Skip to main content
Log in

The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study

  • Original Research Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Current evidence suggests sodium bicarbonate (NaHCO3) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO3 ) because of large inter-individual variations (10–180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible.

Objective

This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO3 and sodium (Na+) following acute NaHCO3 ingestion.

Methods

Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg−1 body mass (BM) NaHCO3 (SBC2a and b), two doses of 0.3 g·kg−1 BM NaHCO3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO3 and Na+ prior to and at regular time points following NaHCO3 ingestion over a 3-h period.

Results

HCO3 displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO3 SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO3 SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041).

Conclusion

Our results indicate that both TTP and absolute change in HCO3 is more reliable than pH. As such, these data provide support for an individualised NaHCO3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO3 ingestion strategy based on HCO3 responses and evaluate effects on exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217–38.

    Article  CAS  PubMed  Google Scholar 

  2. Barnett C, Snel A, Omari T, Davidson G, Haslam R, Butler R. Reproducibility of the 13C-octanoic acid breath test for assessment of gastric emptying in healthy preterm infants. J Pediar Gastroenterol Nutr. 1999;29:26–30.

    Article  CAS  Google Scholar 

  3. Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36:807–13.

    Article  CAS  PubMed  Google Scholar 

  4. Bland JM, Altman GD. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  CAS  PubMed  Google Scholar 

  5. Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36:279–91.

    Article  PubMed  Google Scholar 

  6. Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41:801–14.

    Article  PubMed  Google Scholar 

  7. Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Effect of sodium bicarbonate on [HCO3-], pH, and gastrointestinal symptoms. Int J Sport Nutr Exerc Metab. 2011;21:189–94.

    Article  CAS  PubMed  Google Scholar 

  8. Froio de Araujo Dias G, da Eira Silva V, de Salles Painelli V, Sale C, Giannini Artioli G, Gualano B, Saunders B. (In)Consistencies in responses to sodium bicarbonate supplementation: a randomised, repeated measures, counterbalanced and double blind study. PLOS One. 2015; 10(11):e0143086.

  9. Giavarina D. Understanding bland altman analysis. Biochem Med (Zagreb). 2015;25:141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goel N, Calvert J. Understanding blood gases/acid-base balance. Paediatr Child Health. 2011;22:142–8.

    Article  Google Scholar 

  11. Hellström PM, Grybäck P, Jacobsson H. The physiology of gastric emptying. Best Pract Res Clin Anaesthesiol. 2006;20:397–407.

    Article  PubMed  Google Scholar 

  12. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15.

    Article  CAS  PubMed  Google Scholar 

  13. Johnston KR, Vickers MD, Mapleson WW. Comparison of arterialized venous with arterial blood propofol concentrations during sub-anaesthetic infusions in volunteers. Br J Anaesth. 1996;76:401–4.

    Article  CAS  PubMed  Google Scholar 

  14. MacLaren D, Morton J. Biochemistry for sport and exercise science. Champaign: Human Kinetics; 2012.

    Google Scholar 

  15. Maughan RJ, King DS, Lea T. Dietary supplements. J Sports Sci. 2004;22:95–113.

    Article  PubMed  Google Scholar 

  16. McNaughton LR. Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry. J Sports Sci. 1992;10:415–23.

    Article  CAS  PubMed  Google Scholar 

  17. McNaughton LR, Gough L, Deb S, Bentley D, Sparks SA. Recent developments in the use of sodium bicarbonate as an ergogenic aid. Curr Sports Med Rep. 2016;15(4):233–44.

    PubMed  Google Scholar 

  18. Miller P, Robinson AL, Sparks SA, Bridge CA, Bentley DJ, McNaughton LR. The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. J Strength Cond Res. 2016;30:561–8.

    Article  PubMed  Google Scholar 

  19. Myles PS, Cui J. Using the bland-altman method to measure agreement with repeated measures. Br J Anaesth. 2007;99:309–11.

    Article  CAS  PubMed  Google Scholar 

  20. Nose H, Sugimoto E, Okuno T, Morimoto T. Changes in blood volume and plasma sodium concentration after water intake in rats. Am J Physiol. 1987;253:15–9.

    Google Scholar 

  21. Paintaud G, Thibault P, Queneau PE, Magnette J, Berard M, Rumbach L, Bechtel PR, Carayon P. Intraindividual variability of paracetamol absorption absorption kinetics after a semisolid meal in healthy. Eur J Clin Pharmacol. 1998;53:355–9.

    Article  CAS  PubMed  Google Scholar 

  22. Poupin N, Calvez J, Lassale C, Chesneau C, Tomé D. Impact of the diet on net endogenous acid production and acid-base balance. Clin Nutr. 2012;31:313–21.

    Article  CAS  PubMed  Google Scholar 

  23. Price MJ, Singh M. Time course of blood bicarbonate and pH three hours after sodium bicarbonate ingestion. Int J Sports Physiol Perform. 2008;3:240–2.

    Article  PubMed  Google Scholar 

  24. Radiometer Medical. 2015. ABL 800 Reference Manual. http://www.radiometer.com. Accessed 2015.

  25. Reilly T. Human circadian rhythms and exercise. Crit Rev Biomed Eng. 1990;18:165–80.

    CAS  PubMed  Google Scholar 

  26. Remer T. Influence of nutrition on acid-base balance—metabolic aspects. Eur J Nutr. 2001;40:214.

    Article  CAS  PubMed  Google Scholar 

  27. Remer T, Manz F. Potential renal acid load and its influence on urine pH. J Am Diet Assoc. 1995;95:791–7.

    Article  CAS  PubMed  Google Scholar 

  28. Renfree A. The time course of changes in plasma [H+] after sodium bicarbonate ingestion. Int J Sports Physiol Perform. 2007;2:323–6.

    Article  PubMed  Google Scholar 

  29. Rosenberg K, Durnin JV. The effect of alcohol on resting metabolic rate. Br J Nutr. 1978;40:293–8.

    Article  CAS  PubMed  Google Scholar 

  30. Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9:627–32.

    Article  PubMed  Google Scholar 

  31. Siegler JC, Marshall PW, Bray J, Towlson C. Sodium bicarbonate supplementation and ingestion timing: does it matter? J Strength Cond Res. 2012;26:1953–8.

    Article  PubMed  Google Scholar 

  32. Siegler JC, Midgley AW, Polman RC, Lever R. Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res. 2010;24:2551–7.

    Article  PubMed  Google Scholar 

  33. Sparks SA, Close GL. Validity of a portable urine refractometer: the effects of sample freezing. J Sports Sci. 2013;31:745–9.

    Article  PubMed  Google Scholar 

  34. Stannard RL, Stellingwerff T, Artioli GG, Saunders B, Cooper S, Sale C. Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. Int J Sport Nutr Exerc Metab. 2016;26(5):445–53.

    Article  Google Scholar 

  35. Stadlbauer V, Wallner S, Stojakovic T, Smolle KH. Comparison of 3 different multianalyte point-of-care devices during clinical routine on a medical intensive care unit. J Crit Care. 2011;26:433.

    Article  PubMed  Google Scholar 

  36. Tougas G, Eaker EY, Abell TL, Abrahamsson H, Boivin M, Chen J, Hocking MP, Quigley EM, Koch KL, Tokayer AZ, Stanghellini V, Chen Y, Huizinga JD, Ryden J, Bourgeois L, McCallum RW. Assessment of gastric emptying using a low fat meal: establishment of international control values. Am J Gastroenterol. 2000;95:1456–62.

    Article  CAS  PubMed  Google Scholar 

  37. Vincent W, Weir J. Statistics in Kinesiology. 4th ed. Champaign: Human Kinetics; 2012.

    Google Scholar 

  38. Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 2002;17:17–21.

    CAS  PubMed  Google Scholar 

  39. Westerterp-Platenga M, Diepvens K, Joosen AM, Bérubé-Parent S, Tremblay A. Metabolic effects of spices, teas and caffeine. Physiol Behav. 2006;89:85–91.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical assistance received during data collection and thank fellow colleagues who provided laboratory space, even during busy times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Gough.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

LA Gough, SK Deb, SA Sparks, and LR McNaughton have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gough, L.A., Deb, S.K., Sparks, A.S. et al. The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study. Sports Med 47, 2117–2127 (2017). https://doi.org/10.1007/s40279-017-0699-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0699-x

Keywords

Navigation