Abstract
Background
Movement velocity is an acute resistance-training variable that can be manipulated to potentially optimize dynamic muscular strength development. However, it is unclear whether performing faster or slower repetitions actually influences dynamic muscular strength gains.
Objective
We conducted a systematic review and meta-analysis to examine the effect of movement velocity during resistance training on dynamic muscular strength.
Methods
Five electronic databases were searched using terms related to movement velocity and resistance training. Studies were deemed eligible for inclusion if they met the following criteria: randomized and non-randomized comparative studies; published in English; included healthy adults; used isotonic resistance-exercise interventions directly comparing fast or explosive training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured dynamic muscular strength changes.
Results
A total of 15 studies were identified that investigated movement velocity in accordance with the criteria outlined. Fast and moderate-slow resistance training were found to produce similar increases in dynamic muscular strength when all studies were included. However, when intensity was accounted for, there was a trend for a small effect favoring fast compared with moderate-slow training when moderate intensities, defined as 60–79% one repetition maximum, were used (effect size 0.31; p = 0.06). Strength gains between conditions were not influenced by training status and age.
Conclusions
Overall, the results suggest that fast and moderate-slow resistance training improve dynamic muscular strength similarly in individuals within a wide range of training statuses and ages. Resistance training performed at fast movement velocities using moderate intensities showed a trend for superior muscular strength gains as compared to moderate-slow resistance training. Both training practices should be considered for novice to advanced, young and older resistance trainers targeting dynamic muscular strength.
Similar content being viewed by others
References
Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.
Sjöström M, Lexell J, Eriksson A, et al. Evidence of fibre hyperplasia in human skeletal muscles from healthy young men? A left-right comparison of the fibre number in whole anterior tibialis muscles. Eur J Appl Physiol Occup Physiol. 1991;62(5):301–4. doi:10.1007/BF00634963.
Cheema BS, Chan D, Fahey P, et al. Effect of progressive resistance training on measures of skeletal muscle hypertrophy, muscular strength and health-related quality of life in patients with chronic kidney disease: a systematic review and meta-analysis. Sports Med. 2014;44(8):1125–38. doi:10.1007/s40279-014-0176-8.
Haddad F, Qin AX, Zeng M, et al. Effects of isometric training on skeletal myosin heavy chain expression. J Appl Physiol. 1998;84(6):2036–41.
Ratamess NA, Alvar BA, Evetoch TE, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi:10.1249/MSS.0b013e3181915670.
Hay JG, Andrews JG, Vaughan CL. Effects of lifting rate on elbow torques exerted during arm curl exercises. Med Sci Sports Exerc. 1983;15(1):63–71.
Lachance PF, Hortobagyi T. Influence of cadence on muscular performance during push-up and pull-up exercise. J Strength Cond Res. 1994;8(2):76–9.
Keeler LK, Finkelstein LH, Miller W, et al. Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J Strength Cond Res. 2001;15(3):309–14. doi:10.1519/1533-4287(2001)015%3c0309:EPAOTS%3e2.0.CO;2.
Neils CM, Udermann BE, Brice GA, et al. Influence of contraction velocity in untrained individuals over the initial early phase of resistance training. J Strength Cond Res. 2005;19(4):883–7. doi:10.1519/R-15794.1.
Zaras N, Spengos K, Methenitis S, et al. Effects of strength vs. ballistic-power training on throwing performance. J Sports Sci Med. 2013;12(1):130–7.
Adams K, O’Shea JP, O’Shea KL, et al. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J Strength Cond Res. 1992;6(1):36–41.
Almåsbakk B, Hoff J. Coordination, the determinant of velocity specificity? J Appl Physiol. 1996;81(5):2046–52.
Blazevich AJ, Jenkins DG. Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. J Sports Sci. 2002;20(12):981–90. doi:10.1080/026404102321011742.
McBride JM, Triplett-McBride T, Davie A, et al. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82. doi:10.1519/1533-4287(2002)016<0075:TEOHVL>2.0.CO;2.
Palmieri GA. Weight training and repetition speed. J Strength Cond Res. 1987;1(2):36–8.
Sayers SP, Gibson K. A comparison of high-speed power training and traditional slow-speed resistance training in older men and women. J Strength Cond Res. 2010;24(12):3369–80. doi:10.1519/JSC.0b013e3181f00c7c.
De Vos NJ, Singh NA, Ross DA, et al. Effect of power-training intensity on the contribution of force and velocity to peak power in older adults. J Aging Phys Act. 2008;16(4):393–407.
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7).
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun Health. 1998;52(6):377–84.
Laframboise MA, Degraauw C. The effects of aerobic physical activity on adiposity in school-aged children and youth: a systematic review of randomized controlled trials. J Can Chiropr Assoc. 2011;55(4):256–68.
Cohen J. Statistical power analysis for the behavioral sciences. Burlington: Elsevier; 2013.
Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(1):295–305.
Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi:10.1136/bmj.327.7414.557.
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101. doi:10.2307/2533446.
Assis-Pereira PE, Motoyama YL, Esteves GJ, et al. Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. Int J Appl Exerc Physiol. 2016;5(2):37–43.
Bottaro M, Machado SN, Nogueira W, et al. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol Occup Physiol. 2007;99(3):257–64.
Fielding RA, LeBrasseur NK, Cuoco A, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc. 2002;50(4):655–62.
Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sanchez-Medina L, et al. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772–81. doi:10.1080/17461391.2014.905987.
Hisaeda H, Nakamura Y, Kuno S, et al. Effect of high-speed resistance training on muscle cross-sectional area and speed of movement. Jpn J Phys Fit Sport. 1996;45(2):345–56.
Jones K, Hunter G, Fleisig G, et al. The effects of compensatory acceleration on upper-body strength and power in collegiate football players. J Strength Cond Res. 1999;13(2):99–105. doi:10.1519/1533-4287(1999)013<0099:TEOCAO>2.0.CO;2.
Liow DK, Hopkins WG. Velocity specificity of weight training for kayak sprint performance. Med Sci Sports Exerc. 2003;35(7):1232–7. doi:10.1249/01.mss.0000074450.97188.cf.
Morrissey MC, Harman EA, Frykman PN, et al. Early phase differential effects of slow and fast barbell squat training. Am J Sports Med. 1998;26(2):221–30.
Munn J, Herbert RD, Hancock MJ, et al. Resistance training for strength: effect of number of sets and contraction speed. Med Sci Sports Exerc. 2005;37(9):1622–6.
Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916–24. doi:10.1055/s-0033-1363985.
Pereira MIR, Gomes PSC. Effects of isotonic resistance training at two movement velocities on strength gains. Rev Bras Med Esporte. 2007;13(2):91–6.
Usui S, Maeo S, Tayashiki K, et al. Low-load slow movement squat training increases muscle size and strength but not power. Int J Sports Med. 2016;37(4):305–12. doi:10.1055/s-0035-1564255.
Watanabe Y, Madarame H, Ogasawara R, et al. Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clin Physiol Funct Imaging. 2014;34(6):463–70.
Watanabe Y, Tanimoto M, Ohgane A, et al. Increased muscle size and strength from slow-movement, low-intensity resistance exercise and tonic force generation. J Aging Phys Act. 2013;21(1):71–84.
Young WB, Bilby GE. The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. J Strength Cond Res. 1993;7(3):172–8.
Westcott WL, Winett RA, Anderson ES, et al. Effects of regular and slow speed resistance training on muscle strength. J Sport Med Phys Fit. 2001;41(2):154–8.
Sipila S, Suominen H. Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol. 1995;78(1):334–40.
Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74(1):359–68.
Moritani T, DeVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.
Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2015;45(4):577–85. doi:10.1007/s40279-015-0304-0.
Davies T, Orr R, Halaki M, et al. Effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med. 2016;46(4):487–502. doi:10.1007/s40279-015-0451-3.
Burd NA, Andrews RJ, West DW, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351–62. doi:10.1113/jphysiol.2011.221200.
Kubo K, Kanehisa H, Fukunaga T. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol. 2002;538(1):219–26. doi:10.1113/jphysiol.2001.012703.
Behm DG. An analysis of intermediate speed resistance exercises for velocity-specific strength gains. J Strength Cond Res. 1991;5(1):1–5.
Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation: acute mechanical responses. Sports Med. 2005;35(11):967–89. doi:10.2165/00007256-200535110-00004.
Hutchins K. Super slow: the ultimate exercise protocol. 2nd ed. Caselberry: Super Slow Guild; 1992.
Grimby L, Hannerz J, Hedman B. The fatigue and voluntary discharge properties of single motor units in man. J Physiol. 1981;316:545–54.
Schilling BK, Falvo MJ, Chiu LZ. Force-velocity, impulse-momentum relationships: implications for efficacy of purposefully slow resistance training. J Sports Sci Med. 2008;7(2):299–304.
Freund HJ. Motor unit and muscle activity in voluntary motor control. Physiol Rev. 1983;63(2):387–436.
Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–7. doi:10.1152/japplphysiol.00741.2005.
Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548(3):971–81. doi:10.1113/jphysiol.2002.035576.
Henneman E. Relation between size of neurons and their susceptibility to discharge. Science. 1957;126(3287):1345–7.
Mero AA, Hulmi JJ, Salmijärvi H, et al. Resistance training induced increase in muscle fiber size in young and older men. Eur J Appl Physiol. 2013;113(3):641–50. doi:10.1007/s00421-012-2466-x.
Welle S, Totterman S, Thornton C. Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci. 1996;51(6):M270–5.
Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res. 2011;1409:42–61. doi:10.1016/j.brainres.2011.06.011.
Desmedt JE, Godaux E. Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol. 1977;264(3):673–93.
Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15(1):95–151.
Kosek DJ, Kim JS, Petrella JK, et al. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol. 2006;101(2):531–44. doi:10.1152/japplphysiol.01474.2005.
Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68. doi:10.2165/00007256-200737020-00004.
Allen DL, Monke SR, Talmadge RJ, et al. Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol. 1995;78(5):1969–76.
Rosenblatt JD, Yong D, Parry DJ. Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve. 1994;17(6):608–13. doi:10.1002/mus.880170607.
Rosenblatt JD, Parry DJ. Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload. Pflügers Arch. 1993;423(3–4):255–64. doi:10.1007/BF00374404.
Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol. 1992;73(6):2538–43.
Orr R, De Vos NJ, Singh NA, et al. Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2006;61(1):78–85.
Kawamori N, Newton RU. Velocity specificity of resistance training: actual movement velocity versus intention to move explosively. Strength Cond J. 2006;28(2):86–91. doi:10.1519/1533-4295(2006)028[0086:VSORTA]2.0.CO;2
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
No sources of funding were used in the preparation of this manuscript.
Conflict of interest
Timothy B. Davies, Kenny Kuang, Rhonda Orr, Mark Halaki, and Daniel Hackett declare they have no conflict of interest that is relevant to the content of this review.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Davies, T.B., Kuang, K., Orr, R. et al. Effect of Movement Velocity During Resistance Training on Dynamic Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med 47, 1603–1617 (2017). https://doi.org/10.1007/s40279-017-0676-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40279-017-0676-4