Endocrinological Roles for Testosterone in Resistance Exercise Responses and Adaptations

Abstract

Chronic increases in testosterone levels can significantly increase hypertrophy and strength, as has been demonstrated by pharmacological intervention. However, decreases in basal testosterone levels can have the opposite result, as has been seen in hypogonadal populations. Because of these profound effects on hypertrophy and strength, testosterone has often been studied in conjunction with resistance exercise to examine whether the endocrine system plays a role in adaptations to the stimulus. Whereas some studies have demonstrated a chronic increase in basal testosterone, others have failed to find an adaptation to regular resistance exercise. However, improvements in strength and hypertrophy appear to be possible regardless of the presence of this adaptation. Testosterone has also been shown to acutely rise immediately following an acute resistance exercise bout. While this substantial mobilization of testosterone is brief, its effects are seen for several hours through the upregulation of the androgen receptor. The role of this acute response at present is unknown, but further study of the non-genomic action and possible intracrinological processes is warranted. This response does not seem to be necessary for resistance training adaptations to occur either, but whether this response optimizes such adaptations has not yet been determined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    American College of Sports Medicine Position Stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi:10.1249/MSS.0b013e3181915670.

    Article  Google Scholar 

  2. 2.

    Bhasin S, Woodhouse L, Casaburi R, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281(6):E1172–81.

    CAS  PubMed  Google Scholar 

  3. 3.

    Bhasin S, Woodhouse L, Casaburi R, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005;90(2):678–88. doi:10.1210/jc.2004-1184.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Katagiri M, Kagawa N, Waterman MR. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys. 1995;317(2):343–7. doi:10.1006/abbi.1995.1173.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Luu-The V, Dufort I, Pelletier G, et al. Type 5 17beta-hydroxysteroid dehydrogenase: its role in the formation of androgens in women. Mol Cell Endocrinol. 2001;171(1–2):77–82 (pii: S0303-7207(00)00425-1).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Pelletier G, Luu-The V, El-Alfy M, et al. Immunoelectron microscopic localization of 3beta-hydroxysteroid dehydrogenase and type 5 17beta-hydroxysteroid dehydrogenase in the human prostate and mammary gland. J Mol Endocrinol. 2001;26(1):11–9 (pii: JME00950).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Labrie F. Adrenal androgens and intracrinology. Semin Reprod Med. 2004;22(4):299–309. doi:10.1055/s-2004-861547.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Marouliss GB, Triantafillidis IK. Polycystic ovarian disease: the adrenal connection. Pediatr Endocrinol Rev. 2006;3(Suppl. 1):205–7.

    PubMed  Google Scholar 

  9. 9.

    Roa J, Navarro VM, Tena-Sempere M. Kisspeptins in reproductive biology: consensus knowledge and recent developments. Biol Reprod. 2011;85(4):650–60. doi:10.1095/biolreprod.111.091538.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Garcia-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol. 2012;24(1):22–33. doi:10.1111/j.1365-2826.2011.02230.x.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Smith JT. Sex steroid regulation of kisspeptin circuits. Adv Exp Med Biol. 2013;784:275–95. doi:10.1007/978-1-4614-6199-9_13.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Volek JS, Gomez AL, Love DM, et al. Effects of a high-fat diet on postabsorptive and postprandial testosterone responses to a fat-rich meal. Metabolism. 2001;50(11):1351–5 (pii: S0026049501565464).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hjalmarsen A, Aasebo U, Aakvaag A, et al. Sex hormone responses in healthy men and male patients with chronic obstructive pulmonary disease during an oral glucose load. Scand J Clin Lab Investig. 1996;56(7):635–40.

    CAS  Article  Google Scholar 

  14. 14.

    Kraemer WJ, Spiering BA, Volek JS, et al. Androgenic responses to resistance exercise: effects of feeding and l-carnitine. Med Sci Sports Exerc. 2006;38(7):1288–96. doi:10.1249/01.mss.0000227314.85728.35.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest. 2008;31(10):932–8 (pii: 5022).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Arver S, Lehtihet M. Current guidelines for the diagnosis of testosterone deficiency. Front Horm Res. 2009;37:5–20. doi:10.1159/000175839175839.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    American College of Sports Medicine. Position statement on the use and abuse of anabolic-androgenic steroids in sports. Med Sci Sports. 1977;9(4):xi–xii.

    Google Scholar 

  18. 18.

    American College of Sports Medicine. Position stand on the use of anabolic-androgenic steroids in sports. Med Sci Sports Exerc. 1987;19(5):534–9.

    Google Scholar 

  19. 19.

    Hoffman JR, Kraemer WJ, Bhasin S, et al. Position stand on androgen and human growth hormone use. J Strength Cond Res. 2009;23(5 Suppl):S1–59. doi:10.1519/JSC.0b013e31819df2e6.

    Article  PubMed  Google Scholar 

  20. 20.

    Kvorning T, Andersen M, Brixen K, et al. Suppression of endogenous testosterone production attenuates the response to strength training: a randomized, placebo-controlled, and blinded intervention study. Am J Physiol Endocrinol Metab. 2006;291(6):E1325–32. doi:10.1152/ajpendo.00143.2006.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kvorning T, Kadi F, Schjerling P, et al. The activity of satellite cells and myonuclei following 8 weeks of strength training in young men with suppressed testosterone levels. Acta Physiol Scand. 2015;213(3):676–87. doi:10.1111/apha.12404.

    CAS  Article  Google Scholar 

  22. 22.

    Harman SM, Metter EJ, Tobin JD, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men: Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2001;86(2):724–31. doi:10.1210/jcem.86.2.7219.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Katznelson L, Rosenthal DI, Rosol MS, et al. Using quantitative CT to assess adipose distribution in adult men with acquired hypogonadism. AJR Am J Roentgenol. 1998;170(2):423–7. doi:10.2214/ajr.170.2.9456958.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol (1985). 1994;76(3):1247–55.

    CAS  Google Scholar 

  25. 25.

    Hakkinen K, Pakarinen A, Alen M, et al. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol (1985). 1988;65(6):2406–12.

    CAS  Google Scholar 

  26. 26.

    Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.

    CAS  PubMed  Google Scholar 

  27. 27.

    Ahtiainen JP, Nyman K, Huhtaniemi I, et al. Effects of resistance training on testosterone metabolism in younger and older men. Exp Gerontol. 2015;69:148–58. doi:10.1016/j.exger.2015.06.010.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Fahey TD, Rolph R, Moungmee P, et al. Serum testosterone, body composition, and strength of young adults. Med Sci Sports. 1976;8(1):31–4.

    CAS  PubMed  Google Scholar 

  29. 29.

    Kraemer WJ, Fry AC, Warren BJ, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med. 1992;13(2):103–9. doi:10.1055/s-2007-1021240.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Vingren JL, Kraemer WJ, Ratamess NA, et al. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 2010;40(12):1037–53. doi:10.2165/11536910-000000000-000004.

    Article  PubMed  Google Scholar 

  31. 31.

    Goto K, Ishii N, Kizuka T, et al. Hormonal and metabolic responses to slow movement resistance exercise with different durations of concentric and eccentric actions. Eur J Appl Physiol. 2009;106(5):731–9. doi:10.1007/s00421-009-1075-9.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Linnamo V, Pakarinen A, Komi PV, et al. Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res. 2005;19(3):566–71. doi:10.1519/R-15404.1.

    PubMed  Google Scholar 

  33. 33.

    West DW, Burd NA, Churchward-Venne TA, et al. Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J Appl Physiol (1985). 2012;112(11):1805–13. doi:10.1152/japplphysiol.00170.2012.

    CAS  Article  Google Scholar 

  34. 34.

    Kraemer WJ, Hakkinen K, Newton RU, et al. Acute hormonal responses to heavy resistance exercise in younger and older men. Eur J Appl Physiol Occup Physiol. 1998;77(3):206–11.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Evans NA. Gym and tonic: a profile of 100 male steroid users. Br J Sports Med. 1997;31(1):54–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kraemer WJ, Gordon SE, Fleck SJ, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 1991;12(2):228–35. doi:10.1055/s-2007-1024673.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Spiering BA, Kraemer WJ, Vingren JL, et al. Elevated endogenous testosterone concentrations potentiate muscle androgen receptor responses to resistance exercise. J Steroid Biochem Mol Biol. 2009;114(3–5):195–9. doi:10.1016/j.jsbmb.2009.02.005.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ratamess NA, Kraemer WJ, Volek JS, et al. Androgen receptor content following heavy resistance exercise in men. J Steroid Biochem Mol Biol. 2005;93(1):35–42. doi:10.1016/j.jsbmb.2004.10.019.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Biolo G, Maggi SP, Williams BD, et al. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268(3 Pt 1):E514–20.

    CAS  PubMed  Google Scholar 

  40. 40.

    Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res. 2013;27(6):1720–30. doi:10.1519/JSC.0b013e31828ddd53.

    Article  PubMed  Google Scholar 

  41. 41.

    Smilios I, Pilianidis T, Karamouzis M, et al. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc. 2003;35(4):644–54. doi:10.1249/01.MSS.0000058366.04460.5F.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985). 2012;113(1):71–7. doi:10.1152/japplphysiol.00307.2012.

    CAS  Article  PubMed Central  Google Scholar 

  43. 43.

    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60. doi:10.1007/s00421-002-0681-6.

    Article  PubMed  Google Scholar 

  44. 44.

    Camera DM, Edge J, Short MJ, et al. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc. 2010;42(10):1843–52. doi:10.1249/MSS.0b013e3181d964e4.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Vissing K, McGee S, Farup J, et al. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355–66.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663–79.

    Article  PubMed  Google Scholar 

  47. 47.

    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121(1):129–38. doi:10.1152/japplphysiol.00154.2016.

    CAS  Article  Google Scholar 

  48. 48.

    Smith GI, Reeds DN, Hall AM, et al. Sexually dimorphic effect of aging on skeletal muscle protein synthesis. Biol Sex Differ. 2012;3(1):11. doi:10.1186/2042-6410-3-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. J Clin Endocrinol Metab. 2006;290(5):E849–55. doi:10.1152/ajpendo.00299.2005.

    CAS  Google Scholar 

  50. 50.

    Timmons JA. Variability in training-induced skeletal muscle adaptation. J Appl Physiol (1985). 2011;110(3):846–53. doi:10.1152/japplphysiol.00934.2010.

    Article  Google Scholar 

  51. 51.

    Mitchell CJ, Churchward-Venne TA, Parise G, et al. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One. 2014;9(2):e89431. doi:10.1371/journal.pone.0089431.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Diver MJ. Laboratory measurement of testosterone. Front Horm Res. 2009;37:21–31. doi:10.1159/000175841175841.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev. 1989;10(3):232–74.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Beato M, Klug J. Steroid hormone receptors: an update. Hum Reprod Update. 2000;6(3):225–36.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18(3):306–60.

    CAS  PubMed  Google Scholar 

  56. 56.

    Grino PB, Griffin JE, Wilson JD. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology. 1990;126(2):1165–72.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Brinkmann AO. Molecular mechanisms of androgen action: a historical perspective. Methods Mol Biol. 2011;776:3–24. doi:10.1007/978-1-61779-243-4_1.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Michels G, Hoppe UC. Rapid actions of androgens. Front Neuroendocrinol. 2008;29(2):182–98. doi:10.1016/j.yfrne.2007.08.004.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Norman AW, Mizwicki MT, Norman DP. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41. doi:10.1038/nrd1283nrd1283.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Gottlicher M, Heck S, Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med (Berl). 1998;76(7):480–9.

    CAS  Article  Google Scholar 

  61. 61.

    Estrada M, Espinosa A, Muller M, et al. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology. 2003;144(8):3586–97.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Labrie F. Intracrinology. Mol Cell Endocrinol. 1991;78(3):C113–8 (pii: 0303-7207(91)90116-A).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Luu-The V, Labrie F. The intracrine sex steroid biosynthesis pathways. Prog Brain Res. 2010;181:177–92. doi:10.1016/S0079-6123(08)81010-2.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Vingren JL, Kraemer WJ, Hatfield DL, et al. Effect of resistance exercise on muscle steroidogenesis. J Appl Physiol (1985). 2008;105(6):1754–60. doi:10.1152/japplphysiol.91235.2008.

    Article  Google Scholar 

  65. 65.

    Biolo G, Tipton KD, Klein S, et al. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273(1 Pt 1):E122–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William J. Kraemer.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of Interest

David Hooper, William Kraemer, Brian Focht, Jeff Volek, William DuPont, Lydia Caldwell, and Carl Maresh declare they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hooper, D.R., Kraemer, W.J., Focht, B.C. et al. Endocrinological Roles for Testosterone in Resistance Exercise Responses and Adaptations. Sports Med 47, 1709–1720 (2017). https://doi.org/10.1007/s40279-017-0698-y

Download citation

Keywords

  • Testosterone
  • Resistance Training
  • Testosterone Level
  • Resistance Exercise
  • DHEA