Skip to main content

The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review

Abstract

Despite the severity and prevalence of iron deficiency in exercising women, few published reports have explored how iron deficiency interacts with another prevalent and severe condition in exercising women: the ‘female athlete triad.’ This review aims to describe how iron deficiency may interact with each component of the female athlete triad, that is, energy status, reproductive function, and bone health. The effects of iron deficiency on energy status are discussed in regards to thyroid function, metabolic fuel availability, eating behaviors, and energy expenditure. The interactions between iron deficiency and reproductive function are explored by discussing the potentially impaired fertility and hyperprolactinemia due to iron deficiency and the alterations in iron metabolism due to menstrual blood loss and estrogen exposure. The interaction of iron deficiency with bone health may occur via dysregulation of the growth hormone/insulin-like growth factor-1 axis, hypoxia, and hypothyroidism. Based on these discussions, several future directions for research are presented.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Rowland T. Iron deficiency in athletes an update. Am J Lifestyle Med. 2012;6(4):319–27.

    Article  Google Scholar 

  2. 2.

    Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2):568S–80S.

    CAS  PubMed  Google Scholar 

  3. 3.

    DellaValle DM, Haas JD. Impact of iron depletion without anemia on performance in trained endurance athletes at the beginning of a training season: a study of female collegiate rowers. Int J Sport Nutr Exerc Metab. 2011;21(6):501–6.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Dellavalle DM, Haas JD. Iron status is associated with endurance performance and training in female rowers. Med Sci Sports Exerc. 2012;44(8):1552–9.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Pasricha S-R, Low M, Thompson J, Farrell A, De-Regil L-M. Iron supplementation benefits physical performance in women of reproductive age: a systematic review and meta-analysis. J Nutr. 2014;144(6):906–14.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Barrack MT, Ackerman KE, Gibbs JC. Update on the female athlete triad. Curr Rev Musculoskelet Med. 2013;6(2):195–204.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Nazem TG, Ackerman KE. The female athlete triad. Sports Health. 2012;4(4):302–11.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, American College of Sports Medicine. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    PubMed  Article  Google Scholar 

  9. 9.

    Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol Bethesda Md 1985. 1998;84(1):37–46.

    CAS  Google Scholar 

  10. 10.

    Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1277–96.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Stafford DEJ. Altered hypothalamic-pituitary-ovarian axis function in young female athletes: implications and recommendations for management. Treat Endocrinol. 2005;4(3):147–54.

    PubMed  Article  Google Scholar 

  13. 13.

    Williams NI, Helmreich DL, Parfitt DB, Caston-Balderrama A, Cameron JL. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86(11):5184–93.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    M’Rabet-Bensalah K, Aubert CE, Coslovsky M, Collet T-H, Baumgartner C, den Elzen WPJ, Luben R, Angelillo-Scherrer A, Aujesky D, Khaw K-T, Rodondi N. Thyroid dysfunction and anemia in a large population-based study. Clin Endocrinol (Oxf). 2016;84(4):627-31.

  15. 15.

    Refaat B. Prevalence and characteristics of anemia associated with thyroid disorders in non-pregnant Saudi women during the childbearing age: a cross-sectional study. Biomed J. 2015;38(4):307–16.

    PubMed  Article  Google Scholar 

  16. 16.

    Khatiwada S, Gelal B, Baral N, Lamsal M. Association between iron status and thyroid function in Nepalese children. Thyroid Res. 2016;9(2):156–60.

    Google Scholar 

  17. 17.

    İpek İÖ, Kaçmaz E, Bozaykut A, Sezer RG, Seren L, Paketçi C. The effect of iron deficiency anemia on plasma thyroid hormone levels in childhood. Turk Arch Pediatr. 2011;46:122–5.

    Google Scholar 

  18. 18.

    Beard J, Green W, Miller L, Finch C. Effect of iron-deficiency anemia on hormone levels and thermoregulation during cold exposure. Am J Physiol. 1984;247(1 Pt 2):R114–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Beard J, Tobin B, Green W. Evidence for thyroid hormone deficiency in iron-deficient anemic rats. J Nutr. 1989;119(5):772–8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Hess SY, Zimmermann MB, Arnold M, Langhans W, Hurrell RF. Iron deficiency anemia reduces thyroid peroxidase activity in rats. J Nutr. 2002;132(7):1951–5.

    CAS  PubMed  Google Scholar 

  21. 21.

    Zimmermann MB, Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867–78.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Berga SL, Mortola JF, Girton L, Suh B, Laughlin G, Pham P, Yen SS. Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1989;68(2):301–8.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 1993;264(5 Pt 2):R924–30.

    CAS  PubMed  Google Scholar 

  24. 24.

    Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol Rev Can Physiol Appliquée. 1998;23(3):293–306.

    CAS  Article  Google Scholar 

  25. 25.

    Mcaninch EA, Bianco AC. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci. 2014;1311:77–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Brănişteanu DE, Dimitriu A, Vieriu M, Boda D, Stoleriu G, Molodoi DA, Brănişteanu D. Cutaneous manifestations associated with thyroid disease. Rev Medico-Chir Soc Medici Şi Nat Din Iaşi. 2014;118(4):953–8.

    Google Scholar 

  27. 27.

    Ghaemi N, Bagheri S, Elmi S, Mohammadzade Rezaee S, Elmi S, Erfani Sayyar R. Delayed diagnosis of hypothyroidism in children: report of 3 cases. Iran Red Crescent Med J. 2015 Nov; 17(11): e20306.

  28. 28.

    Keen MA, Hassan I, Bhat MH. A clinical study of the cutaneous manifestations of hypothyroidism in kashmir valley. Indian J Dermatol. 2013;58(4):326.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Melish JS. Thyroid disease. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990.

    Google Scholar 

  30. 30.

    Neki NS, Mani T, Kumar J. Alopecia areata associated with hypothyroidism. Natl Med J India. 2013;26(6):361.

    CAS  PubMed  Google Scholar 

  31. 31.

    Bangsbo J, Iaia FM, Krustrup P. Metabolic response and fatigue in soccer. Int J Sports Physiol Perform. 2007;2(2):111–27.

    PubMed  Article  Google Scholar 

  32. 32.

    Gonçalves A, Resende ES, Fernandes MLMP, da Costa AM. Effect of thyroid hormones on cardiovascular and muscle systems and on exercise tolerance: a brief review. Arq Bras Cardiol. 2006;87(3):e45–7.

    PubMed  Article  Google Scholar 

  33. 33.

    Kahaly GJ, Kampmann C, Mohr-Kahaly S. Cardiovascular hemodynamics and exercise tolerance in thyroid disease. Thyroid Off J Am Thyroid Assoc. 2002;12(6):473–81.

    Article  Google Scholar 

  34. 34.

    McAllister RM, Delp MD, Laughlin MH. Thyroid status and exercise tolerance. Cardiovascular and metabolic considerations. Sports Med Auckl NZ. 1995;20(3):189–98.

    CAS  Article  Google Scholar 

  35. 35.

    Ritchie M, Yeap BB. Thyroid hormone: Influences on mood and cognition in adults. Maturitas. 2015;81(2):266–75.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Ryan KJ, Engel LL. Hydroxylation of steroids at carbon 21. J Biol Chem. 1957;225(1):103–14.

    CAS  PubMed  Google Scholar 

  38. 38.

    Saad MJ, Morais SL, Saad ST. Reduced cortisol secretion in patients with iron deficiency. Ann Nutr Metab. 1991;35(2):111–5.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Laughlin GA, Dominquez CE. Nutritional and endocrine-metabolic aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1998;83(1):25–32.

    CAS  PubMed  Google Scholar 

  40. 40.

    Dinneen S, Alzaid A, Miles J, Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Investig. 1993;92(5):2283–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Djurhuus CB, Gravholt CH, Nielsen S, Mengel A, Christiansen JS, Schmitz OE, Møller N. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab. 2002;283(1):E172–7.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Horber FF, Haymond MW. Human growth hormone prevents the protein catabolic side effects of prednisone in humans. J Clin Investig. 1990;86(1):265–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Pauli SA, Berga SL. Athletic amenorrhea: energy deficit or psychogenic challenge? Ann N Y Acad Sci. 2010;1205:33–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Rizza RA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab. 1982;54(1):131–8.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Battezzati A, Benedini S, Fattorini A, Piceni Sereni L, Luzi L. Effect of hypoglycemia on amino acid and protein metabolism in healthy humans. Diabetes. 2000;49(9):1543–51.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39(1):52–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Isguven P, Arslanoglu I, Erol M, Yildiz M, Adal E, Erguven M. Serum levels of ghrelin, leptin, IGF-I, IGFBP-3, insulin, thyroid hormones and cortisol in prepubertal children with iron deficiency. Endocr J. 2007;54(6):985–90.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Akarsu S, Demir H, Selek S, Oguzoncul F. Iron deficiency anemia and levels of oxidative stress induced by treatment modality. Pediatr Int Off J Jpn Pediatr Soc. 2013;55(3):289–95.

    CAS  Article  Google Scholar 

  49. 49.

    Ceppi A, Blum JW. Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron-deficient veal calves. Zentralblatt Für Veterinärmedizin Reihe A. 1994;41(6):443–58.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Gupta V, Lee M. Growth hormone in chronic renal disease. Indian J Endocrinol Metab. 2012;16(2):195–203.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Gordon CM, LeBoff M. The female athlete triad: a clinical guide. Springer, New York; 2015: 85-109.

    Google Scholar 

  52. 52.

    Misra M, Miller KK, Bjornson J, Hackman A, Aggarwal A, Chung J, Ott M, Herzog DB, Johnson ML, Klibanski A. Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab. 2003;88(12):5615–23.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Waters DL, Qualls CR, Dorin R, Veldhuis JD, Baumgartner RN. Increased pulsatility, process irregularity, and nocturnal trough concentrations of growth hormone in amenorrheic compared to eumenorrheic athletes. J Clin Endocrinol Metab. 2001;86(3):1013–9.

    CAS  PubMed  Google Scholar 

  54. 54.

    Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.

    PubMed  Article  Google Scholar 

  56. 56.

    Martinsen M, Sundgot-Borgen J. Higher prevalence of eating disorders among adolescent elite athletes than controls. Med Sci Sports Exerc. 2013;45(6):1188–97.

    PubMed  Article  Google Scholar 

  57. 57.

    Loucks AB, Nattiv A. Essay: The female athlete triad. Lancet Lond Engl. 2005;366(Suppl 1):S49–50.

    Article  Google Scholar 

  58. 58.

    Stice E. Risk and maintenance factors for eating pathology: a meta-analytic review. Psychol Bull. 2002;128(5):825–48.

    PubMed  Article  Google Scholar 

  59. 59.

    Silva L, Gomes AR, Martins C. Psychological factors related to eating disordered behaviors: a study with Portuguese athletes. Span J Psychol. 2011;14(1):323–35.

    PubMed  Article  Google Scholar 

  60. 60.

    Vardar E, Vardar SA, Kurt C. Anxiety of young female athletes with disordered eating behaviors. Eat Behav. 2007;8(2):143–7.

    PubMed  Article  Google Scholar 

  61. 61.

    Swinbourne J, Hunt C, Abbott M, Russell J, St Clare T, Touyz S. The comorbidity between eating disorders and anxiety disorders: prevalence in an eating disorder sample and anxiety disorder sample. Aust N Z J Psychiatry. 2012;46(2):118–31.

    PubMed  Article  Google Scholar 

  62. 62.

    Davenport E, Rushford N, Soon S, McDermott C. Dysfunctional metacognition and drive for thinness in typical and atypical anorexia nervosa. J Eat Disord. 2015;3:24.

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Evans L, Wertheim EH. Intimacy patterns and relationship satisfaction of women with eating problems and the mediating effects of depression, trait anxiety and social anxiety. J Psychosom Res. 1998;44(3–4):355–65.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Fiore F, Ruggiero GM, Sassaroli S. Emotional dysregulation and anxiety control in the psychopathological mechanism underlying drive for thinness. Front Psychiatry. 2014; 5: 43.

  65. 65.

    Ricciardelli LA, McCabe MP. Dietary restraint and negative affect as mediators of body dissatisfaction and bulimic behavior in adolescent girls and boys. Behav Res Ther. 2001;39(11):1317–28.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Steere J, Cooper PJ. The effects on eating of dietary restraint, anxiety, and hunger. Int J Eat Disord. 1993;13(2):211–9.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior. J Nutr Biochem. 2014;25(11):1101–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Beard JL, Chen Q, Connor J, Jones BC. Altered monamine metabolism in caudate-putamen of iron-deficient rats. Pharmacol Biochem Behav. 1994;48(3):621–4.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Chen Q, Beard JL, Jones BC. Abnormal rat brain monoamine metabolism in iron deficiency anemia. J Nutr Biochem. 1995;6(9):486–93.

    CAS  Article  Google Scholar 

  70. 70.

    de Lima MNM, Presti-Torres J, Caldana F, Grazziotin MM, Scalco FS, Guimarães MR, Bromberg E, Franke SIR, Henriques JAP, Schröder N. Desferoxamine reverses neonatal iron-induced recognition memory impairment in rats. Eur J Pharmacol. 2007;570(1–3):111–4.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Li Y, Kim J, Buckett PD, Böhlke M, Maher TJ, Wessling-Resnick M. Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats. J Nutr. 2011;141(12):2133–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Kwik-Uribe CL, Gietzen D, German JB, Golub MS, Keen CL. Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr. 2000;130(11):2821–30.

    CAS  PubMed  Google Scholar 

  73. 73.

    Mackler B, Person R, Miller LR, Inamdar AR, Finch CA. Iron deficiency in the rat: biochemical studies of brain metabolism. Pediatr Res. 1978;12(3):217–20.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Youdim MB, Ben-Shachar D, Yehuda S. Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. Am J Clin Nutr. 1989;50(3):607–17.

    CAS  PubMed  Google Scholar 

  75. 75.

    Youdim MBH, Green AR, Bloomfield MR, Mitchell BD, Heal DJ, Grahame-Smith DG. The effects of iron deficiency on brain biogenic monoamine biochemistry and function in rats. Neuropharmacology. 1980;19(3):259–67.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Durant C, Christmas D, Nutt D. The pharmacology of anxiety. Curr Top Behav Neurosci. 2010;2:303–30.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Barbarich NC, Kaye WH, Jimerson D. Neurotransmitter and imaging studies in anorexia nervosa: new targets for treatment. Curr Drug Targets CNS Neurol Disord. 2003;2(1):61–72.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Beard JL, Erikson KM, Jones BC. Neurobehavioral analysis of developmental iron deficiency in rats. Behav Brain Res. 2002;134(1–2):517–24.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Deinard A, Gilbert A, Dodds M, Egeland B. Iron deficiency and behavioral deficits. Pediatrics. 1981;68(6):828–33.

    Google Scholar 

  80. 80.

    Lozoff B, Brittenham G, Viteri FE, Urrutia JJ. Behavioral abnormalities in infants with iron deficiency anemia. In: Pollitt E, Leibel RL (eds) Iron deficiency: brain biochemistry and behavior. Raven Press, New York, 183–194.

  81. 81.

    Gulmez H, Akin Y, Savas M, Gulum M, Ciftci H, Yalcinkaya S, Yeni E. Impact of iron supplementation on sexual dysfunction of women with iron deficiency anemia in short term: a preliminary study. J Sex Med. 2014;11(4):1042–6.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Peuranpää P, Heliövaara-Peippo S, Fraser I, Paavonen J, Hurskainen R. Effects of anemia and iron deficiency on quality of life in women with heavy menstrual bleeding. Acta Obstet Gynecol Scand. 2014;93(7):654–60.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Blundell JE, King NA. Effects of exercise on appetite control: loose coupling between energy expenditure and energy intake. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 1998;22(Suppl 2):S22–9.

    Google Scholar 

  84. 84.

    Li J, O’Connor LE, Zhou J, Campbell WW. Exercise patterns, ingestive behaviors, and energy balance. Physiol Behav. 2014;134:70–5.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Hagobian TA, Yamashiro M, Hinkel-Lipsker J, Streder K, Evero N, Hackney T. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women. Appl Physiol Nutr Metab Physiol Appliquée Nutr Métabolisme. 2013;38(1):66–72.

    CAS  Article  Google Scholar 

  86. 86.

    King NA, Lluch A, Stubbs RJ, Blundell JE. High dose exercise does not increase hunger or energy intake in free living males. Eur J Clin Nutr. 1997;51(7):478–83.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Rocha J, Paxman J, Dalton C, Winter E, Broom D. Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive men. Appetite. 2013;71:369–78.

    PubMed  Article  Google Scholar 

  88. 88.

    Rocha J, Paxman J, Dalton C, Winter E, Broom D. Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive pre-menopausal women taking oral contraceptives. Appetite. 2015;89:183–91.

    PubMed  Article  Google Scholar 

  89. 89.

    Stubbs RJ, Sepp A, Hughes DA, Johnstone AM, King N, Horgan G, Blundell JE. The effect of graded levels of exercise on energy intake and balance in free-living women. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2002;26(6):866–9.

    CAS  Article  Google Scholar 

  90. 90.

    Whybrow S, Hughes DA, Ritz P, Johnstone AM, Horgan GW, King N, Blundell JE, Stubbs RJ. The effect of an incremental increase in exercise on appetite, eating behaviour and energy balance in lean men and women feeding ad libitum. Br J Nutr. 2008;100(5):1109–15.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Martin MK, Martin DT, Collier GR, Burke LM. Voluntary food intake by elite female cyclists during training and racing: influence of daily energy expenditure and body composition. Int J Sport Nutr Exerc Metab. 2002;12(3):249–67.

    PubMed  Article  Google Scholar 

  92. 92.

    Rosenkilde M, Morville T, Andersen PR, Kjær K, Rasmusen H, Holst JJ, Dela F, Westerterp K, Sjödin A, Helge JW. Inability to match energy intake with energy expenditure at sustained near-maximal rates of energy expenditure in older men during a 14-d cycling expedition. Am J Clin Nutr. 2015;102(6):1398–405.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Schubert MM, Desbrow B, Sabapathy S, Leveritt M. Acute exercise and subsequent energy intake. A meta-analysis. Appetite. 2013;63:92–104.

    PubMed  Article  Google Scholar 

  94. 94.

    Stensel D. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab. 2010;57(s2):36–42.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(3):439–56.

    CAS  Google Scholar 

  96. 96.

    Martins C, Robertson MD, Morgan LM. Effects of exercise and restrained eating behaviour on appetite control. Proc Nutr Soc. 2008;67(1):28–41.

    PubMed  Article  Google Scholar 

  97. 97.

    Austin J, Marks D. Hormonal regulators of appetite. Int J Pediatr Endocrinol. 2009; 2009:141753.

  98. 98.

    Deighton K, Barry R, Connon CE, Stensel DJ. Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur J Appl Physiol. 2013;113(5):1147–56.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Deighton K, Batterham RL, Stensel DJ. Appetite and gut peptide responses to exercise and calorie restriction. The effect of modest energy deficits. Appetite. 2014;81:52–9.

    PubMed  Article  Google Scholar 

  100. 100.

    Martins C, Morgan LM, Bloom SR, Robertson MD. Effects of exercise on gut peptides, energy intake and appetite. J Endocrinol. 2007;193(2):251–8.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    King JA, Garnham JO, Jackson AP, Kelly BM, Xenophontos S, Nimmo MA. Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise. Physiol Behav. 2015;141:23–31.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Alajmi N, Deighton K, King JA, Reischak-Oliveira A, Wasse LK, Jones J, Batterham RL, Stensel DJ. Appetite and energy intake responses to acute energy deficits in females versus males. Med Sci Sports Exerc. 2016 Mar;48(3):412-20.

  103. 103.

    Reed JL, Bowell JL, Hill BR, Williams BA, De Souza MJ, Williams NI. Exercising women with menstrual disturbances consume low energy dense foods and beverages. Appl Physiol Nutr Metab Physiol Appliquée Nutr Métabolisme. 2011;36(3):382–94.

    CAS  Article  Google Scholar 

  104. 104.

    Reed JL, De Souza MJ, Kindler JM, Williams NI. Nutritional practices associated with low energy availability in Division I female soccer players. J Sports Sci. 2014;32(16):1499–509.

    PubMed  Article  Google Scholar 

  105. 105.

    Lawless JW, Latham MC, Stephenson LS, Kinoti SN, Pertet AM. Iron supplementation improves appetite and growth in anemic Kenyan primary school children. J Nutr. 1994;124(5):645–54.

    CAS  PubMed  Google Scholar 

  106. 106.

    Stoltzfus RJ, Chway HM, Montresor A, Tielsch JM, Jape JK, Albonico M, Savioli L. Low dose daily iron supplementation improves iron status and appetite but not anemia, whereas quarterly anthelminthic treatment improves growth, appetite and anemia in Zanzibari preschool children. J Nutr. 2004;134(2):348–56.

    CAS  PubMed  Google Scholar 

  107. 107.

    Soliman AT, De Sanctis V, Kalra S. Anemia and growth. Indian J Endocrinol Metab. 2014;18(Suppl 1):S1–5.

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480–4.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Gao Y, Li Z, Gabrielsen JS, Simcox JA, Lee S, Jones D, Cooksey B, Stoddard G, Cefalu WT, McClain DA. Adipocyte iron regulates leptin and food intake. J Clin Investig. 2015;125(9):3681–91.

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Melin A, Tornberg ÅB, Skouby S, Møller SS, Sundgot-Borgen J, Faber J, Sidelmann JJ, Aziz M, Sjödin A. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015;25(5):610–22.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Vescovi JD, VanHeest JL. Case study: impact of inter- and intra-day energy parameters on bone health, menstrual function and hormones in an elite junior female triathlete. Int J Sport Nutr Exerc Metab. 2016 Aug;26(4):363-9. 

  112. 112.

    Pollock N, Grogan C, Perry M, Pedlar C, Cooke K, Morrissey D, Dimitriou L. Bone-mineral density and other features of the female athlete triad in elite endurance runners: a longitudinal and cross-sectional observational study. Int J Sport Nutr Exerc Metab. 2010;20(5):418–26.

    PubMed  Article  Google Scholar 

  113. 113.

    Gonçalves SF, Gomes AR. Exercising for weight and shape reasons vs. health control reasons: the impact on eating disturbance and psychological functioning. Eat Behav. 2012;13(2):127–30.

    PubMed  Article  Google Scholar 

  114. 114.

    Furnham A, Badmin N, Sneade I. Body image dissatisfaction: gender differences in eating attitudes, self-esteem, and reasons for exercise. J Psychol. 2002;136(6):581–96.

    PubMed  Article  Google Scholar 

  115. 115.

    Silberstein LR, Striegel-Moore RH, Timko C, Rodin J. Behavioral and psychological implications of body dissatisfaction: do men and women differ? Sex Roles. 1988;19(3–4):219–32.

    Article  Google Scholar 

  116. 116.

    Strelan P, Mehaffey SJ, Tiggemann M. Brief report: Self-objectification and esteem in young women: the mediating role of reasons for exercise. Sex Roles. 2003;48(1–2):89–95.

    Article  Google Scholar 

  117. 117.

    Tiggemann M, Williamson S. The effect of exercise on body satisfaction and self-esteem as a function of gender and age. Sex Roles. 2000;43(1–2):119–27.

    Article  Google Scholar 

  118. 118.

    Hubbard ST, Gray JJ, Parker S. Differences among women who exercise for ‘food related’ and ‘non-food related’ reasons. Eur Eat Disord Rev. 1998;6(4):255–65.

    Article  Google Scholar 

  119. 119.

    Dalle Grave R, Calugi S, Marchesini G. Compulsive exercise to control shape or weight in eating disorders: prevalence, associated features, and treatment outcome. Compr Psychiatry. 2008;49(4):346–52.

    PubMed  Article  Google Scholar 

  120. 120.

    Davis C, Fox J. Excessive exercise and weight preoccupation in women. Addict Behav. 1993;18(2):201–11.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Mond JM, Calogero RM. Excessive exercise in eating disorder patients and in healthy women. Aust N Z J Psychiatry. 2009;43(3):227–34.

    PubMed  Article  Google Scholar 

  122. 122.

    Dellavalle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sports Exerc. 2014;46(6):1204–15.

    CAS  PubMed  Google Scholar 

  123. 123.

    Ghosh K. Non haematological effects of iron deficiency—a perspective. Indian J Med Sci. 2006;60(1):30–7.

    PubMed  Article  Google Scholar 

  124. 124.

    Agarwal R. Nonhematological benefits of iron. Am J Nephrol. 2007;27(6):565–71.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Blayney L, Bailey-Wood R, Jacobs A, Henderson A, Muir J. The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ Res. 1976;39(5):744–8.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Davies KJ, Maguire JJ, Brooks GA, Dallman PR, Packer L. Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am J Physiol. 1982;242(6):E418–27.

    CAS  PubMed  Google Scholar 

  127. 127.

    McKay RH, Higuchi DA, Winder WW, Fell RD, Brown EB. Tissue effects of iron deficiency in the rat. Biochim Biophys Acta. 1983;757(3):352–8.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Allen GFG, Toth R, James J, Ganley IG. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 2013;14(12):1127–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Ohira Y, Cartier LJ, Chen M, Holloszy JO. Induction of an increase in mitochondrial matrix enzymes in muscle of iron-deficient rats. Am J Physiol. 1987;253(5 Pt 1):C639–44.

    CAS  PubMed  Google Scholar 

  130. 130.

    Bayeva M, Chang H-C, Wu R, Ardehali H. When less is more: novel mechanisms of iron conservation. Trends Endocrinol Metab TEM. 2013;24(11):569–77.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Hagler L, Askew EW, Neville JR, Mellick PW, Coppes RI, Lowder JF. Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. Am J Clin Nutr. 1981;34(10):2169–77.

    CAS  PubMed  Google Scholar 

  132. 132.

    Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta BBA Bioenerg. 2010;1797(6–7):1171–7.

    CAS  Article  Google Scholar 

  133. 133.

    Hoppeler H, Vogt M, Weibel ER, Flück M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol. 2003;88(1):109–19.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, Johnson RS. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance. PLoS Biol. 2004;2(10):e288.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Mason S, Johnson RS. The role of HIF-1 in hypoxic response in the skeletal muscle. Adv Exp Med Biol. 2007;618:229–44.

    PubMed  Article  Google Scholar 

  136. 136.

    Kamei A, Watanabe Y, Ishijima T, Uehara M, Arai S, Kato H, Nakai Y, Abe K. Dietary iron-deficient anemia induces a variety of metabolic changes and even apoptosis in rat liver: a DNA microarray study. Physiol Genomics. 2010;42(2):149–56.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Pittman RN. Regulation of Tissue Oxygenation. San Rafael (CA): Morgan & Claypool Life Sciences; 2011. Chapter 7, Oxygen Transport in Normal and Pathological Situations: Defects and Compensations.

  138. 138.

    Krayenbuehl P-A, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222–7.

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Martinez-Torres C, Cubeddu L, Dillmann E, Brengelmann GL, Leets I, Layrisse M, Johnson DG, Finch C. Effect of exposure to low temperature on normal and iron-deficient subjects. Am J Physiol. 1984;246(3 Pt 2):R380–3.

    CAS  PubMed  Google Scholar 

  140. 140.

    Beard J. Feed efficiency and norepinephrine turnover in iron deficiency. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1987;184(3):337–44.

    CAS  Article  Google Scholar 

  141. 141.

    Tobin BW, Beard JL. Interactions of iron deficiency and exercise training relative to tissue norepinephrine turnover, triiodothyronine production and metabolic rate in rats. J Nutr. 1990;120(8):900–8.

    CAS  PubMed  Google Scholar 

  142. 142.

    Harris Rosenzweig P, Volpe SL. Effect of iron supplementation on thyroid hormone levels and resting metabolic rate in two college female athletes: a case study. Int J Sport Nutr Exerc Metab. 2000;10(4):434–43.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Goolsby M, Matheson G. 2014 female athlete triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN. Clin J Sport Med Off J Can Acad Sport Med. 2014;24(2):96–119.

    Google Scholar 

  144. 144.

    Melmed S, Williams RH, editors. Williams textbook of endocrinology. 12th ed. Philadelphia: Elsevier/Saunders; 2011.

    Google Scholar 

  145. 145.

    De Souza MJ, Miller BE, Loucks AB, Luciano AA, Pescatello LS, Campbell CG, Lasley BL. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32.

    PubMed  Google Scholar 

  146. 146.

    De Souza MJ, Toombs RJ, Scheid JL, O’Donnell E, West SL, Williams NI. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod Oxf Engl. 2010;25(2):491–503.

    Article  CAS  Google Scholar 

  147. 147.

    Barrack MT, Gibbs JC, Souza MJD, Williams NI, Nichols JF, Rauh MJ, Nattiv A. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    PubMed  Article  Google Scholar 

  148. 148.

    O’Donnell E, Harvey PJ, Goodman JM, De Souza MJ. Long-term estrogen deficiency lowers regional blood flow, resting systolic blood pressure, and heart rate in exercising premenopausal women. Am J Physiol Endocrinol Metab. 2007;292(5):E1401–9.

    PubMed  Article  CAS  Google Scholar 

  149. 149.

    Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, Hirschberg AL. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005;90(3):1354–9.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Alwan NA, Cade JE, McArdle HJ, Greenwood DC, Hayes HE, Simpson NAB. Maternal iron status in early pregnancy and birth outcomes: insights from the Baby’s Vascular health and Iron in Pregnancy study. Br J Nutr. 2015;113(12):1985–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Scholl TO. Maternal iron status: relation to fetal growth, length of gestation and the neonate’s iron endowment. Nutr Rev. 2011;69(Suppl 1):S23–9.

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Shen P-J, Gong B, Xu F-Y, Luo Y. Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. Eur Rev Med Pharmacol Sci. 2015;19(24):4690–7.

    PubMed  Google Scholar 

  153. 153.

    Li YQ, Cao XX, Bai B, Zhang JN, Wang MQ, Zhang YH. Severe iron deficiency is associated with a reduced conception rate in female rats. Gynecol Obstet Investig. 2014;77(1):19–23.

    CAS  Article  Google Scholar 

  154. 154.

    Rushton DH, Ramsay ID, Gilkes JJ, Norris MJ. Ferritin and fertility. Lancet Lond Engl. 1991;337(8756):1554.

    CAS  Article  Google Scholar 

  155. 155.

    Westphal LM, Polan ML, Trant AS. Double-blind, placebo-controlled study of Fertilityblend: a nutritional supplement for improving fertility in women. Clin Exp Obstet Gynecol. 2006;33(4):205–8.

    CAS  PubMed  Google Scholar 

  156. 156.

    Westphal LM, Polan ML, Trant AS, Mooney SB. A nutritional supplement for improving fertility in women: a pilot study. J Reprod Med. 2004;49(4):289–93.

    CAS  PubMed  Google Scholar 

  157. 157.

    Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Iron intake and risk of ovulatory infertility. Obstet Gynecol. 2006;108(5):1145–52.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Sher KS, Jayanthi V, Probert CS, Stewart CR, Mayberry JF. Infertility, obstetric and gynaecological problems in coeliac sprue. Dig Dis Basel Switz. 1994;12(3):186–90.

    CAS  Article  Google Scholar 

  159. 159.

    Stazi AV, Mantovani A. A risk factor for female fertility and pregnancy: celiac disease. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2000;14(6):454–63.

    CAS  Article  Google Scholar 

  160. 160.

    Aleshire SL, Osteen KG, Maxson WS, Entman SS, Bradley CA, Parl FF. Localization of transferrin and its receptor in ovarian follicular cells: morphologic studies in relation to follicular development. Fertil Steril. 1989;51(3):444–9.

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Balboni GC, Vannelli GB, Barni T, Orlando C, Serio M. Transferrin and somatomedin C receptors in the human ovarian follicles. Fertil Steril. 1987;48(5):796–801.

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Briggs DA, Sharp DJ, Miller D, Gosden RG. Transferrin in the developing ovarian follicle: evidence for de-novo expression by granulosa cells. Mol Hum Reprod. 1999;5(12):1107–14.

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Le NTV, Richardson DR. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta. 2002;1603(1):31–46.

    CAS  PubMed  Google Scholar 

  164. 164.

    Ponka P. Iron and cell proliferation: another piece of the puzzle. Blood. 2004;104(9):2620–1.

    CAS  Article  Google Scholar 

  165. 165.

    Cuiling L, Wei Y, Zhaoyuan H, Yixun L. Granulosa cell proliferation differentiation and its role in follicular development. Chin Sci Bull. 2005;50(23):2665–71.

    Article  Google Scholar 

  166. 166.

    Quirk SM, Cowan RG, Harman RM, Hu C-L, Porter DA. Ovarian follicular growth and atresia: the relationship between cell proliferation and survival. J Anim Sci. 2004;82(E-Suppl):E40–52.

    PubMed  Article  Google Scholar 

  167. 167.

    Robker RL, Richards JS. Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol Baltim Md. 1998;12(7):924–40.

    CAS  Article  Google Scholar 

  168. 168.

    Sheftel AD, Stehling O, Pierik AJ, Elsässer H-P, Mühlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA. 2010;107(26):11775–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Palandri A, L’hôte D, Cohen-Tannoudji J, Tricoire H, Monnier V. Frataxin inactivation leads to steroid deficiency in flies and human ovarian cells. Hum Mol Genet. 2015;24(9):2615–26.

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Habibzadeh V, Nematolahi Mahani SN, Kamyab H. The correlation of factors affecting the endometrial thickness with pregnancy outcome in the IUI cycles. Iran J Reprod Med. 2011;9(1):41–6.

    PubMed  PubMed Central  Google Scholar 

  171. 171.

    Richter KS, Bugge KR, Bromer JG, Levy MJ. Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertil Steril. 2007;87(1):53–9.

    PubMed  Article  Google Scholar 

  172. 172.

    Clancy KBH, Nenko I, Jasienska G. Menstruation does not cause anemia: endometrial thickness correlates positively with erythrocyte count and hemoglobin concentration in premenopausal women. Am J Hum Biol. 2006;18(5):710–3.

    PubMed  Article  Google Scholar 

  173. 173.

    Barkey RJ, Amit T, Ben-Shachar D, Youdim MB. Characterization of the hepatic prolactin receptors induced by chronic iron deficiency and neuroleptics. Eur J Pharmacol. 1986;122(2):259–67.

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Barkey RJ, Ben-Shachar D, Amit T, Youdim MB. Increased hepatic and reduced prostatic prolactin (PRL) binding in iron deficiency and during neuroleptic treatment: correlation with changes in serum PRL and testosterone. Eur J Pharmacol. 1985;109(2):193–200.

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Gershengorn MC, Hoffstein ST, Rebecchi MJ, Geras E, Rubin BG. Thyrotropin-releasing hormone stimulation of prolactin release from clonal rat pituitary cells. J Clin Investig. 1981;67(6):1769–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Bahar A, Akha O, Kashi Z, Vesgari Z. Hyperprolactinemia in association with subclinical hypothyroidism. Casp J Intern Med. 2011;2(2):229–33.

    Google Scholar 

  177. 177.

    Lee D-Y, Oh Y-K, Yoon B-K, Choi D. Prevalence of hyperprolactinemia in adolescents and young women with menstruation-related problems. Am J Obstet Gynecol. 2012;206(3):213.e1–5.

    CAS  Article  Google Scholar 

  178. 178.

    Calarge CA, Ziegler EE. Iron deficiency in pediatric patients in long-term risperidone treatment. J Child Adolesc Psychopharmacol. 2013;23(2):101–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Goel P, Kahkasha S, Narang S, Gupta BK, Goel K. Evaluation of serum prolactin level in patients of subclinical and overt hypothyroidism. J Clin Diagn Res JCDR. 2015;9(1):BC15–7.

    PubMed  Google Scholar 

  180. 180.

    Lechan RM, Fekete C. Feedback regulation of thyrotropin-releasing hormone (TRH): mechanisms for the non-thyroidal illness syndrome. J Endocrinol Investig. 2004;27(6 Suppl):105–19.

    CAS  Google Scholar 

  181. 181.

    Harvey LJ, Armah CN, Dainty JR, Foxall RJ, Lewis DJ, Langford NJ, Fairweather-Tait SJ. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr. 2005;94(4):557–64.

    CAS  PubMed  Article  Google Scholar 

  182. 182.

    Heath AL, Skeaff CM, Williams S, Gibson RS. The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Public Health Nutr. 2001;4(2):197–206.

    CAS  PubMed  Article  Google Scholar 

  183. 183.

    Moschonis G, Papandreou D, Mavrogianni C, Giannopoulou A, Damianidi L, Malindretos P, Lionis C, Chrousos GP, Manios Y. Association of iron depletion with menstruation and dietary intake indices in pubertal girls: the healthy growth study. BioMed Res Int. 2013;2013:423263.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  184. 184.

    Kim C, Nan B, Kong S, Harlow S. Changes in iron measures over menopause and associations with insulin resistance. J Womens Health 2002. 2012;21(8):872–7.

    Article  Google Scholar 

  185. 185.

    Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. Prevalence of iron deficiency in the United States. JAMA J Am Med Assoc. 1997;277(12):973–6.

    CAS  Article  Google Scholar 

  186. 186.

    Dasharathy SS, Mumford SL, Pollack AZ, Perkins NJ, Mattison DR, Wactawski-Wende J, Schisterman EF. Menstrual bleeding patterns among regularly menstruating women. Am J Epidemiol. 2012;175(6):536–45.

    PubMed  PubMed Central  Article  Google Scholar 

  187. 187.

    Schliep KC, Mumford SL, Hammoud AO, Stanford JB, Kissell KA, Sjaarda LA, Perkins NJ, Ahrens KA, Wactawski-Wende J, Mendola P, Schisterman EF. Luteal phase deficiency in regularly menstruating women: prevalence and overlap in identification based on clinical and biochemical diagnostic criteria. J Clin Endocrinol Metab. 2014;99(6):E1007–14.

    PubMed  PubMed Central  Article  Google Scholar 

  188. 188.

    Adams Hillard PJ. Menstruation in adolescents: what’s normal, what’s not. Ann N Y Acad Sci. 2008;1135:29–35.

    PubMed  Article  Google Scholar 

  189. 189.

    Hallberg L, Hôgdahl A-M, Nilsson L, Rybo G. Menstrual blood loss—a population study. Acta Obstet Gynecol Scand. 1966;45(3):320–51.

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Finch CA, Cook JD, Labbe RF, Culala M. Effect of blood donation on iron stores as evaluated by serum ferritin. Blood. 1977;50(3):441–7.

    CAS  PubMed  Google Scholar 

  191. 191.

    Collings R, Harvey LJ, Hooper L, Hurst R, Brown TJ, Ansett J, King M, Fairweather-Tait SJ. The absorption of iron from whole diets: a systematic review. Am J Clin Nutr. 2013;98(1):65–81.

    CAS  PubMed  Article  Google Scholar 

  192. 192.

    Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc : a Report of the Panel on Micronutrients . Washington, DC: National Academy Press; 2001.

  193. 193.

    Wilson C, McClung JP, Karl JP, Brothers MD. Iron status of military personnel deployed to Afghanistan. Mil Med. 2011;176(12):1421–5.

    PubMed  Article  Google Scholar 

  194. 194.

    Swenne I. Haematological changes and iron status in teenage girls with eating disorders and weight loss—the importance of menstrual status. Acta Paediatr. 2007;96(4):530–3.

    PubMed  Article  Google Scholar 

  195. 195.

    Mattace Raso G, Irace C, Esposito E, Maffettone C, Iacono A, Di Pascale A, Santamaria R, Colonna A, Meli R. Ovariectomy and estrogen treatment modulate iron metabolism in rat adipose tissue. Biochem Pharmacol. 2009;78(8):1001–7.

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Haouari M, Alguemi C, Sfaxi A, Hedhili A, Nagati K, Zouaghi H. Effects of oestradiol-17 beta in hematological parameters and iron absorption in ovariectomized rats. Horm Metab Res Horm Stoffwechselforschung Horm Métabolisme. 1993;25(6):327–8.

    CAS  Article  Google Scholar 

  197. 197.

    Haouari M, Haouari-Oukerro F, Alguemi C, Nagati K, Zouaghi H, Kamoun A. Effects of oestradiol-17 beta on small intestine iron absorption and iron uptake into blood and liver. Horm Metab Res Horm Stoffwechselforschung Horm Métabolisme. 1994;26(1):53–4.

    CAS  Article  Google Scholar 

  198. 198.

    Stuckey R, Aldridge T, Lim FL, Moore DJ, Tinwell H, Doherty N, Davies R, Smith AG, Kimber I, Ashby J, Orphanides G, Moggs JG. Induction of iron homeostasis genes during estrogen-induced uterine growth and differentiation. Mol Cell Endocrinol. 2006;253(1–2):22–9.

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Hou Y, Zhang S, Wang L, Li J, Qu G, He J, Rong H, Ji H, Liu S. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene. 2012;511(2):398–403.

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Ikeda Y, Tajima S, Izawa-Ishizawa Y, Kihira Y, Ishizawa K, Tomita S, Tsuchiya K, Tamaki T. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS One. 2012;7(7):e40465.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. 201.

    Yang Q, Jian J, Katz S, Abramson SB, Huang X. 17β-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology. 2012;153(7):3170–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. 202.

    Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator. Biosci Rep. Jun; 35(3): e00192.

  203. 203.

    Ganz T. Hepcidin and its role in regulating systemic iron metabolism. ASH Educ Program Book. 2006;2006(1):29–35.

    Google Scholar 

  204. 204.

    Frazer DM, Wilkins SJ, Becker EM, Vulpe CD, Mckie AT, Trinder D, Anderson GJ. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology. 2002;123(3):835–44.

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8.

    CAS  PubMed  Article  Google Scholar 

  206. 206.

    Bregman DB, Morris D, Koch TA, He A, Goodnough LT. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am J Hematol. 2013;88(2):97–101.

    CAS  PubMed  Article  Google Scholar 

  207. 207.

    Papillard-Marechal S, Sznajder M, Hurtado-Nedelec M, Alibay Y, Martin-Schmitt C, Dehoux M, Westerman M, Beaumont C, Chevallier B, Puy H, Stheneur C. Iron metabolism in patients with anorexia nervosa: elevated serum hepcidin concentrations in the absence of inflammation. Am J Clin Nutr. 2012;95(3):548–54.

    CAS  PubMed  Article  Google Scholar 

  208. 208.

    Lehtihet M, Bonde Y, Beckman L, Berinder K, Hoybye C, Rudling M, Sloan JH, Konrad RJ, Angelin B. Circulating hepcidin-25 is reduced by endogenous estrogen in humans. PLoS One. 2016;11(2):e0148802.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  209. 209.

    Misra M, Prabhakaran R, Miller KK, Goldstein MA, Mickley D, Clauss L, Lockhart P, Cord J, Herzog DB, Katzman DK, Klibanski A. Weight gain and restoration of menses as predictors of bone mineral density change in adolescent girls with anorexia nervosa-1. J Clin Endocrinol Metab. 2008;93(4):1231–7.

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Audí L, Vargas DM, Gussinyé M, Yeste D, Martí G, Carrascosa A. Clinical and biochemical determinants of bone metabolism and bone mass in adolescent female patients with anorexia nervosa. Pediatr Res. 2002;51(4):497–504.

    PubMed  Article  Google Scholar 

  211. 211.

    Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19(8):1231–40.

    Article  Google Scholar 

  212. 212.

    Barrack MT, Loan MDV, Rauh MJ, Nichols JF. Physiologic and behavioral indicators of energy deficiency in female adolescent runners with elevated bone turnover. Am J Clin Nutr. 2010;92(3):652–9.

    CAS  PubMed  Article  Google Scholar 

  213. 213.

    Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, Gupta N, Herzog DB, Klibanski A, Misra M. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008;121(6):1127–36.

    PubMed  PubMed Central  Article  Google Scholar 

  214. 214.

    Risteli L, Risteli J. Biochemical markers of bone metabolism. Ann Med. 1993;25(4):385–93.

    CAS  PubMed  Article  Google Scholar 

  215. 215.

    Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, Bouxsein ML, Misra M. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96(10):3123–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  216. 216.

    Ackerman KE, Putman M, Guereca G, Taylor AP, Pierce L, Herzog DB, Klibanski A, Bouxsein M, Misra M. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone. 2012;51(4):680–7.

    PubMed  PubMed Central  Article  Google Scholar 

  217. 217.

    Kelsey JL, Bachrach LK, Procter-Gray E, Nieves J, Greendale GA, Sowers M, Brown BW, Matheson KA, Crawford SL, Cobb KL. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39(9):1457–63.

    PubMed  Article  Google Scholar 

  218. 218.

    Thein-Nissenbaum J. Long term consequences of the female athlete triad. Maturitas. 2013;75(2):107–12.

    PubMed  Article  Google Scholar 

  219. 219.

    Toxqui L, Vaquero MP. Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis. Nutrients. 2015;7(4):2324–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  220. 220.

    Eastell R, Vieira NE, Yergey AL, Wahner HW, Silverstein MN, Kumar R, Riggs BL. Pernicious anaemia as a risk factor for osteoporosis. Clin Sci Lond Engl 1979. 1992;82(6):681–5.

    CAS  Google Scholar 

  221. 221.

    Korkmaz U, Korkmaz N, Yazici S, Erkan M, Baki AE, Yazici M, Ozhan H, Ataoğlu S. Anemia as a risk factor for low bone mineral density in postmenopausal Turkish women. Eur J Intern Med. 2012;23(2):154–8.

    PubMed  Article  Google Scholar 

  222. 222.

    Díaz-Castro J, López-Frías MR, Campos MS, López-Frías M, Alférez MJM, Nestares T, Ojeda ML, López-Aliaga I. Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr. 2012;51(2):241–7.

    PubMed  Article  CAS  Google Scholar 

  223. 223.

    Katsumata S, Katsumata-Tsuboi R, Uehara M, Suzuki K. Severe iron deficiency decreases both bone formation and bone resorption in rats. J Nutr. 2009;139(2):238–43.

    CAS  PubMed  Article  Google Scholar 

  224. 224.

    Katsumata S, Tsuboi R, Uehara M, Suzuki K. Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem. 2006;70(10):2547–50.

    CAS  PubMed  Article  Google Scholar 

  225. 225.

    Medeiros DM, Stoecker B, Plattner A, Jennings D, Haub M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr. 2004;134(11):3061–7.

    CAS  PubMed  Google Scholar 

  226. 226.

    Medeiros DM, Plattner A, Jennings D, Stoecker B. Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J Nutr. 2002;132(10):3135–41.

    CAS  PubMed  Google Scholar 

  227. 227.

    Toxqui L, Pérez-Granados AM, Blanco-Rojo R, Wright I, de la Piedra C, Vaquero MP. Low iron status as a factor of increased bone resorption and effects of an iron and vitamin D-fortified skimmed milk on bone remodelling in young Spanish women. Eur J Nutr. 2014;53(2):441–8.

    CAS  PubMed  Article  Google Scholar 

  228. 228.

    Wright I, Blanco-Rojo R, Fernández MC, Toxqui L, Moreno G, Pérez-Granados AM, de la Piedra C, Remacha ÁF, Vaquero MP. Bone remodelling is reduced by recovery from iron-deficiency anaemia in premenopausal women. J Physiol Biochem. 2013;69(4):889–96.

    CAS  PubMed  Article  Google Scholar 

  229. 229.

    Kasukawa Y, Miyakoshi N, Mohan S. The anabolic effects of GH/IGF system on bone. Curr Pharm Des. 2004;10(21):2577–92.

    CAS  PubMed  Article  Google Scholar 

  230. 230.

    Conover CA. In vitro studies of insulin-like growth factor I and bone. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. 2000;10(Suppl B):S107–10.

    Article  Google Scholar 

  231. 231.

    Lindsey RC, Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016 Sep 5;432:44-55.

  232. 232.

    Meinel L, Zoidis E, Zapf J, Hassa P, Hottiger MO, Auer JA, Schneider R, Gander B, Luginbuehl V, Bettschart-Wolfisberger R, Illi OE, Merkle HP, von Rechenberg B. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone. 2003;33(4):660–72.

    CAS  PubMed  Article  Google Scholar 

  233. 233.

    Bianda T, Hussain MA, Glatz Y, Bouillon R, Froesch ER, Schmid C. Effects of short-term insulin-like growth factor-I or growth hormone treatment on bone turnover, renal phosphate reabsorption and 1,25 dihydroxyvitamin D3 production in healthy man. J Intern Med. 1997;241(2):143–50.

    CAS  PubMed  Article  Google Scholar 

  234. 234.

    Marcus R, Butterfield G, Holloway L, Gilliland L, Baylink DJ, Hintz RL, Sherman BM. Effects of short term administration of recombinant human growth hormone to elderly people. J Clin Endocrinol Metab. 1990;70(2):519–27.

    CAS  PubMed  Article  Google Scholar 

  235. 235.

    Menaa C, Vrtovsnik F, Friedlander G, Corvol M, Garabédian M. Insulin-like growth factor I, a unique calcium-dependent stimulator of 1,25-dihydroxyvitamin D3 production. Studies in cultured mouse kidney cells. J Biol Chem. 1995;270(43):25461–7.

    CAS  PubMed  Article  Google Scholar 

  236. 236.

    Nesbitt T, Drezner MK. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1-hydroxylase activity. Endocrinology. 1993;132(1):133–8.

    CAS  PubMed  Article  Google Scholar 

  237. 237.

    Wei S, Tanaka H, Seino Y. Local action of exogenous growth hormone and insulin-like growth factor-I on dihydroxyvitamin D production in LLC-PK1 cells. Eur J Endocrinol. Eur Fed Endocr Soc. 1998;139(4):454–60.

    CAS  Article  Google Scholar 

  238. 238.

    van Leeuwen JPTM, van den Bemd G-JCM, van Driel M, Buurman CJ, Pols HAP. 24,25-Dihydroxyvitamin D3 and bone metabolism. Steroids. 2001;66(3–5):375–80.

    PubMed  Article  Google Scholar 

  239. 239.

    Canalis E, Centrella M, Burch W, McCarthy TL. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Investig. 1989;83(1):60–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  240. 240.

    McCarthy TL, Centrella M, Canalis E. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology. 1989;124(1):301–9.

    CAS  PubMed  Article  Google Scholar 

  241. 241.

    Olney RC. Regulation of bone mass by growth hormone. Med Pediatr Oncol. 2003;41(3):228–34.

    PubMed  Article  Google Scholar 

  242. 242.

    Kassem M, Blum W, Ristelli J, Mosekilde L, Eriksen EF. Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int. 1993;52(3):222–6.

    CAS  PubMed  Article  Google Scholar 

  243. 243.

    Kassem M, Mosekilde L, Eriksen EF. Growth hormone stimulates proliferation of normal human bone marrow stromal osteoblast precursor cells in vitro. Growth Regul. 1994;4(3):131–5.

    CAS  PubMed  Google Scholar 

  244. 244.

    Chenu C, Valentin-Opran A, Chavassieux P, Saez S, Meunier PJ, Delmas PD. Insulin like growth factor I hormonal regulation by growth hormone and by 1,25(OH)2D3 and activity on human osteoblast-like cells in short-term cultures. Bone. 1990;11(2):81–6.

    CAS  PubMed  Article  Google Scholar 

  245. 245.

    Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard A-M, Rasmussen MH, Flyvbjerg A, Kjaer M. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol. 2010;588(Pt 2):341–51.

    CAS  PubMed  Article  Google Scholar 

  246. 246.

    Mrak E, Villa I, Lanzi R, Losa M, Guidobono F, Rubinacci A. Growth hormone stimulates osteoprotegerin expression and secretion in human osteoblast-like cells. J Endocrinol. 2007;192(3):639–45.

    CAS  PubMed  Article  Google Scholar 

  247. 247.

    Vestergaard P, Jørgensen JOL, Olesen JL, Bosnjak E, Holm L, Frystyk J, Langberg H, Kjaer M, Hansen M. Local administration of growth hormone stimulates tendon collagen synthesis in elderly men. J Appl Physiol. 2012;113(9):1432–8.

    CAS  PubMed  Article  Google Scholar 

  248. 248.

    Colao A, Di Somma C, Pivonello R, Loche S, Aimaretti G, Cerbone G, Faggiano A, Corneli G, Ghigo E, Lombardi G. Bone loss is correlated to the severity of growth hormone deficiency in adult patients with hypopituitarism. J Clin Endocrinol Metab. 1999;84(6):1919–24.

    CAS  PubMed  Google Scholar 

  249. 249.

    Rosén T, Wilhelmsen L, Landin-Wilhelmsen K, Lappas G, Bengtsson BA. Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol Eur Fed Endocr Soc. 1997;137(3):240–5.

    Article  Google Scholar 

  250. 250.

    Boonen S, Mohan S, Dequeker J, Aerssens J, Vanderschueren D, Verbeke G, Broos P, Bouillon R, Baylink DJ. Down-regulation of the serum stimulatory components of the insulin-like growth factor (IGF) system (IGF-I, IGF-II, IGF binding protein [BP]-3, and IGFBP-5) in age-related (Type II) femoral neck osteoporosis. J Bone Miner Res. 1999;14(12):2150–8.

    CAS  PubMed  Article  Google Scholar 

  251. 251.

    Rucker D, Ezzat S, Diamandi A, Khosravi J, Hanley DA. IGF-I and testosterone levels as predictors of bone mineral density in healthy, community-dwelling men. Clin Endocrinol (Oxf). 2004;60(4):491–9.

    CAS  Article  Google Scholar 

  252. 252.

    Garnero P, Sornay-Rendu E, Delmas PD. Low serum IGF-1 and occurrence of osteoporotic fractures in postmenopausal women. Lancet Lond Engl. 2000;355(9207):898–9.

    CAS  Article  Google Scholar 

  253. 253.

    Choi JW, Kim SK. Association of serum insulin-like growth factor-I and erythropoiesis in relation to body iron status. Ann Clin Lab Sci. 2004;34(3):324–8.

    CAS  PubMed  Google Scholar 

  254. 254.

    Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2006;17(3):319–36.

    CAS  Article  Google Scholar 

  255. 255.

    Inouy K, Sakakibara S, Prockop DJ. Effects of the stereo-configuration of the hydroxyl group in 4-hydroxyproline on the triple-helical structures formed by homogeneous peptides resembling collagen. Biochim Biophys Acta BBA Protein Struct. 1976;420(1):133–41.

    Article  Google Scholar 

  256. 256.

    Tredget EE, Falk N, Scott PG, Hogg AM, Burke JF. Determination of 4-hydroxyproline in collagen by gas chromatography/mass spectrometry. Anal Biochem. 1990;190(2):259–65.

    CAS  PubMed  Article  Google Scholar 

  257. 257.

    Gorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol. 2010;45(2):106–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  258. 258.

    Wang J, Buss JL, Chen G, Ponka P, Pantopoulos K. The prolyl 4-hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate generates effective iron deficiency in cultured cells. FEBS Lett. 2002;529(2–3):309–12.

    CAS  PubMed  Article  Google Scholar 

  259. 259.

    Soyka LA, Misra M, Frenchman A, Miller KK, Grinspoon S, Schoenfeld DA, Klibanski A. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2002;87(9):4177–85.

    CAS  PubMed  Article  Google Scholar 

  260. 260.

    Zanker CL, Swaine IL. Bone turnover in amenorrhoeic and eumenorrhoeic women distance runners. Scand J Med Sci Sports. 1998;8(1):20–6.

    CAS  PubMed  Article  Google Scholar 

  261. 261.

    Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet Lond Engl. 2005;366(9479):74–85.

    CAS  Article  Google Scholar 

  262. 262.

    Christo K, Cord J, Mendes N, Miller KK, Goldstein MA, Klibanski A, Misra M. Acylated ghrelin and leptin in adolescent athletes with amenorrhea, eumenorrheic athletes and controls: a cross-sectional study. Clin Endocrinol (Oxf). 2008;69(4):628–33.

    CAS  Article  Google Scholar 

  263. 263.

    Russell M, Stark J, Nayak S, Miller KK, Herzog DB, Klibanski A, Misra M. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone. 2009;45(1):104–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  264. 264.

    Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res. 2006;312(10):1693–702.

    CAS  PubMed  Article  Google Scholar 

  265. 265.

    Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT. Hypoxia regulates osteoblast gene expression. J Surg Res. 2001;99(1):147–55.

    CAS  PubMed  Article  Google Scholar 

  266. 266.

    Arnett TR. Acidosis, hypoxia and bone. Arch Biochem Biophys. 2010;503(1):103–9.

    CAS  PubMed  Article  Google Scholar 

  267. 267.

    Assapun J, Charoenphandhu N, Krishnamra N. Early acceleration phase and late stationary phase of remodeling imbalance in long bones of male rats exposed to long-standing acidemia: a 10-month longitudinal study using bone histomorphometry. Calcif Tissue Int. 2009;85(1):1–9.

    CAS  PubMed  Article  Google Scholar 

  268. 268.

    Gasser JA, Hulter HN, Imboden P, Krapf R. Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats. Am J Physiol Ren Physiol. 2014;306(5):F517–24.

    CAS  Article  Google Scholar 

  269. 269.

    Ahn H, Kim JM, Lee K, Kim H, Jeong D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem Biophys Res Commun. 2012;418(1):144–8.

    CAS  PubMed  Article  Google Scholar 

  270. 270.

    Li X, Xu R-S, Jiang D-L, He X-L, Jin C, Lu W-G, Su Q, Yuan F-L. Acid-sensing ion channel 1a is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. FEBS Lett. 2013;587(19):3236–42.

    CAS  PubMed  Article  Google Scholar 

  271. 271.

    Nordström T, Shrode LD, Rotstein OD, Romanek R, Goto T, Heersche JNM, Manolson MF, Brisseau GF, Grinstein S. Chronic extracellular acidosis induces plasmalemmal vacuolar type H+ ATPase activity in osteoclasts. J Biol Chem. 1997;272(10):6354–60.

    PubMed  Article  Google Scholar 

  272. 272.

    Pereverzev A, Komarova SV, Korcok J, Armstrong S, Tremblay GB, Dixon SJ, Sims SM. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone. 2008;42(1):150–61.

    CAS  PubMed  Article  Google Scholar 

  273. 273.

    Okito A, Nakahama K-I, Akiyama M, Ono T, Morita I. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment. Biochem Biophys Res Commun. 2015;458(2):435–40.

    CAS  PubMed  Article  Google Scholar 

  274. 274.

    Knowles HJ, Cleton-Jansen A-M, Korsching E, Athanasou NA. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J. 2010;24(12):4648–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  275. 275.

    Weidemann A, Johnson RS. Biology of HIF-1α. Cell Death Differ. 2008;15(4):621–7.

    CAS  PubMed  Article  Google Scholar 

  276. 276.

    Hiram-Bab S, Liron T, Deshet-Unger N, Mittelman M, Gassmann M, Rauner M, Franke K, Wielockx B, Neumann D, Gabet Y. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB J Off Publ Fed Am Soc Exp Biol. 2015;29(5):1890–900.

    CAS  Google Scholar 

  277. 277.

    Meczekalski B, Podfigurna-Stopa A, Genazzani AR. Hypoestrogenism in young women and its influence on bone mass density. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2010;26(9):652–7.

    CAS  Article  Google Scholar 

  278. 278.

    De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43(1):140–8.

    PubMed  Article  CAS  Google Scholar 

  279. 279.

    Miyamoto T. Mechanism underlying post-menopausal osteoporosis: HIF1α is required for osteoclast activation by estrogen deficiency. Keio J Med. 2015;64(3):44–7.

    CAS  PubMed  Article  Google Scholar 

  280. 280.

    Miyauchi Y, Sato Y, Kobayashi T, Yoshida S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Miyamoto K, Tando T, Morioka H, Matsumoto M, Chambon P, Johnson RS, Kato S, Toyama Y, Miyamoto T. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc Natl Acad Sci USA. 2013;110(41):16568–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  281. 281.

    Harvey CB, O’Shea PJ, Scott AJ, Robson H, Siebler T, Shalet SM, Samarut J, Chassande O, Williams GR. Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab. 2002;75(1):17–30.

    CAS  PubMed  Article  Google Scholar 

  282. 282.

    Bassett JHD, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab. 2003;14(8):356–64.

    CAS  PubMed  Article  Google Scholar 

  283. 283.

    Conti MI, Martínez MP, Olivera MI, Bozzini C, Mandalunis P, Bozzini CE, Alippi RM. Biomechanical performance of diaphyseal shafts and bone tissue of femurs from hypothyroid rats. Endocrine. 2009;36(2):291–8.

    CAS  PubMed  Article  Google Scholar 

  284. 284.

    Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid Off J Am Thyroid Assoc. 2002;12(5):411–9.

    Article  Google Scholar 

  285. 285.

    Nagata M, Suzuki A, Sekiguchi S, Ono Y, Nishiwaki-Yasuda K, Itoi T, Yamamoto S, Imamura S, Katoh T, Hayakawa N, Oda N, Hashimoto S, Itoh M. Subclinical hypothyroidism is related to lower heel QUS in postmenopausal women. Endocr J. 2007;54(4):625–30.

    CAS  PubMed  Article  Google Scholar 

  286. 286.

    Tuchendler D, Bolanowski M. Assessment of bone metabolism in premenopausal females with hyperthyroidism and hypothyroidism. Endokrynol Pol. 2013;64(1):40–4.

    CAS  PubMed  Google Scholar 

  287. 287.

    Gao Y-C, Gu Q, Liu Q-P, Ge W-L, Lu H-K. Bone turnover markers in patients with differentiated thyroid carcinoma after levothyroxine withdrawal. Clin Lab. 2010;56(3–4):87–93.

    CAS  PubMed  Google Scholar 

  288. 288.

    Toivonen J, Tähtelä R, Laitinen K, Risteli J, Välimäki MJ. Markers of bone turnover in patients with differentiated thyroid cancer with and following withdrawal of thyroxine suppressive therapy. Eur J Endocrinol Eur Fed Endocr Soc. 1998;138(6):667–73.

    CAS  Article  Google Scholar 

  289. 289.

    Reed JL, Souza MJD, Williams NI. Changes in energy availability across the season in Division I female soccer players. J Sports Sci. 2013;31(3):314–24.

    PubMed  Article  Google Scholar 

  290. 290.

    Peeling P, Dawson B, Goodman C, Landers G, Trinde D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.

    CAS  PubMed  Article  Google Scholar 

  291. 291.

    Ziemann E, Kasprowicz K, Kasperska A, Zembroń-lacny A, Antosiewicz J, Laskowski R. Do high blood hepcidin concentrations contribute to low ferritin levels in young tennis players at the end of tournament season?. J Sports Sci Med. 2013;12(2):249-58.

Download references

Acknowledgements

Funding was provided by U.S. Department of Defense (Grant No. PR054531).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mary Jane De Souza.

Ethics declarations

Dylan Petkus, Laura E. Murray-Kolb, and Mary Jane De Souza declare that they have no conflicts of interest. No financial support was received for the conduct of this study or the preparation of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petkus, D.L., Murray-Kolb, L.E. & De Souza, M.J. The Unexplored Crossroads of the Female Athlete Triad and Iron Deficiency: A Narrative Review. Sports Med 47, 1721–1737 (2017). https://doi.org/10.1007/s40279-017-0706-2

Download citation

Keywords

  • Iron Deficiency
  • Eating Disorder
  • Iron Deficiency Anemia
  • Menstrual Blood Loss
  • Growth Hormone Resistance