Advertisement

Sports Medicine

, Volume 47, Issue 8, pp 1457–1465 | Cite as

A Scientific Rationale to Improve Resistance Training Prescription in Exercise Oncology

  • Ciaran M. FairmanEmail author
  • Michael C. Zourdos
  • Eric R. Helms
  • Brian C. Focht
Leading Article

Abstract

To date, the prevailing evidence in the field of exercise oncology supports the safety and efficacy of resistance training to attenuate many oncology treatment-related adverse effects, such as risk for cardiovascular disease, increased fatigue, and diminished physical functioning and quality of life. Moreover, findings in the extant literature supporting the benefits of exercise for survivors of and patients with cancer have resulted in the release of exercise guidelines from several international agencies. However, despite research progression and international recognition, current exercise oncology-based exercise prescriptions remain relatively basic and underdeveloped, particularly in regards to resistance training. Recent publications have called for a more precise manipulation of training variables such as volume, intensity, and frequency (i.e., periodization), given the large heterogeneity of a cancer population, to truly optimize clinically relevant patient-reported outcomes. Indeed, increased attention to integrating fundamental principles of exercise physiology into the exercise prescription process could optimize the safety and efficacy of resistance training during cancer care. The purpose of this article is to give an overview of the current state of resistance training prescription and discuss novel methods that can contribute to improving approaches to exercise prescription. We hope this article may facilitate further evaluation of best practice regarding resistance training prescription, monitoring, and modification to ultimately optimize the efficacy of integrating resistance training as a supportive care intervention for survivors or and patients with cancer.

Keywords

Resistance Training Cancer Population Exercise Prescription Training Load Training Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Ciaran Fairman, Michael Zourdos, Eric Helms, and Brian Focht have no conflicts of interest relevant to the content of this article.

References

  1. 1.
    Sasso JP, Eves ND, Christensen JF, et al. A framework for prescription in exercise-oncology research. J Cachexia Sarcopenia Muscle. 2015;6(2):115–24. doi: 10.1002/jcsm.12042.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hardee JP, Porter RR, Sui X, et al. The effect of resistance exercise on all-cause mortality in cancer survivors. Mayo Clin Proc. 2014;89(8):1108–15. doi: 10.1016/j.mayocp.2014.03.018.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schmitz KH, Courneya KS, Matthews C, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26. doi: 10.1249/MSS.0b013e3181e0c112.CrossRefPubMedGoogle Scholar
  4. 4.
    Campbell A, Stevinson C, Crank H. The BASES Expert Statement on exercise and cancer survivorship. J Sports Sci. 2012;30(9):949–52. doi: 10.1080/02640414.2012.671953.CrossRefPubMedGoogle Scholar
  5. 5.
    Hayes SC, Spence RR, Galvão DA, et al. Australian Association for Exercise and Sport Science position stand: optimising cancer outcomes through exercise. J Sci Med Sport. 2009;12:428–34. doi: 10.1016/j.jsams.2009.03.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Fleck SJ. Non-linear periodization for general fitness and athletes. J Hum Kinet. 2011;29A:41–5. doi: 10.2478/v10078-011-0057-2.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McNamara JM, Stearne DJ. Effect of concurrent training, flexible nonlinear periodization, and maximal-effort cycling on strength and power. J Strength Cond Res. 2013;27(6):1463–70. doi: 10.1519/JSC.0b013e318274f343.CrossRefPubMedGoogle Scholar
  8. 8.
    Ratamess NA, Alvar BA, Evetoch TK, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670.CrossRefGoogle Scholar
  9. 9.
    Courneya KS, Segal RJ, Mackey JR, et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 2007;25(28):4396–404. doi: 10.1200/JCO.2006.08.2024.CrossRefPubMedGoogle Scholar
  10. 10.
    Dolan LB, Gelmon K, Courneya KS, et al. Hemoglobin and aerobic fitness changes with supervised exercise training in breast cancer patients receiving chemotherapy. Cancer Epidemiol Biomark Prev. 2010;19(11):2826–32. doi: 10.1158/1055-9965.EPI-10-0521.CrossRefGoogle Scholar
  11. 11.
    Segal RJ, Reid RD, Courneya KS, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51. doi: 10.1200/JCO.2007.15.4963.CrossRefPubMedGoogle Scholar
  12. 12.
    Steindorf K, Schmidt ME, Klassen O, et al. Randomized, controlled trial of resistance training in breast cancer patients receiving adjuvant radiotherapy: results on cancer-related fatigue and quality of life. Ann Oncol. 2014;25(11):2237–43. doi: 10.1093/annonc/mdu374.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed RL, Thomas W, Yee D, et al. Randomized controlled trial of weight training and lymphedema in breast cancer survivors. J Clin Oncol. 2006;24(18):2765–72. doi: 10.1200/JCO.2005.03.6749.CrossRefPubMedGoogle Scholar
  14. 14.
    Schmitz KH, Ahmed RL, Troxel AB, et al. Weight lifting for women at risk for breast cancer-related lymphedema: a randomized trial. JAMA. 2010;304(24):2699–705. doi: 10.1001/jama.2010.1837.CrossRefPubMedGoogle Scholar
  15. 15.
    Winters-Stone KM, Laudermilk M, Woo K, et al. Influence of weight training on skeletal health of breast cancer survivors with or at risk for breast cancer-related lymphedema. J Cancer Surviv. 2014;8(2):260–8. doi: 10.1007/s11764-013-0337-z.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Campbell KL, Neil SE, Winters-Stone KM. Review of exercise studies in breast cancer survivors: attention to principles of exercise training. Br J Sports Med. 2012;46(13):909–16. doi: 10.1136/bjsports-2010-082719.CrossRefPubMedGoogle Scholar
  17. 17.
    Bompa TO. Annual training plan. In: Bompa TO, Haff GG, editors. Periodization: theory and methodology of training. 5th ed. Champaign: Human Kinetics; 2009. p. 126–77.Google Scholar
  18. 18.
    Milanez VF, Ramos SP, Okuno NM, et al. Evidence of a non-linear dose-response relationship between training load and stress markers in elite female futsal players. J Sports Sci Med. 2014;13(1):22–9.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):1103–26.CrossRefPubMedGoogle Scholar
  20. 20.
    Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Kraemer WJ, Ratamess N, Fry AC, et al. Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players. Am J Sports Med. 2000;28(5):626–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Marx JO, Ratamess NA, Nindl BC, et al. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc. 2001;33(4):635–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Rhea MR, Alderman BL. A meta-analysis of periodized versus nonperiodized strength and power training programs. Res Q Exerc Sport. 2004;75(4):413–22. doi: 10.1080/02701367.2004.10609174.CrossRefPubMedGoogle Scholar
  24. 24.
    Prestes J, De Lima C, Frollini AB, et al. Comparison of linear and reverse linear periodization effects on maximal strength and body composition. J Strength Cond Res. 2009;23(1):266–74. doi: 10.1519/JSC.0b013e3181874bf3.CrossRefPubMedGoogle Scholar
  25. 25.
    Harries SK, Lubans DR, Callister R. Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. J Strength Cond Res. 2015;29(4):1113–25. doi: 10.1519/JSC.0000000000000712.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwartz AL. Daily fatigue patterns and effect of exercise in women with breast cancer. Cancer Pract. 2000;8(1):16–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Jim HSL, Small B, Faul LA, et al. Fatigue, depression, sleep, and activity during chemotherapy: daily and intraday variation and relationships among symptom changes. Ann Behav Med. 2011;42(3):321–33. doi: 10.1007/s12160-011-9294-9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Richardson A, Ream E, Wilson-Barnett J. Fatigue in patients receiving chemotherapy: patterns of change. Cancer Nurs. 1998;21(1):17–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Jones LW, Alfano CM. Exercise-oncology research: past, present, and future. Acta Oncol. 2013;52(2):195–215. doi: 10.3109/0284186X.2012.742564.CrossRefPubMedGoogle Scholar
  30. 30.
    Savard J, Liu L, Natarajan L, et al. Breast cancer patients have progressively impaired sleep-wake activity rhythms during chemotherapy. Sleep. 2009;32(9):1155–60.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liu L, Fiorentino L, Natarajan L, et al. Pre-treatment symptom cluster in breast cancer patients is associated with worse sleep, fatigue and depression during chemotherapy. Psychooncology. 2009;18(2):187–94. doi: 10.1002/pon.1412.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Berger AM, Higginbotham P. Correlates of fatigue during and following adjuvant breast cancer chemotherapy: a pilot study. Oncol Nurs Forum. 2000;27(9):1443–8.PubMedGoogle Scholar
  33. 33.
    De Jong N, Kester ADM, Schouten HC, Abu-Saad HH, Courtens AM. Course of fatigue between two cycles of adjuvant chemotherapy in breast cancer patients. Cancer Nurs. 2006;29(6):467–77.CrossRefPubMedGoogle Scholar
  34. 34.
    Cohen L, de Moor CA, Eisenberg P, et al. Chemotherapy-induced nausea and vomiting: incidence and impact on patient quality of life at community oncology settings. Support Care Cancer. 2007;15(5):497–503. doi: 10.1007/s00520-006-0173-z.CrossRefPubMedGoogle Scholar
  35. 35.
    Bergkvist K, Wengström Y. Symptom experiences during chemotherapy treatment–with focus on nausea and vomiting. Eur J Oncol Nurs. 2006;10(1):21–9. doi: 10.1016/j.ejon.2005.03.007.CrossRefPubMedGoogle Scholar
  36. 36.
    Salihah N, Mazlan N, Lua PL. Chemotherapy-induced nausea and vomiting: exploring patients’ subjective experience. J Multidiscip Healthc. 2016;9:145–51. doi: 10.2147/JMDH.S97695.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cheung AS, Zajac JD, Grossmann M. Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer. 2014;21(5):R371–94. doi: 10.1530/ERC-14-0172.CrossRefPubMedGoogle Scholar
  38. 38.
    Taillibert S, Le Rhun E, Chamberlain MC. Chemotherapy-related neurotoxicity. Curr Neurol Neurosci Rep. 2016;16(9):81. doi: 10.1007/s11910-016-0686-x.CrossRefPubMedGoogle Scholar
  39. 39.
    Kolb NA, Smith AG, Singleton JR, et al. The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol. 2016;73(7):860–6. doi: 10.1001/jamaneurol.2016.0383.CrossRefPubMedGoogle Scholar
  40. 40.
    Win T, Groves AM, Ritchie AJ, et al. The effect of lung resection on pulmonary function and exercise capacity in lung cancer patients. Respir Care. 2007;52(6):720–6.PubMedGoogle Scholar
  41. 41.
    Borst GR, De Jaeger K, Belderbos JSA, et al. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys. 2005;62(3):639–44. doi: 10.1016/j.ijrobp.2004.11.029.CrossRefPubMedGoogle Scholar
  42. 42.
    Mann JB, Thyfault JP, Ivey PA, et al. The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. J Strength Cond Res. 2010;24(7):1718–23. doi: 10.1519/JSC.0b013e3181def4a6.CrossRefPubMedGoogle Scholar
  43. 43.
    Monteiro AG, Aoki MS, Evangelista AL, et al. Nonlinear periodization maximizes strength gains in split resistance training routines. J Strength Cond Res. 2009;23(4):1321–6. doi: 10.1519/JSC.0b013e3181a00f96.CrossRefPubMedGoogle Scholar
  44. 44.
    Simão R, Spineti J, de Salles BF, et al. Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. J Strength Cond Res. 2012;26(5):1389–95. doi: 10.1519/JSC.0b013e318231a659.CrossRefPubMedGoogle Scholar
  45. 45.
    Zourdos MC, Jo E, Khamoui AV, et al. Modified daily undulating periodization model produces greater performance than a traditional configuration in powerlifters. J Strength Cond Res. 2016;30(3):784–91. doi: 10.1519/JSC.0000000000001165.CrossRefPubMedGoogle Scholar
  46. 46.
    Klemp A, Dolan C, Quiles JM, et al. Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Appl Physiol Nutr Metab. 2016;41(7):699–705. doi: 10.1139/apnm-2015-0707.CrossRefPubMedGoogle Scholar
  47. 47.
    Rhea MR, Phillips WT, Burkett LN, et al. A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. J Strength Cond Res. 2003;17(1):82–7.PubMedGoogle Scholar
  48. 48.
    Miranda F, Simão R, Rhea M, et al. Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains. J Strength Cond Res. 2011;25(7):1824–30. doi: 10.1519/JSC.0b013e3181e7ff75.CrossRefPubMedGoogle Scholar
  49. 49.
    Prestes J, Frollini AB, De Lima C, et al. Comparison between linear and daily undulating periodized resistance training to increase strength. J Strength Cond Res. 2009;23(9):2437–42. doi: 10.1519/JSC.0b013e3181c03548.CrossRefPubMedGoogle Scholar
  50. 50.
    Peterson MD, Dodd DJ, Alvar BA, et al. Undulation training for development of hierarchical fitness and improved firefighter job performance. J Strength Cond Res. 2008;22(5):1683–95. doi: 10.1519/JSC.0b013e31818215f4.CrossRefPubMedGoogle Scholar
  51. 51.
    Buford TW, Rossi SJ, Smith DB, et al. A comparison of periodization models during nine weeks with equated volume and intensity for strength. J Strength Cond Res. 2007;21(4):1245–50. doi: 10.1519/R-20446.1.PubMedGoogle Scholar
  52. 52.
    Zourdos MC, Klemp A, Dolan C, et al. Novel resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res. 2016;30(1):267–75. doi: 10.1519/JSC.0000000000001049.CrossRefPubMedGoogle Scholar
  53. 53.
    McNamara JM, Stearne DJ. Flexible nonlinear periodization in a beginner college weight training class. J Strength Cond Res. 2010;24(8):2012–7. doi: 10.1519/JSC.0b013e3181b1b15d.CrossRefPubMedGoogle Scholar
  54. 54.
    Timmons JA. Variability in training-induced skeletal muscle adaptation. J Appl Physiol. 2011;110(3):846–53. doi: 10.1152/japplphysiol.00934.2010.CrossRefPubMedGoogle Scholar
  55. 55.
    Mazzetti SA, Kraemer WJ, Volek JS, et al. The influence of direct supervision of resistance training on strength performance. Med Sci Sports Exerc. 2000;32(6):1175–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Rhea MR, Ball SD, Phillips WT, et al. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res. 2002;16(2):250–5.PubMedGoogle Scholar
  57. 57.
    Colquhoun RJ. Comparison of powerlifting performance in trained males using traditional and flexible daily undulating periodization. Dissertation, University of South Florida; 2015.Google Scholar
  58. 58.
    Meyerhardt JA, Heseltine D, Niedzwiecki D, et al. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol. 2006;24(22):3535–41. doi: 10.1200/JCO.2006.06.0863.CrossRefPubMedGoogle Scholar
  59. 59.
    Sternfeld B, Weltzien E, Quesenberry CP, et al. Physical activity and risk of recurrence and mortality in breast cancer survivors: findings from the LACE study. Cancer Epide0miol Biomark Prev. 2009;18(1):87–95. doi: 10.1158/1055-9965.EPI-08-0595.CrossRefGoogle Scholar
  60. 60.
    Chen X, Lu W, Zheng W, et al. Exercise after diagnosis of breast cancer in association with survival. Cancer Prev Res (Phila). 2011;4(9):1409–18. doi: 10.1158/1940-6207.CAPR-10-0355.CrossRefGoogle Scholar
  61. 61.
    Laurent CM, Green JM, Bishop PA, et al. A practical approach to monitoring recovery: development of a perceived recovery status scale. J Strength Cond Res. 2011;25(3):620–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ciaran M. Fairman
    • 1
    Email author
  • Michael C. Zourdos
    • 2
  • Eric R. Helms
    • 3
  • Brian C. Focht
    • 1
  1. 1.Kinesiology, Department of Human SciencesThe Ohio State UniversityColumbusUSA
  2. 2.Department of Exercise Science and Health Promotion, Muscle Physiology LaboratoryFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Sport Performance Research Institute New Zealand (SPRINZ)Auckland University of TechnologyAucklandNew Zealand

Personalised recommendations