Skip to main content

Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching

Abstract

Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching protocols, this condition is not always met sufficiently to trigger adaptation within the muscle-tendon unit. For example, there is experimental evidence that both acute and chronic stretching interventions may increase the maximal range of motion in the absence of changes in the passive torque-angle curve. We contend that these results are partly explained by the influence of non-muscular structures that contribute only marginally to the passive torque. The potential candidates are the nervous system and fasciae, which would play an important role in the perception of the stretch and in the limitation of the range of motion of the maximal joints. At least in part, this may explain the lack of a significant effect of some chronic stretching interventions to change passive muscle tension.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Katalinic OM, Harvey LA, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2010;9:CD007455.

    Google Scholar 

  2. Katalinic OM, Harvey LA, Herbert RD. Effectiveness of stretch for the treatment and prevention of contractures in people with neurological conditions: a systematic review. Phys Ther. 2011;91(1):11–24.

    Article  PubMed  Google Scholar 

  3. Witvrouw E, Mahieu N, Danneels L, McNair P. Stretching and injury prevention: an obscure relationship. Sports Med. 2004;34(7):443–9.

    Article  PubMed  Google Scholar 

  4. McHugh MP, Cosgrave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports. 2010;20(2):169–81.

    CAS  PubMed  Google Scholar 

  5. Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech. 2001;16(2):87–101.

    CAS  Article  Google Scholar 

  6. Weppler CH, Magnusson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther. 2010;90(3):438–49.

    Article  PubMed  Google Scholar 

  7. Taylor DC, Dalton JD Jr, Seaber AV, Garrett WE Jr. Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. Am J Sports Med. 1990;18(3):300–9.

    CAS  Article  PubMed  Google Scholar 

  8. Noonan TJ, Best TM, Seaber AV, Garrett WE Jr. Identification of a threshold for skeletal muscle injury. Am J Sports Med. 1994;22(2):257–61.

    CAS  Article  PubMed  Google Scholar 

  9. Halbertsma JP, Göeken LN. Stretching exercises: effect on passive extensibility and stiffness in short hamstrings of healthy subjects. Arch Phys Med Rehabil. 1994;75(9):976–81.

    CAS  PubMed  Google Scholar 

  10. Halbertsma JP, van Bolhuis AI, Göeken LN. Sport stretching: effect on passive muscle stiffness of short hamstrings. Arch Phys Med Rehabil. 1996;77(7):688–92.

    CAS  Article  PubMed  Google Scholar 

  11. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers: a review. Scand J Med Sci Sports. 1998;8(2):65–77.

    CAS  Article  PubMed  Google Scholar 

  12. Chaouachi A, Padulo J, Kasmi S, Othmen AB, Chatra M, Behm DG. Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging. In press.

  13. Behm DG, Cavanaugh T, Quigley P, Reid JC, Nardi PS, Marchetti PH. Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol. 2016;116(1):241–9.

    Article  PubMed  Google Scholar 

  14. Riemann BL, DeMont RG, Ryu K, Lephart SM. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train. 2001;36(4):369–75.

    PubMed  PubMed Central  Google Scholar 

  15. Dilley A, Lynn B, Pang SJ. Pressure and stretch mechanosensitivity of peripheral nerve fibres following local inflammation of the nerve trunk. Pain. 2005;117(3):462–72.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bove GM, Dilley A. The conundrum of sensitization when recording from nociceptors. J Neurosci Methods. 2010;188(2):213–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shim HY, Lim OK, Bae KH, Park SM, Lee JK, Park KD. Sciatic nerve injury caused by a stretching exercise in a trained dancer. Ann Rehabil Med. 2013;37(6):886–90.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McHugh MP, Johnson CD, Morrison RH. The role of neural tension in hamstring flexibility. Scand J Med Sci Sports. 2012;22(2):164–9.

    CAS  Article  PubMed  Google Scholar 

  19. Laessøe U, Voigt M. Modification of stretch tolerance in a stooping position. Scand J Med Sci Sports. 2004;14(4):239–44.

    Article  PubMed  Google Scholar 

  20. Andrade RJ, Freitas SR, Vaz JR, Bruno PM, Pezarat-Correia P. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion. Scand J Med Sci Sports. 2015;25(3):338–45.

    CAS  Article  PubMed  Google Scholar 

  21. Coppieters MW, Kurz K, Mortensen TE, Richards NL, Skaret IA, McLaughlin LM, Hodges PW. The impact of neurodynamic testing on the perception of experimentally induced muscle pain. Man Ther. 2005;10(1):52–60.

    Article  PubMed  Google Scholar 

  22. Coppieters MW, Alshami AM, Babri AS, Souvlis T, Kippers V, Hodges PW. Strain and excursion of the sciatic, tibial, and plantar nerves during a modified straight leg raising test. J Orthop Res. 2006;24(9):1883–9.

    Article  PubMed  Google Scholar 

  23. Le Sant G, Ates F, Brasseur JL, Nordez A. Elastography study of hamstring behaviors during passive stretching. PLoS ONE. 2015;10(9):e0139272.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maïsetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45(6):978–84.

    Article  PubMed  Google Scholar 

  25. Koo TK, Guo JY, Cohen JH, Parker KJ. Relationship between shear elastic modulus and passive muscle force: an ex-vivo study. J Biomech. 2013;46(12):2053–9.

    Article  PubMed  Google Scholar 

  26. Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–33.

    Article  PubMed  Google Scholar 

  27. Wilke J, Niederer D, Vogt L, Banzer W. Remote effects of lower limb stretching: preliminary evidence for myofascial connectivity? J Sports Sci. 2016;28:1–4.

    Google Scholar 

  28. Mitchell B, Bressel E, McNair PJ, Bressel ME. Effect of pelvic, hip, and knee position on ankle joint range of motion. Phys Ther Sport. 2008;9(4):202–8.

    Article  PubMed  Google Scholar 

  29. Andrade RJ, Lacourpaille L, Freitas SR, McNair PJ, Nordez A. Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension. Scand J Med Sci Sports. 2016;26(1):41–7.

    CAS  Article  PubMed  Google Scholar 

  30. Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol. 2016;116(5):911–8.

    Article  PubMed  Google Scholar 

  31. Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302–8.

    CAS  Article  PubMed  Google Scholar 

  32. Cruz-Montecinos C, González Blanche A, López Sánchez D, Cerda M, Sanzana-Cuche R, Cuesta-Vargas A. In vivo relationship between pelvis motion and deep fascia displacement of the medial gastrocnemius: anatomical and functional implications. J Anat. 2015;227(5):665–72.

    Article  PubMed  Google Scholar 

  33. Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487–95.

    Article  PubMed  Google Scholar 

  34. Brandenburg JE, Eby SF, Song P, Zhao H, Brault JS, Chen S, An KN. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014;95(11):2207–19.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Andrade RJ, Nordez A, Hug F, Ates F, Coppieters MW, Pezarat-Correia P, Freitas SR. Non-invasive assessment of sciatic nerve stiffness during human ankle motion using ultrasound shear wave elastography. J Biomech. 2016;49(3):326–31.

    Article  PubMed  Google Scholar 

  36. Ridehalgh C, Moore A, Hough A. Normative sciatic nerve excursion during a modified straight leg raise test. Man Ther. 2014;19(1):59–64.

    Article  PubMed  Google Scholar 

  37. Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas. 2012;33(3):19–28.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the Region Pays de la Loire (QUETE Project, No. 2015-09035) and the University of Nantes (Interdisciplinary Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Nordez.

Ethics declarations

Conflict of Interest

Antoine Nordez, Raphaël Gross, Ricardo Andrade, Guillaume Le Sant, Sandro Freitas, Richard Ellis, Peter J. McNair, and François Hug declare that they have no conflicts of interest.

Additional information

A. Nordez and R. Gross have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nordez, A., Gross, R., Andrade, R. et al. Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching. Sports Med 47, 1925–1929 (2017). https://doi.org/10.1007/s40279-017-0703-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0703-5

Keywords

  • Gastrocnemius Medialis
  • Passive Tension
  • Passive Torque
  • Slump Position
  • Passive Knee Extension