0.01, ES = 1.05 (95% CI 0.25, 1.85)].

Conclusion

The largest benefits resulting from CG were for strength recovery from 2 to 8 h and >24 h. Considering exercise modality, compression most effectively enhanced recovery from resistance exercise, particularly at time points >24 h. The use of CG would also be recommended to enhance next-day cycling performance. The benefits of CG in relation to applied pressures and participant training status are unclear and limited by the paucity of reported data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Spilsbury KL, Fudge BW, Ingham SA, et al. Tapering strategies in elite British endurance runners. Eur J Sport Sci. 2015;15(5):367–73.

    Article  PubMed  Google Scholar 

  2. 2.

    Tobin DP. Advanced strength and power training for the elite athlete. Strength Cond J. 2014;36(2):59–65.

    Article  Google Scholar 

  3. 3.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(s2):1–10.

    Article  PubMed  Google Scholar 

  4. 4.

    Appleby B, Newton RU, Cormie P. Changes in strength over a 2-year period in professional rugby union players. J Strength Cond Res. 2012;26(9):2538–46.

    Article  PubMed  Google Scholar 

  5. 5.

    Lopez V, Galano GJ, Black CM, et al. Profile of an American amateur rugby union sevens series. Am J Sports Med. 2012;40(1):179–84.

    Article  PubMed  Google Scholar 

  6. 6.

    Montgomery PG, Pyne DB, Hopkins WG, et al. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. J Sports Sci. 2008;26(11):1135–45.

    Article  PubMed  Google Scholar 

  7. 7.

    Leeder J, Gissane C, van Someren K, et al. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2011;46:233–40.

    Article  PubMed  Google Scholar 

  8. 8.

    Elias GP, Varley MC, Wyckelsma VL, et al. Effects of water immersion on post training recovery in Australian footballers. Int J Sports Physiol Perform. 2012;7(4):357–66.

    Article  PubMed  Google Scholar 

  9. 9.

    Hill J, Howatson G, van Someren K, et al. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med. 2014;48(18):1340–6.

    Article  PubMed  Google Scholar 

  10. 10.

    Howatson G, Leeder J, Van Someren K, on behalf of the British Association of Sport and Exercise Sciences. The BASES Expert Statement on Athletic Recovery Strategies. The Sport and Exercise Scientist. 2016;48(Summer):6–7. http://www.bases.org.uk.

  11. 11.

    Hawley JA, Palmer GS, Noakes TD. Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilisation during a 1-h cycling performance. Eur J Appl Physiol Occup Physiol. 1997;75(5):407–12.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Thomas TR, Ziogas G, Smith T, et al. Physiological and perceived exertion responses to six modes of submaximal exercise. Res Q Exerc Sport. 1995;66(3):239–46.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Stephens JM, Halson S, Miller J, et al. Cold water immersion for athletic recovery: one size does not fit all. Int J Sports Physiol Perform. 2017;12(1):2–9.

    Article  PubMed  Google Scholar 

  14. 14.

    MacRae BA, Cotter JD, Laing RM. Compression garments and exercise: garment considerations, physiology and performance. Sports Med. 2011;41(10):815–43.

    Article  PubMed  Google Scholar 

  15. 15.

    Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.

    Article  PubMed  Google Scholar 

  16. 16.

    Kraemer WJ, Volek JS, Bush JA, et al. Influence of compression hosiery on physiological responses to standing fatigue in women. Med Sci Sports Exerc. 2000;32(11):1849–58.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kraemer WJ, Bush JA, Wickham RB, et al. Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. J Orthop Sports Phys Ther. 2001;31(6):282–90.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Berry MJ, McMurray RG. Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. Am J Phys Med Rehabil. 1987;66(3):121–32.

    CAS  Google Scholar 

  19. 19.

    Kraemer WJ, Bush JA, Wickham RB, et al. Continuous compression as an effective therapeutic intervention in treating eccentric-exercise-induced muscle soreness. J Sport Rehabil. 2001;10(1):11–23.

    Article  Google Scholar 

  20. 20.

    Kraemer WJ, Flanagan SD, Comstock BA, et al. Effects of a whole body compression garment on markers of recovery after a heavy resistance workout in men and women. J Strength Cond Res. 2010;24(3-D):804–14.

    Article  PubMed  Google Scholar 

  21. 21.

    Hill JA, Howatson G, van Someren KA, et al. Influence of compression garments on recovery after marathon running. J Strength Cond Res. 2014;28(8):2228–35.

    Article  PubMed  Google Scholar 

  22. 22.

    Goto K, Morishima T. Compression garment promotes muscular strength recovery after resistance exercise. Med Sci Sports Exerc. 2014;46(12):2265–70.

    Article  PubMed  Google Scholar 

  23. 23.

    Armstrong RB. Initial events in exercise-induced muscular injury. Med Sci Sports Exerc. 1990;22(4):429–35.

    CAS  PubMed  Google Scholar 

  24. 24.

    Kraemer WJ, Adams K, Cafarelli E, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364–80.

    Article  PubMed  Google Scholar 

  25. 25.

    Adams K, O’Shea JP, O’Shea KL, et al. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J Strength Cond Res. 1992;6(1):36–41.

    CAS  Google Scholar 

  26. 26.

    Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol. 2003;89(6):578–86.

    Article  PubMed  Google Scholar 

  27. 27.

    Vincent H, Vincent K. The effect of training status on the serum creatine kinase response, soreness and muscle function following resistance exercise. Int J Sports Med. 1997;18(6):431–7.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.

    CAS  PubMed  Google Scholar 

  29. 29.

    Liu R, Lao T, Kwok Y, et al. Effects of graduated compression stockings with different pressure profiles on lower-limb venous structures and haemodynamics. Adv Therapy. 2008;25(5):465–78.

    Article  Google Scholar 

  30. 30.

    Sarin S, Scurr J, Smith P. Mechanism of action of external compression on venous function. Br J Surg. 1992;79(6):499–502.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chauveau M. Effects of compression on venous haemodynamics. In: Gardon-Mollard CRA, editor. Compression therapy. Paris: Masson; 1999. p. 23–8.

    Google Scholar 

  32. 32.

    Foldi E, Foldi M, Weissleder H. Conservative treatment of lymphoedema of the limbs. Angiology. 1985;36(3):171–80.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Davies V, Thompson KG, Cooper SM. The effects of compression garments on recovery. J Strength Cond Res. 2009;23(6):1786–94.

    Article  PubMed  Google Scholar 

  34. 34.

    Born DP, Sperlich B, Holmberg HC. Bringing light into the dark: effects of compression clothing on performance and recovery. Int J Sports Physiol Perform. 2013;8(1):4–18.

    Article  PubMed  Google Scholar 

  35. 35.

    de Glanville KM, Hamlin MJ. Positive effect of lower body compression garments on subsequent 40-kM cycling time trial performance. J Strength Cond Res. 2012;26(2):480–6.

    Article  PubMed  Google Scholar 

  36. 36.

    Driller MW, Halson SL. The effects of wearing lower body compression garments during a cycling performance test. Int J Sports Physiol Perform. 2013;8(3):300–6.

    Article  PubMed  Google Scholar 

  37. 37.

    Engel FA, Holmberg HC, Sperlich B. Is there evidence that runners can benefit from wearing compression clothing? Sports Med. 2016;46(12):1939–52.

    Article  PubMed  Google Scholar 

  38. 38.

    Jakeman JR, Byrne C, Eston RG. Lower limb compression garment improves recovery from exercise-induced muscle damage in young, active females. Eur J Appl Physiol. 2010;109(6):1137–44.

    Article  PubMed  Google Scholar 

  39. 39.

    Beliard S, Chauveau M, Moscatiello T, et al. Compression garments and exercise: no influence of pressure applied. J Sports Sci Med. 2015;14(1):75–83.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Nosaka K, Sakamotot K, Newton M, et al. The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol. 2001;85(1):34–40.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Howatson G, Van Someren K, Hortobagyi T. Repeated bout effect after maximal eccentric exercise. Int J Sports Med. 2007;27(8):557–63.

    Article  Google Scholar 

  42. 42.

    Platts SH, Tuxhorn JA, Ribeiro LC, et al. Compression garments as countermeasures to orthostatic intolerance. Aviat Space Environ Med. 2009;80(5):437–42.

    Article  PubMed  Google Scholar 

  43. 43.

    Watanuki S, Murata H. Effects of wearing compression stockings on cardiovascular responses. Ann Physiol Anthropol. 1994;13(3):121–7.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Driller MW, Halson SL. The effects of lower-body compression garments on recovery between exercise bouts in highly-trained cyclists. J Strength Cond. 2013;2(1):45–50.

    Google Scholar 

  45. 45.

    Hill JA, Howatson G, van Someren KA, et al. The variation in pressures exerted by commercially available compression garments. Sports Eng. 2015;18(2):115–21.

    Article  Google Scholar 

  46. 46.

    Collaboration C. Review manager (RevMan) [computer program]. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2011.

    Google Scholar 

  47. 47.

    Bieuzen F, Brisswalter J, Easthope C, et al. Effect of wearing compression stockings on recovery after mild exercise-induced muscle damage. Int J Sports Physiol Perform. 2014;9(2):256–64.

    Article  PubMed  Google Scholar 

  48. 48.

    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kraemer WJ, Bush JA, Wickham RB, et al. Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. Eur J Appl Physiol Occup Physiol. 2001;31(6):282–90.

    CAS  Google Scholar 

  50. 50.

    Carling J, Francis K, Lorish C. The effects of continuous external compression on delayed-onset muscle soreness (DOMS). Int J Rehabil Health. 1995;1(4):223–35.

    Article  Google Scholar 

  51. 51.

    Cerqueira MS, Borges LS, dos Santos Rocha JA, et al. Twelve hours of a compression sleeve is not enough to improve the muscle recovery of an exercise-damaged upper arm. Apunts Med Esport. 2015;50(185):23–8.

    Article  Google Scholar 

  52. 52.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;2(1):50–7.

    Article  Google Scholar 

  53. 53.

    Ali A, Caine MP, Snow BG. Graduated compression stockings: physiological and perceptual responses during and after exercise. J Sports Sci. 2007;25(4):413–9.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Armstrong SA, Till ES, Maloney SR, et al. Compression socks and functional recovery following marathon running: a randomized controlled trial. J Strength Cond Res. 2015;29(2):528–33.

    Article  PubMed  Google Scholar 

  55. 55.

    Born DP, Holmberg HC, Goernert F, et al. A novel compression garment with adhesive silicone stripes improves repeated sprint performance—a multi-experimental approach on the underlying mechanisms. BMC Sports Sci Med Rehabil. 2014;6(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Duffield R, Portus M. Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players. Br J Sports Med. 2007;41(7):409–14 (discussion 14).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Duffield R, Edge J, Merrells R, et al. The effects of compression garments on intermittent exercise performance and recovery on consecutive days. Int J Sports Physiol Perform. 2008;3(4):454–68.

    Article  PubMed  Google Scholar 

  58. 58.

    Duffield R, Cannon J, King M. The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise. J Sci Med Sport. 2010;13(1):136–40.

    Article  PubMed  Google Scholar 

  59. 59.

    Pruscino CL, Halson S, Hargreaves M. Effects of compression garments on recovery following intermittent exercise. Eur J Appl Physiol. 2013;113(6):1585–96.

    Article  PubMed  Google Scholar 

  60. 60.

    Rugg S, Sternlicht E. The effect of graduated compression tights, compared with running shorts, on counter movement jump performance before and after submaximal running. J Strength Cond Res. 2013;27(4):1067–73.

    Article  PubMed  Google Scholar 

  61. 61.

    Martorelli SS, Martorelli AS, Pereira MC, et al. Graduated compression sleeves: effects on metabolic removal and neuromuscular performance. J Strength Cond Res. 2015;29(5):1273–8.

    Article  PubMed  Google Scholar 

  62. 62.

    Argus CK, Driller MW, Ebert TR, et al. The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int J Sports Physiol Perform. 2013;8(5):542–8.

    Article  PubMed  Google Scholar 

  63. 63.

    Sperlich B, Born DP, Zinner C, et al. Does upper-body compression improve 3 × 3-min double-poling sprint performance? Int J Sports Physiol Perform. 2014;9(1):48–57.

    Article  PubMed  Google Scholar 

  64. 64.

    Marques-Jimenez D, Calleja-Gonzalez J, Arratibel I, et al. Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiol Behav. 2016;1(153):133–48.

    Article  Google Scholar 

  65. 65.

    Baird MF, Graham SM, Baker JS, et al. Creatine-kinase and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Paschalis V, Koutedakis Y, Jamurtas AZ, et al. Equal volumes of high and low intensity of eccentric exercise in relation to muscle damage and performance. J Strength Cond Res. 2005;19(1):184–8.

    PubMed  Google Scholar 

  67. 67.

    Howatson G, Van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483–503.

    Article  PubMed  Google Scholar 

  68. 68.

    Allen D. Eccentric muscle damage: mechanisms of early reduction of force. Acta Physiol Scand. 2001;171(3):311–9.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Marcora S, Bosio A. Effect of exercise-induced muscle damage on endurance running performance in humans. Scand J Med Sci Sports. 2007;17(6):662–71.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Byrne C, Eston R. The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci. 2002;20(5):417–25.

    Article  PubMed  Google Scholar 

  71. 71.

    Ide BN, Leme TCF, Lopes CR, et al. Time course of strength and power recovery after resistance training with different movement velocities. J Strength Cond Res. 2011;25(7):2025–33.

    Article  PubMed  Google Scholar 

  72. 72.

    Girard O, Carbonnel Y, Candau R, et al. Running versus strength-based warm-up: acute effects on isometric knee extension function. Eur J Appl Physiol. 2009;106(4):573–81.

    Article  PubMed  Google Scholar 

  73. 73.

    Halson SL. Does the time frame between exercise influence the effectiveness of hydrotherapy for recovery. Int J Sports Physiol Perform. 2011;6(2):147–59.

    Article  PubMed  Google Scholar 

  74. 74.

    Cook C, Holdcroft D, Drawer S, et al. Designing a warm-up protocol for elite bob-skeleton athletes. Int J Sports Physiol Perform. 2013;8(2):213–5.

    Article  PubMed  Google Scholar 

  75. 75.

    Kraemer WJ, Bush JA, Bauer JA, et al. Influence of compression garments on vertical jump performance in NCAA division I volleyball players. J Strength Cond Res. 1996;10(3):180–3.

    Google Scholar 

  76. 76.

    Dermont T, Morizot L, Bouhaddi M, et al. Changes in tissue oxygen saturation in response to different calf compression sleeves. J Sports Med (Hindawi Publ Corp). 2015;2015:857904.

    CAS  Google Scholar 

  77. 77.

    Krustrup P, Ørtenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95.

    Article  PubMed  Google Scholar 

  78. 78.

    Padilla S, Mujika I, Cuesta G, et al. Level ground and uphill cycling ability in professional road cycling. Med Sci Sports Exerc. 1999;31(6):878–85.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Pournot H, Bieuzen F, Duffield R, et al. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):1287–95.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Cormack SJ, Newton RU, McGuigan RM. Neuromuscular and endocrine responses of elite players during an Australian rules football season. Int J Sports Physiol Perform. 2008;3:439–53.

    Article  PubMed  Google Scholar 

  81. 81.

    Duffield R, Marino FE. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions. Eur J Appl Physiol. 2007;100(6):727–35.

    Article  PubMed  Google Scholar 

  82. 82.

    Mero A, Komi P, Gregor R. Biomechanics of sprint running. Sports Med. 1992;13(6):376–92.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Secomb JL, Lundgren LE, Farley OR, et al. Relationships between lower-body muscle structure and lower-body strength, power, and muscle-tendon complex stiffness. J Strength Cond Res. 2015;29(8):2221–8.

    Article  PubMed  Google Scholar 

  84. 84.

    Wilson MH, Deschenes MR. The neuromuscular junction: anatomical features and adaptations to various forms of increased, or decreased neuromuscular activity. Int J Neurosci. 2005;115(6):803–28.

    Article  PubMed  Google Scholar 

  85. 85.

    Gathercole RJ, Sporer BC, Stellingwerff T, et al. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res. 2015;29(9):2522–31.

    Article  PubMed  Google Scholar 

  86. 86.

    Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol Occup Physiol. 1993;67(2):150–8.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Bell GJ, Petersen SR, Quinney HA, et al. The effect of velocity-specific strength training on peak torque and anaerobic rowing power. J Sports Sci. 1989;7(3):205–14.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Mahood NV, Kenefick RW, Kertzer R, et al. Physiological determinants of cross-country ski racing performance. Med Sci Sports Exerc. 2001;33(8):1379–84.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Sandsund M, Sue-Chu M, Helgerud J, et al. Effect of cold exposure (−15 C) and salbutamol treatment on physical performance in elite nonasthmatic cross-country skiers. Eur J Appl Physiol Occup Physiol. 1998;77(4):297–304.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Miyamoto N, Kawakami Y. Effect of pressure intensity of compression short-tight on fatigue of thigh muscles. Med Sci Sports Exerc. 2014;46(11):2168–74.

    Article  PubMed  Google Scholar 

  91. 91.

    Falvo M, Schilling B, Smith A. Repeated bout effect is absent in resistance trained men. An electromyographic analysis. J Electromyogr Kinesiol. 2010;19(6):e529–35.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Freddy Brown.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Freddy Brown, Conor Gissane, Glyn Howatson, Ken van Someren, Charles Pedlar and Jessica Hill declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, F., Gissane, C., Howatson, G. et al. Compression Garments and Recovery from Exercise: A Meta-Analysis. Sports Med 47, 2245–2267 (2017). https://doi.org/10.1007/s40279-017-0728-9

Download citation

Keywords

  • Resistance Training
  • Resistance Exercise
  • Muscle Damage
  • Eccentric Exercise
  • Exercise Modality