Skip to main content

Polyphenols and Performance: A Systematic Review and Meta-Analysis

An Erratum to this article was published on 22 February 2017

Abstract

Background

Polyphenols exert physiological effects that may impact athletic performance. Polyphenols are antioxidants that have been noted to hinder training adaptations, yet conversely they stimulate stress-related cell signalling pathways that trigger mitochondrial biogenesis and influence vascular function.

Objective

To determine the overall effect of polyphenols on human athletic performance.

Methods

A search strategy was completed using MEDLINE, EMBASE, CINAHL, AMED and SPORTDiscus in April 2016. The studies were screened and independently reviewed by two researchers against predetermined criteria for eligibility. As a result of this screening, 14 studies were included for meta-analysis. Of these, the studied populations were predominately-trained males with an average intervention dose of 688 ± 478 mg·day−1.

Results

The pooled results demonstrate polyphenol supplementation for at least 7 days increases performance by 1.90% (95% CI 0.40–3.39). Sub-analysis of seven studies using quercetin identified a performance increase of 2.82% (95% CI 2.05–3.58). There were no adverse effects reported in the studies in relation to the intervention.

Conclusion

Overall the pooled results show that polyphenols, and of note quercetin, are viable supplements to improve performance in healthy individuals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Darvishi L, Askari G, Hariri M, et al. The use of nutritional supplements among male collegiate athletes. Int J Prev Med. 2013;4(Suppl 1):S68–72.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kim J, Kang S, Jung H, et al. Dietary supplementation patterns of Korean Olympic athletes participating in the Beijing 2008 Summer Olympic Games. Int J Sport Nutr Exerc Metab. 2011;21(2):166–74.

    Article  PubMed  Google Scholar 

  3. 3.

    Knapik JJ, Steelman RA, Hoedebecke SS, et al. Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016;46(1):103–23.

    Article  PubMed  Google Scholar 

  4. 4.

    Petróczi A, Naughton DP, Mazanov J, et al. Limited agreement exists between rationale and practice in athletes’ supplement use for maintenance of health: a retrospective study. Nutr J. 2007;6(1):34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    CAS  PubMed  Google Scholar 

  6. 6.

    Mandel S, Youdim MB. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med. 2004;37(3):304–17.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–22.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Somerville VS, Braakhuis AJ, Hopkins WG. Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr. 2016;7(3):488–97.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20(7):709–11.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Draeger CL, Naves A, Marques N, et al. Controversies of antioxidant vitamins supplementation in exercise: ergogenic or ergolytic effects in humans? J Int Soc Sports Nutr. 2014;11(1):4–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Gomez-Cabrera MC, Ristow M, Vina J. Antioxidant supplements in exercise: worse than useless? Am J Physiol Endocrinol Metab. 2012;302(4):E476,7 (author reply E478–9).

  12. 12.

    Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, et al. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med. 2015;86:37–46.

  13. 13.

    Eynon N, Alves AJ, Sagiv M, et al. Interaction between SNPs in the NRF2 gene and elite endurance performance. Physiol Genomics. 2010;41(1):78–81.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Visioli F. Polyphenols in sport: facts or fads? In: Lamprecht M, editor. Boca Raton: Taylor & Francis Group, LLC; 2015.

  15. 15.

    Stevenson DE. Polyphenols as adaptogens–the real mechanism of the antioxidant effect? In: Anonymous. Croatia: InTech Rijeka; 2012. p. 143–62.

  16. 16.

    Malaguti M, Angeloni C, Hrelia S. Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxid Med Cell Longev. 2013;2013:825928. doi:10.1155/2013/825928 (Epub 2013 Jul 24).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Labonté K, Couillard C, Motard-Bélanger A, et al. Acute effects of polyphenols from cranberries and grape seeds on endothelial function and performance in elite athletes. Sports. 2013;1(3):55–68.

    Article  Google Scholar 

  18. 18.

    Ghosh D, Scheepens A. Vascular action of polyphenols. Mol Nutr Food Res. 2009;53(3):322–31.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kim JA, Formoso G, Li Y, et al. Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem. 2007;282(18):13736–45.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Nicholson SK, Tucker GA, Brameld JM. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc. 2008;67(01):42–7.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Fisher ND, Hughes M, Gerhard-Herman M, et al. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens. 2003;21(12):2281–6.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.

    Article  PubMed  Google Scholar 

  23. 23.

    Noakes T. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports. 2000;10(3):123–45.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Alexander SP. Flavonoids as antagonists at A1 adenosine receptors. Phytother Res. 2006;20(11):1009–12.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Braakhuis AJ, Hopkins WG. Impact of dietary antioxidants on sport performance: a review. Sports Med. 2015;45(7):939–55.

    Article  PubMed  Google Scholar 

  26. 26.

    Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med. 2014;44(1):57–70.

    Article  PubMed Central  Google Scholar 

  27. 27.

    Pelletier DM, Lacerte G, Goulet ED. Effects of quercetin supplementation on endurance performance and maximal oxygen consumption: a meta-analysis. Int J Sport Nutr Exerc Metab. 2013;23(1):73–82.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Kressler J, Millard-Stafford M, Warren GL. Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med Sci Sports Exerc. 2011;43(12):2396–404.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    Article  PubMed  Google Scholar 

  30. 30.

    McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  31. 31.

    Wilborn CD, Taylor LW, Campbell BI, et al. Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr. 2006;3(2):19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hopkins W, Marshall S, Batterham A, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.

    Article  PubMed  Google Scholar 

  33. 33.

    Saunders MJ, Moore RW, Kies AK, et al. Carbohydrate and protein hydrolysate coingestions improvement of late-exercise time-trial performance. Int J Sport Nutr Exerc Metab. 2009;19(2):136–49.

    Article  PubMed  Google Scholar 

  34. 34.

    Hinckson EA, Hopkins WG. Reliability of time to exhaustion analyzed with critical-power and log-log modeling. Med Sci Sports Exerc. 2005;37(4):696–701.

    Article  PubMed  Google Scholar 

  35. 35.

    Askari G, Ghiasvand R, Paknahad Z, et al. The effects of quercetin supplementation on body composition, exercise performance and muscle damage indices in athletes. Int J Prev Med. 2013;4(1):21–6.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kuo Y, Lin J, Bernard JR, et al. Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl Physiol Nutr Metab. 2015;40(10):990–6.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hill J, Timmis A. Exercise tolerance testing. BMJ. 2002;324(7345):1084–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2007;11:16–21.

    Google Scholar 

  39. 39.

    Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance. Sports Med. 2011;41(10):801–14.

    Article  PubMed  Google Scholar 

  40. 40.

    Toscano LT, Tavares RL, Toscano LT, et al. Potential ergogenic activity of grape juice in runners. Appl Physiol Nutr Metab. 2015;40(9):899–906.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Bigelman KA, Fan EH, Chapman DP, et al. Effects of six weeks of quercetin supplementation on physical performance in ROTC cadets. Mil Med. 2010;175(10):791–8.

    Article  PubMed  Google Scholar 

  42. 42.

    Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Science. 2014;14(2):160–8.

    Article  Google Scholar 

  43. 43.

    Cureton KJ, Tomporowski PD, Singhal A, et al. Dietary quercetin supplementation is not ergogenic in untrained men. J Appl Physiol (1985). 2009;107(4):1095–104.

  44. 44.

    Davis JM, Carlstedt CJ, Chen S, et al. The dietary flavonoid quercetin increases VO2max and endurance capacity. Int J Sport Nutr. 2010;20(1):56–62.

    CAS  Google Scholar 

  45. 45.

    Kang SW, Hahn S, Kim J, et al. Oligomerized lychee fruit extract (OLFE) and a mixture of vitamin C and vitamin E for endurance capacity in a double blind randomized controlled trial. J Clin Biochem Nutr. 2012;50(2):106–13.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    MacRae H, Mefferd KM. Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int J Sport Nutr Exerc Metab. 2006;16(4):405–19.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Nieman DC, Williams AS, Shanely RA, et al. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2010;42(2):338–45.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Roberts JD, Roberts MG, Tarpey MD, et al. The effect of a decaffeinated green tea extract formula on fat oxidation, body composition and exercise performance. J Int Soc Sports Nutr. 2015;12(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Scholten SD, Sergeev IN, Song Q, et al. Effects of vitamin D and quercetin, alone and in combination, on cardiorespiratory fitness and muscle function in physically active male adults. Open Access J Sports Med. 2015;6:229.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Scribbans TD, Ma JK, Edgett BA, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39(11):1305–13.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Skarpanska-Stejnborn A, Pilaczynska-Szczesniak L, Basta P, et al. The influence of supplementation with artichoke (Cynara scolymus L.) extract on selected redox parameters in rowers. Int J Sport Nutr Exerc Metab. 2008;18(3):313–27.

    Article  PubMed  Google Scholar 

  52. 52.

    Rohas LM, St-Pierre J, Uldry M, et al. A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci. 2007;104(19):7933–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 2000;14(12):1685–96.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Green DJ, Maiorana A, O’Driscoll G, et al. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561(1):1–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Roberts CK, Barnard RJ, Jasman A, et al. Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol. 1999;277(2 Pt 1):E390–4.

    CAS  PubMed  Google Scholar 

  56. 56.

    Dulloo AG, Duret C, Rohrer D, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040–5.

    CAS  PubMed  Google Scholar 

  57. 57.

    Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr. 2013;4(2):129–40.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kim H, Quon MJ, Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–95.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Randell RK, Hodgson AB, Lotito SB, et al. No effect of 1 or 7 d of green tea extract ingestion on fat oxidation during exercise. Med Sci Sports Exerc. 2013;45(5):883–91.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Rothwell JA, Perez-Jimenez J, Neveu V, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford). 2013;2013:bat070.

  61. 61.

    Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4.

    Article  PubMed  Google Scholar 

  62. 62.

    Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.

    CAS  PubMed  Google Scholar 

  63. 63.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):1319–34.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Goldstein ER, Ziegenfuss T, Kalman D, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):1–5.

    Article  Google Scholar 

Download references

Author contributions

VS and AB conceived and designed the study; VS and CB performed the literature search and were responsible for decisions on inclusion/exclusion of articles (with AB as the decider if there was disagreement); VS analysed the data; VS and AB wrote the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vaughan Somerville.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Vaughan Somerville, Cameron Bringans and Andrea Braakhuis declare that they have no conflicts of interest relevant to the content of this review.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s40279-017-0702-6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Somerville, V., Bringans, C. & Braakhuis, A. Polyphenols and Performance: A Systematic Review and Meta-Analysis. Sports Med 47, 1589–1599 (2017). https://doi.org/10.1007/s40279-017-0675-5

Download citation

Keywords

  • Quercetin
  • Polyphenol
  • Resveratrol
  • Mitochondrial Biogenesis
  • Athletic Performance