How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier

Abstract

A sub-2-hour marathon requires an average velocity (5.86 m/s) that is 2.5% faster than the current world record of 02:02:57 (5.72 m/s) and could be accomplished with a 2.7% reduction in the metabolic cost of running. Although supporting body weight comprises the majority of the metabolic cost of running, targeting the costs of forward propulsion and leg swing are the most promising strategies for reducing the metabolic cost of running and thus improving marathon running performance. Here, we calculate how much time could be saved by taking advantage of unconventional drafting strategies, a consistent tailwind, a downhill course, and specific running shoe design features while staying within the current International Association of Athletic Federations regulations for record purposes. Specifically, running in shoes that are 100 g lighter along with second-half scenarios of four runners alternately leading and drafting, or a tailwind of 6.0 m/s, combined with a 42-m elevation drop could result in a time well below the 2-hour marathon barrier.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Examples include 5000-m runner Harald Norpoth and cyclist Michael Rasmussen.

  2. 2.

    For sprinting events on the track, the maximum IAAF allowable wind velocity for record purposes is only 2.0 m/s (IAAF rule 260.14c [54]).

  3. 3.

    Read more on the 2011 Boston Marathon here: http://www.espn.com/boston/news/story?id=6381520.

References

  1. 1.

    Joyner MJ, Ruiz JR, Lucia A. The two-hour marathon: who and when? J Appl Physiol. 2011;110:275–7.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Weiss M, Newman A, Whitmore C, et al. One hundred and fifty years of sprint and distance running—past trends and future prospects. Eur J Sport Sci. 2016;16:393–401.

    Article  PubMed  Google Scholar 

  3. 3.

    Hill AV. The physiological basis of athletic records. Lancet. 1925;206:481–6.

    Article  Google Scholar 

  4. 4.

    Kennelly AE. An approximate law of fatigue in the speeds of racing animals. Proc Am Acad Arts Sci. 1906;42:275.

    Article  Google Scholar 

  5. 5.

    Liu Y, Schutz RW. Prediction models for track and field performances. Meas Phys Educ Exerc Sci. 1998;2:205–23.

    Article  Google Scholar 

  6. 6.

    Caesar E. Two hours: the quest to run the impossible marathon. New York: Simon & Schuster; 2015.

    Google Scholar 

  7. 7.

    Tucker R, Santos-Concejero J. An imminent sub 2-hours marathon is unlikely: historical trends of the gender gap in running events. Int J Sports Physiol Perform. Epub 14 December 2016.

  8. 8.

    Hutchinson A. What will it take to run a 2-hour marathon. Runner’s world. http://rw.runnersworld.com/sub-2.

  9. 9.

    Nike introduces breaking2: the quest to break the two-hour marathon barrier. Nike News; 2016 December 12. http://news.nike.com/news/2-hour-marathon.

  10. 10.

    Germano S. Adidas, like Nike, is working on sub-2 hour marathon project. Wall Street J. 2016 Dec 16. https://www.wsj.com/articles/adidas-like-nike-is-working-on-sub-2-hour-marathon-project-1481886001.

  11. 11.

    Sub2. Countdown to the first sub2hr marathon: no longer a matter of if but rather when. http://www.sub2hrs.com/.

  12. 12.

    Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol. 1989;67:453–65.

    PubMed  Google Scholar 

  13. 13.

    Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70:683–7.

    CAS  PubMed  Google Scholar 

  14. 14.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Shaw AJ, Ingham SA, Atkinson G, et al. The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners. PLoS One. 2015;10:e0123101.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

    Article  PubMed  Google Scholar 

  17. 17.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Williams KR, Cavanagh PR. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol. 1987;63:1236–45.

    CAS  PubMed  Google Scholar 

  19. 19.

    Fuller JT, Bellenger CR, Thewlis D, et al. The effect of footwear on running performance and running economy in distance runners. Sports Med. 2015;45:411–22.

    Article  PubMed  Google Scholar 

  20. 20.

    Hoogkamer W, Kipp S, Spiering BA, et al. Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc. 2016;48:2175–80.

    Article  PubMed  Google Scholar 

  21. 21.

    El Helou N, Tafflet M, Berthelot G, et al. Impact of environmental parameters on marathon running performance. PLoS One. 2012;7:e37407.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Di Prampero PE, Atchou G, Brückner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.

    Article  PubMed  Google Scholar 

  23. 23.

    Smith CGM, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85:19–26.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Poole DC, Burnley M, Vanhatalo A, et al. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48:2320–34.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Frederick EC, Daniels JT, Hayes JW. The effect of shoe weight on the aerobic demands of running. In: Bachl N, Prokop L, Suckert R, editors. Curr Top Sports Med Proc World Congr Sports Med. Vienna: Urban and Schwarzenberg; 1984. p. 616–25.

    Google Scholar 

  26. 26.

    Franz JR, Wierzbinski CM, Kram R. Metabolic cost of running barefoot versus shod. Med Sci Sports Exerc. 2012;44:1519–25.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Pugh LG. Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol. 1970;207:823–35.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Steudel-Numbers KL, Wall-Scheffler CM. Optimal running speed and the evolution of hominin hunting strategies. J Hum Evol. 2009;56:355–60.

    Article  PubMed  Google Scholar 

  29. 29.

    Daniels J, Krahenbuhl G, Foster C, et al. Aerobic responses of female distance runners to submaximal and maximal exercise. Ann NY Acad Sci. 1977;301:726–33.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Daniels JT. A physiologist’s view of running economy. Med Sci Sports Exerc. 1985;17:332–8.

    CAS  PubMed  Google Scholar 

  31. 31.

    Batliner M. Does VO2 increase linearly with speed in average and sub-elite distance runners?. Boulder: University of Colorado; 2013.

    Google Scholar 

  32. 32.

    Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol. 1963;18:367–70.

    CAS  PubMed  Google Scholar 

  33. 33.

    Léger L, Mercier D. Gross energy cost of horizontal treadmill and track running. Sports Med. 1984;1:270–7.

    Article  PubMed  Google Scholar 

  34. 34.

    Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14:321–7.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kyle CR, Caiozzo VJ. The effect of athletic clothing aerodynamics upon running speed. Med Sci Sports Exerc. 1986;18:509–15.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    McMiken DF, Daniels JT. Aerobic requirements and maximum aerobic power in treadmill and track running. Med Sci Sports Exerc. 1976;8:14–7.

    CAS  Article  Google Scholar 

  37. 37.

    Tam E, Rossi H, Moia C, et al. Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol. 2012;112:3797–806.

    Article  PubMed  Google Scholar 

  38. 38.

    Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Di Prampero P. The energy cost of human locomotion on land and in water. Int J Sports Med. 1986;07:55–72.

    Article  Google Scholar 

  40. 40.

    Pollock ML. Submaximal and maximal working capacity of elite distance runners. Part I: cardiorespiratory aspects. Ann NY Acad Sci. 1977;301:310–22.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:161–70.

    Article  PubMed  Google Scholar 

  42. 42.

    Daniels JT, Gilbert J. Oxygen power: performance tables for distance runners. Tempe, AZ: Daniels and Gilbert; 1979.

    Google Scholar 

  43. 43.

    Brueckner JC, Atchou G, Capelli C, et al. The energy cost of running increases with the distance covered. Eur J Appl Physiol Occup Physiol. 1991;62:385–9.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Nicol C, Komi PV, Marconnet P. Effects of marathon fatigue on running kinematics and economy. Scand J Med Sci Sports. 1991;1:195–204.

    Article  Google Scholar 

  45. 45.

    Kyröläinen H, Pullinen T, Candau R, et al. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol. 2000;82:297–304.

    Article  PubMed  Google Scholar 

  46. 46.

    Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651–73.

    Article  PubMed  Google Scholar 

  47. 47.

    Arellano CJ, Kram R. Partitioning the metabolic cost of human running: a task-by-task approach. Integr Comp Biol. 2014;54:1084–98.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kram R, Taylor CR. Energetics of running: a new perspective. Nature. 1990;346:265–7.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Teunissen LPJ, Grabowski A, Kram R. Effects of independently altering body weight and body mass on the metabolic cost of running. J Exp Biol. 2007;210:4418–27.

    Article  PubMed  Google Scholar 

  50. 50.

    Aaron EA, Johnson BD, Seow CK, et al. Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol. 1992;72:1810–7.

    CAS  PubMed  Google Scholar 

  51. 51.

    Aaron EA, Seow KC, Johnson BD, et al. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72:1818–25.

    CAS  PubMed  Google Scholar 

  52. 52.

    Farley CT, McMahon TA. Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol. 1992;73:2709–12.

    CAS  PubMed  Google Scholar 

  53. 53.

    Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37:907–21.

    Article  PubMed  Google Scholar 

  54. 54.

    Coyle EF, González-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29:88–92.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Armstrong LE, Whittlesey MJ, Casa DJ, et al. No effect of 5% hypohydration on running economy of competitive runners at 23 degrees C. Med Sci Sports Exerc. 2006;38:1762–9.

    Article  PubMed  Google Scholar 

  56. 56.

    Beis LY, Wright-Whyte M, Fudge B, et al. Drinking behaviors of elite male runners during marathon competition. Clin J Sports Med. 2012;22:254–61.

    Article  Google Scholar 

  57. 57.

    Pavei G, Biancardi CM, Minetti AE. Skipping vs. running as the bipedal gait of choice in hypogravity. J Appl Physiol. 2015;119:93–100.

    Article  PubMed  Google Scholar 

  58. 58.

    Kerdok AE, Biewener AA, McMahon TA, et al. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol. 2002;92:469–78.

    Article  PubMed  Google Scholar 

  59. 59.

    Tung KD, Franz JR, Kram R. A test of the metabolic cost of cushioning hypothesis during unshod and shod running. Med Sci Sports Exerc. 2014;46:324–9.

    Article  PubMed  Google Scholar 

  60. 60.

    International Association of Athletics Federations. Competition rules 2016–2017. Monaco: International Association of Athletics Federations; 2015.

    Google Scholar 

  61. 61.

    Chang YH, Kram R. Metabolic cost of generating horizontal forces during human running. J Appl Physiol. 1999;86:1657–62.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Vernillo G, Schena F, Berardelli C, et al. Anthropometric characteristics of top-class Kenyan marathon runners. J Sports Med Phys Fitness. 2013;53:403–8.

    CAS  PubMed  Google Scholar 

  63. 63.

    Brisswalter J, Hausswirth C. Consequences of drafting on human locomotion: benefits on sports performance. Int J Sports Physiol Perform. 2008;3:3–15.

    Article  PubMed  Google Scholar 

  64. 64.

    International Association of Athletics Federations. Records and lists: top lists. Senior outdoor half marathon men. https://www.iaaf.org/records/toplists/road-running/half-marathon/outdoor/men/senior.

  65. 65.

    Kyle CR. Reduction of wind resistance and power output of racing cyclists and runners traveling in groups. Ergonomics. 1979;22:387–97.

    Article  Google Scholar 

  66. 66.

    Davies CT. Effects of wind assistance and resistance on the forward motion of a runner. J Appl Physiol. 1980;48:702–9.

    CAS  PubMed  Google Scholar 

  67. 67.

    Snyder KL, Farley CT. Energetically optimal stride frequency in running: the effects of incline and decline. J Exp Biol. 2011;214:2089–95.

    Article  PubMed  Google Scholar 

  68. 68.

    Minetti AE, Ardigò LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol. 1994;195:211–25.

    CAS  PubMed  Google Scholar 

  69. 69.

    Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.

    Article  PubMed  Google Scholar 

  70. 70.

    Myers MJ, Steudel K. Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol. 1985;116:363–73.

    CAS  PubMed  Google Scholar 

  71. 71.

    Martin PE. Mechanical and physiological responses to lower extremity loading during running. Med Sci Sports Exerc. 1985;17:427–33.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Saltin B, Larsen H, Terrados N, et al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995;5:209–21.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Brüggemann G-P, Arampatzis A, Emrich F, et al. Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses. Sports Technol. 2009;1:220–7.

    Article  Google Scholar 

  74. 74.

    Weyand PG, Bundle MW, McGowan CP, et al. The fastest runner on artificial legs: different limbs, similar function? J Appl Physiol. 2009;107:903–11.

    Article  PubMed  Google Scholar 

  75. 75.

    Beck ON, Taboga P, Grabowski AM. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations. J Appl Physiol. 2017. doi:10.1152/japplphysiol.00587.2016.

  76. 76.

    Frederick EC, Clarke TE, Larsen JL, et al. The effects of shoe cushioning on the oxygen demands of running. In: Nigg BM, Kerr BA, editors. Biomechanical aspects of sports shoes and playing surfaces. Calgary: The University of Calgary; 1983. p. 107–14.

    Google Scholar 

  77. 77.

    Worobets J, Wannop JW, Tomaras E, et al. Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Sci. 2014;6:147–53.

    Article  Google Scholar 

  78. 78.

    Frederick EC, Howley ET, Powers SK. Lower O2 cost while running on air cushion type shoe. Med Sci Sports Exerc. 1980;12:81–2.

    Google Scholar 

  79. 79.

    Roy J-PR, Stefanyshyn DJ. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med Sci Sports Exerc. 2006;38:562–9.

    Article  PubMed  Google Scholar 

  80. 80.

    Madden R, Sakaguchi M, Wannop J, et al. Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Sci. 2015;7:S11–3.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Owen Beck, Len Brownlie, Dan Judelson, and Geng Luo for fruitful discussions, Elissa Johnson for illustrations, and Sean Hartnett for the Berlin 2014 split time data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wouter Hoogkamer.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Wouter Hoogkamer and Christopher Arellano have no conflicts of interest relevant to the content of this review. Rodger Kram is a paid consultant to Nike, Inc., which is engaged in a sub-2-hour marathon project. The views expressed in this manuscript do not represent those of Nike, Inc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 185 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoogkamer, W., Kram, R. & Arellano, C.J. How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Med 47, 1739–1750 (2017). https://doi.org/10.1007/s40279-017-0708-0

Download citation

Keywords

  • Metabolic Cost
  • Support Body Weight
  • World Record
  • Ethylene Vinyl Acetate
  • Ethylene Vinyl Acetate