Skip to main content
Log in

Effect of Movement Velocity During Resistance Training on Dynamic Muscular Strength: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Movement velocity is an acute resistance-training variable that can be manipulated to potentially optimize dynamic muscular strength development. However, it is unclear whether performing faster or slower repetitions actually influences dynamic muscular strength gains.

Objective

We conducted a systematic review and meta-analysis to examine the effect of movement velocity during resistance training on dynamic muscular strength.

Methods

Five electronic databases were searched using terms related to movement velocity and resistance training. Studies were deemed eligible for inclusion if they met the following criteria: randomized and non-randomized comparative studies; published in English; included healthy adults; used isotonic resistance-exercise interventions directly comparing fast or explosive training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured dynamic muscular strength changes.

Results

A total of 15 studies were identified that investigated movement velocity in accordance with the criteria outlined. Fast and moderate-slow resistance training were found to produce similar increases in dynamic muscular strength when all studies were included. However, when intensity was accounted for, there was a trend for a small effect favoring fast compared with moderate-slow training when moderate intensities, defined as 60–79% one repetition maximum, were used (effect size 0.31; p = 0.06). Strength gains between conditions were not influenced by training status and age.

Conclusions

Overall, the results suggest that fast and moderate-slow resistance training improve dynamic muscular strength similarly in individuals within a wide range of training statuses and ages. Resistance training performed at fast movement velocities using moderate intensities showed a trend for superior muscular strength gains as compared to moderate-slow resistance training. Both training practices should be considered for novice to advanced, young and older resistance trainers targeting dynamic muscular strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.

    Article  PubMed  Google Scholar 

  2. Sjöström M, Lexell J, Eriksson A, et al. Evidence of fibre hyperplasia in human skeletal muscles from healthy young men? A left-right comparison of the fibre number in whole anterior tibialis muscles. Eur J Appl Physiol Occup Physiol. 1991;62(5):301–4. doi:10.1007/BF00634963.

    Article  PubMed  Google Scholar 

  3. Cheema BS, Chan D, Fahey P, et al. Effect of progressive resistance training on measures of skeletal muscle hypertrophy, muscular strength and health-related quality of life in patients with chronic kidney disease: a systematic review and meta-analysis. Sports Med. 2014;44(8):1125–38. doi:10.1007/s40279-014-0176-8.

    Article  PubMed  Google Scholar 

  4. Haddad F, Qin AX, Zeng M, et al. Effects of isometric training on skeletal myosin heavy chain expression. J Appl Physiol. 1998;84(6):2036–41.

    CAS  PubMed  Google Scholar 

  5. Ratamess NA, Alvar BA, Evetoch TE, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi:10.1249/MSS.0b013e3181915670.

    Article  Google Scholar 

  6. Hay JG, Andrews JG, Vaughan CL. Effects of lifting rate on elbow torques exerted during arm curl exercises. Med Sci Sports Exerc. 1983;15(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  7. Lachance PF, Hortobagyi T. Influence of cadence on muscular performance during push-up and pull-up exercise. J Strength Cond Res. 1994;8(2):76–9.

    Google Scholar 

  8. Keeler LK, Finkelstein LH, Miller W, et al. Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J Strength Cond Res. 2001;15(3):309–14. doi:10.1519/1533-4287(2001)015%3c0309:EPAOTS%3e2.0.CO;2.

  9. Neils CM, Udermann BE, Brice GA, et al. Influence of contraction velocity in untrained individuals over the initial early phase of resistance training. J Strength Cond Res. 2005;19(4):883–7. doi:10.1519/R-15794.1.

    PubMed  Google Scholar 

  10. Zaras N, Spengos K, Methenitis S, et al. Effects of strength vs. ballistic-power training on throwing performance. J Sports Sci Med. 2013;12(1):130–7.

    PubMed  PubMed Central  Google Scholar 

  11. Adams K, O’Shea JP, O’Shea KL, et al. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J Strength Cond Res. 1992;6(1):36–41.

    CAS  Google Scholar 

  12. Almåsbakk B, Hoff J. Coordination, the determinant of velocity specificity? J Appl Physiol. 1996;81(5):2046–52.

    PubMed  Google Scholar 

  13. Blazevich AJ, Jenkins DG. Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. J Sports Sci. 2002;20(12):981–90. doi:10.1080/026404102321011742.

    Article  PubMed  Google Scholar 

  14. McBride JM, Triplett-McBride T, Davie A, et al. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82. doi:10.1519/1533-4287(2002)016<0075:TEOHVL>2.0.CO;2.

    PubMed  Google Scholar 

  15. Palmieri GA. Weight training and repetition speed. J Strength Cond Res. 1987;1(2):36–8.

    Google Scholar 

  16. Sayers SP, Gibson K. A comparison of high-speed power training and traditional slow-speed resistance training in older men and women. J Strength Cond Res. 2010;24(12):3369–80. doi:10.1519/JSC.0b013e3181f00c7c.

    Article  PubMed  Google Scholar 

  17. De Vos NJ, Singh NA, Ross DA, et al. Effect of power-training intensity on the contribution of force and velocity to peak power in older adults. J Aging Phys Act. 2008;16(4):393–407.

    Article  PubMed  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7).

  19. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun Health. 1998;52(6):377–84.

    Article  CAS  Google Scholar 

  20. Laframboise MA, Degraauw C. The effects of aerobic physical activity on adiposity in school-aged children and youth: a systematic review of randomized controlled trials. J Can Chiropr Assoc. 2011;55(4):256–68.

    PubMed  PubMed Central  Google Scholar 

  21. Cohen J. Statistical power analysis for the behavioral sciences. Burlington: Elsevier; 2013.

    Google Scholar 

  22. Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(1):295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi:10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101. doi:10.2307/2533446.

    Article  CAS  PubMed  Google Scholar 

  25. Assis-Pereira PE, Motoyama YL, Esteves GJ, et al. Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. Int J Appl Exerc Physiol. 2016;5(2):37–43.

    Google Scholar 

  26. Bottaro M, Machado SN, Nogueira W, et al. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol Occup Physiol. 2007;99(3):257–64.

    Article  Google Scholar 

  27. Fielding RA, LeBrasseur NK, Cuoco A, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc. 2002;50(4):655–62.

    Article  PubMed  Google Scholar 

  28. Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sanchez-Medina L, et al. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772–81. doi:10.1080/17461391.2014.905987.

    Article  PubMed  Google Scholar 

  29. Hisaeda H, Nakamura Y, Kuno S, et al. Effect of high-speed resistance training on muscle cross-sectional area and speed of movement. Jpn J Phys Fit Sport. 1996;45(2):345–56.

    Google Scholar 

  30. Jones K, Hunter G, Fleisig G, et al. The effects of compensatory acceleration on upper-body strength and power in collegiate football players. J Strength Cond Res. 1999;13(2):99–105. doi:10.1519/1533-4287(1999)013<0099:TEOCAO>2.0.CO;2.

    Google Scholar 

  31. Liow DK, Hopkins WG. Velocity specificity of weight training for kayak sprint performance. Med Sci Sports Exerc. 2003;35(7):1232–7. doi:10.1249/01.mss.0000074450.97188.cf.

    Article  PubMed  Google Scholar 

  32. Morrissey MC, Harman EA, Frykman PN, et al. Early phase differential effects of slow and fast barbell squat training. Am J Sports Med. 1998;26(2):221–30.

    CAS  PubMed  Google Scholar 

  33. Munn J, Herbert RD, Hancock MJ, et al. Resistance training for strength: effect of number of sets and contraction speed. Med Sci Sports Exerc. 2005;37(9):1622–6.

    Article  PubMed  Google Scholar 

  34. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916–24. doi:10.1055/s-0033-1363985.

    Article  CAS  PubMed  Google Scholar 

  35. Pereira MIR, Gomes PSC. Effects of isotonic resistance training at two movement velocities on strength gains. Rev Bras Med Esporte. 2007;13(2):91–6.

    Article  Google Scholar 

  36. Usui S, Maeo S, Tayashiki K, et al. Low-load slow movement squat training increases muscle size and strength but not power. Int J Sports Med. 2016;37(4):305–12. doi:10.1055/s-0035-1564255.

    CAS  PubMed  Google Scholar 

  37. Watanabe Y, Madarame H, Ogasawara R, et al. Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clin Physiol Funct Imaging. 2014;34(6):463–70.

    Article  PubMed  Google Scholar 

  38. Watanabe Y, Tanimoto M, Ohgane A, et al. Increased muscle size and strength from slow-movement, low-intensity resistance exercise and tonic force generation. J Aging Phys Act. 2013;21(1):71–84.

    Article  PubMed  Google Scholar 

  39. Young WB, Bilby GE. The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. J Strength Cond Res. 1993;7(3):172–8.

    Google Scholar 

  40. Westcott WL, Winett RA, Anderson ES, et al. Effects of regular and slow speed resistance training on muscle strength. J Sport Med Phys Fit. 2001;41(2):154–8.

    CAS  Google Scholar 

  41. Sipila S, Suominen H. Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol. 1995;78(1):334–40.

    CAS  PubMed  Google Scholar 

  42. Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74(1):359–68.

    Article  CAS  PubMed  Google Scholar 

  43. Moritani T, DeVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.

    CAS  PubMed  Google Scholar 

  44. Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2015;45(4):577–85. doi:10.1007/s40279-015-0304-0.

    Article  PubMed  Google Scholar 

  45. Davies T, Orr R, Halaki M, et al. Effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med. 2016;46(4):487–502. doi:10.1007/s40279-015-0451-3.

    Article  PubMed  Google Scholar 

  46. Burd NA, Andrews RJ, West DW, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351–62. doi:10.1113/jphysiol.2011.221200.

    Article  CAS  PubMed  Google Scholar 

  47. Kubo K, Kanehisa H, Fukunaga T. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol. 2002;538(1):219–26. doi:10.1113/jphysiol.2001.012703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Behm DG. An analysis of intermediate speed resistance exercises for velocity-specific strength gains. J Strength Cond Res. 1991;5(1):1–5.

    Google Scholar 

  49. Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation: acute mechanical responses. Sports Med. 2005;35(11):967–89. doi:10.2165/00007256-200535110-00004.

    Article  PubMed  Google Scholar 

  50. Hutchins K. Super slow: the ultimate exercise protocol. 2nd ed. Caselberry: Super Slow Guild; 1992.

    Google Scholar 

  51. Grimby L, Hannerz J, Hedman B. The fatigue and voluntary discharge properties of single motor units in man. J Physiol. 1981;316:545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schilling BK, Falvo MJ, Chiu LZ. Force-velocity, impulse-momentum relationships: implications for efficacy of purposefully slow resistance training. J Sports Sci Med. 2008;7(2):299–304.

    PubMed  PubMed Central  Google Scholar 

  53. Freund HJ. Motor unit and muscle activity in voluntary motor control. Physiol Rev. 1983;63(2):387–436.

    CAS  PubMed  Google Scholar 

  54. Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–7. doi:10.1152/japplphysiol.00741.2005.

    Article  PubMed  Google Scholar 

  55. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548(3):971–81. doi:10.1113/jphysiol.2002.035576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Henneman E. Relation between size of neurons and their susceptibility to discharge. Science. 1957;126(3287):1345–7.

    Article  CAS  PubMed  Google Scholar 

  57. Mero AA, Hulmi JJ, Salmijärvi H, et al. Resistance training induced increase in muscle fiber size in young and older men. Eur J Appl Physiol. 2013;113(3):641–50. doi:10.1007/s00421-012-2466-x.

    Article  CAS  PubMed  Google Scholar 

  58. Welle S, Totterman S, Thornton C. Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci. 1996;51(6):M270–5.

    Article  CAS  PubMed  Google Scholar 

  59. Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res. 2011;1409:42–61. doi:10.1016/j.brainres.2011.06.011.

    Article  CAS  PubMed  Google Scholar 

  60. Desmedt JE, Godaux E. Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol. 1977;264(3):673–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15(1):95–151.

    CAS  PubMed  Google Scholar 

  62. Kosek DJ, Kim JS, Petrella JK, et al. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol. 2006;101(2):531–44. doi:10.1152/japplphysiol.01474.2005.

    Article  CAS  PubMed  Google Scholar 

  63. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68. doi:10.2165/00007256-200737020-00004.

    Article  PubMed  Google Scholar 

  64. Allen DL, Monke SR, Talmadge RJ, et al. Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol. 1995;78(5):1969–76.

    CAS  PubMed  Google Scholar 

  65. Rosenblatt JD, Yong D, Parry DJ. Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve. 1994;17(6):608–13. doi:10.1002/mus.880170607.

    Article  CAS  PubMed  Google Scholar 

  66. Rosenblatt JD, Parry DJ. Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload. Pflügers Arch. 1993;423(3–4):255–64. doi:10.1007/BF00374404.

    Article  CAS  PubMed  Google Scholar 

  67. Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol. 1992;73(6):2538–43.

    CAS  PubMed  Google Scholar 

  68. Orr R, De Vos NJ, Singh NA, et al. Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2006;61(1):78–85.

    Article  PubMed  Google Scholar 

  69. Kawamori N, Newton RU. Velocity specificity of resistance training: actual movement velocity versus intention to move explosively. Strength Cond J. 2006;28(2):86–91. doi:10.1519/1533-4295(2006)028[0086:VSORTA]2.0.CO;2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hackett.

Ethics declarations

Funding

No sources of funding were used in the preparation of this manuscript.

Conflict of interest

Timothy B. Davies, Kenny Kuang, Rhonda Orr, Mark Halaki, and Daniel Hackett declare they have no conflict of interest that is relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, T.B., Kuang, K., Orr, R. et al. Effect of Movement Velocity During Resistance Training on Dynamic Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med 47, 1603–1617 (2017). https://doi.org/10.1007/s40279-017-0676-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0676-4

Keywords

Navigation