Skip to main content
Log in

From Lab to Real World: Heat Acclimation Considerations for Elite Athletes

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

As major sporting events are often held in hot environments, increased interest in ways of optimally heat acclimating athletes to maximise performance has emerged. Heat acclimation involves repeated exercise sessions in hot conditions that induce physiological and thermoregulatory adaptations that attenuate heat-induced performance impairments. Current evidence-based guidelines for heat acclimation are clear, but the application of these recommendations is not always aligned with the time commitments and training priorities of elite athletes. Alternative forms of heat acclimation investigated include hot water immersion and sauna bathing, yet uncertainty remains around the efficacy of these methods for reducing heat-induced performance impairments, as well as how this form of heat stress may add to an athlete’s overall training load. An understanding of how to optimally prescribe and periodise heat acclimation based on the performance determinants of a given event is limited, as is knowledge of how heat acclimation may affect the quality of concurrent training sessions. Finally, differences in individual athlete responses to heat acclimation need to be considered. This article addresses alternative methods of heat acclimation and heat exposure, explores gaps in literature around understanding the real world application of heat acclimation for athletes, and highlights specific athlete considerations for practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sunderland C, Nevill ME. High-intensity intermittent running and field hockey skill performance in the heat. J Sports Sci. 2005;23(5):531–40.

    Article  PubMed  Google Scholar 

  2. Tatterson AJ, Hahn AG, Martini DT, et al. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  3. Racinais S, Mohr M, Buchheit M, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810–5.

    Article  PubMed  Google Scholar 

  4. Binkley HM, Beckett J, Casa DJ, et al. National athletic trainers’ association position statement: exertional heat illnesses. J Athl Train. 2002;37(3):329.

    PubMed  PubMed Central  Google Scholar 

  5. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(S1):20–38.

    Article  PubMed  Google Scholar 

  6. Taylor NAS. Human heat adaptation. Compr Physiol. 2014;4:325–65.

    Article  PubMed  Google Scholar 

  7. Tyler CJ, Reeve T, Hodges GJ, et al. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):1699–724.

    Article  PubMed  Google Scholar 

  8. Chalmers S, Esterman A, Eston R, et al. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Med. 2014;44(7):971–88.

    Article  PubMed  Google Scholar 

  9. Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25(S1):6–19.

    Article  PubMed  Google Scholar 

  10. Scoon GSM, Hopkins WG, Mayhew S, et al. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport. 2007;10(4):259–62.

    Article  PubMed  Google Scholar 

  11. Zurawlew MJ, Walsh NP, Fortes MB, et al. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2015;26:745–54.

    Article  PubMed  Google Scholar 

  12. Bonner RM, Harrison MH, Hall CJ, et al. Effect of heat acclimatization on intravascular responses to acute heat stress in man. J Appl Physiol. 1976;41(5):708–13.

    CAS  PubMed  Google Scholar 

  13. Brazaitis M, Skurvydas A. Heat acclimation does not reduce the impact of hyperthermia on central fatigue. Eur J Appl Physiol. 2010;109(4):771–8.

    Article  PubMed  Google Scholar 

  14. Shin YO, Lee JB, Min YK, et al. Heat acclimation affects circulating levels of prostaglandin E 2, COX-2 and orexin in humans. Neurosci Lett. 2013;542:17–20.

    Article  CAS  PubMed  Google Scholar 

  15. Garrett AT, Creasy R, Rehrer NJ, et al. Effectiveness of short-term heat acclimation for highly trained athletes. Eur J Appl Physiol. 2012;112(5):1827–37.

    Article  PubMed  Google Scholar 

  16. Laursen PB, Francis GT, Abbiss CR, et al. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):1374–9.

    Article  PubMed  Google Scholar 

  17. Hannuksela ML, Ellahham S. Benefits and risks of sauna bathing. Am J Med. 2001;110(2):118–26.

    Article  CAS  PubMed  Google Scholar 

  18. Leppäluoto J, Tuominen M, Väänänen A, et al. Some cardiovascular and metabolic effects of repeated sauna bathing. Acta Physiol Scand. 1986;128(1):77–81.

    Article  PubMed  Google Scholar 

  19. Horowitz M. Heat acclimation: phenotypic plasticity and cues to the underlying molecular mechanisms. J Therm Biol. 2001;26(4):357–63.

    Article  CAS  Google Scholar 

  20. Ridge BR, Pyke FS. Physiological responses to combinations of exercise and sauna. Aust J Sci Med Sport. 1986;18:25–8.

    Google Scholar 

  21. Tamura Y, Matsunaga Y, Masuda H, et al. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle. Am J Physiol Reg Integr Comp Physiol. 2014;307(7):R931–43.

    Article  CAS  Google Scholar 

  22. Stanley J, Halliday A, D’Auria S, et al. Effect of sauna-based heat acclimation on plasma volume and heart rate variability. Eur J Appl Physiol. 2015;115(4):785–94.

    Article  PubMed  Google Scholar 

  23. Garrett AT, Rehrer NJ, Patterson MJ. Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med. 2011;41(9):757–71.

    Article  PubMed  Google Scholar 

  24. Mee JA, Gibson OR, Doust J, et al. A comparison of males and females’ temporal patterning to short- and long-term heat acclimation. Scand J Med Sci Sports. 2015;25(S1):250–8.

    Article  PubMed  Google Scholar 

  25. Guy JH, Deakin GB, Edwards AM, et al. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303–11.

    Article  PubMed  Google Scholar 

  26. Horowitz M. From molecular and cellular to integrative heat defense during exposure to chronic heat. Comp Biochem Physiol A Mol Integr Physiol. 2002;131(3):475–83.

    Article  PubMed  Google Scholar 

  27. Willmott AGB, Gibson OR, Hayes M, et al. The effects of single versus twice daily short term heat acclimation on heat strain and 3000 m running performance in hot, humid conditions. J Therm Biol. 2016;56:59–67.

    Article  CAS  PubMed  Google Scholar 

  28. Kelly M, Gastin PB, Dwyer DB, et al. Short duration heat acclimation in Australian football players. J Sports Sci Med. 2016;15(1):118–25.

    PubMed  PubMed Central  Google Scholar 

  29. Houmard JA, Costill DL, Davis JA, et al. The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc. 1990;22(5):615–20.

    Article  CAS  PubMed  Google Scholar 

  30. Garrett AT, Goosens NG, Rehrer NG, et al. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):659–70.

    Article  PubMed  Google Scholar 

  31. Weller AS, Linnane DM, Jonkman AG, et al. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress. Eur J Appl Physiol. 2007;102(1):57–66.

    Article  PubMed  Google Scholar 

  32. Wyndham CH, Jacobs GE. Loss of acclimatization after six days of work in cool conditions on the surface of a mine. J Appl Physiol. 1957;11(2):197–8.

    CAS  PubMed  Google Scholar 

  33. Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics. 1977;20(4):399–408.

    Article  CAS  PubMed  Google Scholar 

  34. Moseley PL. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol. 1997;83(5):1413–7.

    CAS  PubMed  Google Scholar 

  35. Casadio JR, Kilding AE, Siegel R, et al. Periodizing heat acclimation in elite Laser sailors preparing for a world championship event in hot conditions. Temperature. 2016;3(3):437–43.

    Article  Google Scholar 

  36. Yamamoto S, Iwamoto M, Inoue M, et al. Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines. J Occup Health. 2007;49(3):199–204.

    Article  PubMed  Google Scholar 

  37. Sollers JJ III, Sanford TA, Nabors-Oberg R, et al. Examining changes in HRV in response to varying ambient temperature. IEEE Eng Med Biol Mag. 2002;21(4):30–4.

    Article  PubMed  Google Scholar 

  38. Dranitsin OV. The effect on heart rate variability of acclimatization to a humid, hot environment after a transition across five time zones in elite junior rowers. Eur J Sport Sci. 2008;8(5):251–8.

    Article  Google Scholar 

  39. Epstein Y, Moran DS, Heled Y, et al. Acclimation to heat interpreted from the analysis of heart-rate variability by the multipole method. J Basic Clin Physiol Pharmacol. 2010;21(4):315–24.

    Article  CAS  PubMed  Google Scholar 

  40. Brenner IKM, Zamecnik J, Shek PN, et al. The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol Occup Physiol. 1997;76(5):445–54.

    Article  CAS  PubMed  Google Scholar 

  41. Arngrímsson SÁ, Stewart DJ, Borrani F, et al. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J Appl Physiol. 2003;94(3):1162–8.

    Article  PubMed  Google Scholar 

  42. Périard JD, Cramer MN, Chapman PG, et al. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134–44.

    Article  PubMed  Google Scholar 

  43. Edwards RHT, Harris RC, Hultman E, et al. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J Physiol. 1972;220(2):335–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. King DS, Costill DL, Fink WJ, et al. Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol. 1985;59(5):1350–4.

    CAS  PubMed  Google Scholar 

  45. Wingo JE, Lafrenz AJ, Ganio MS, et al. Cardiovascular drift is related to reduced maximal oxygen uptake during heat stress. Med Sci Sports Exerc. 2005;37(2):248–55.

    Article  PubMed  Google Scholar 

  46. Crowcroft S, Duffield R, McCleave E, et al. Monitoring training to assess changes in fitness and fatigue: the effects of training in heat and hypoxia. Scand J Med Sci Sports. 2015;25(S1):287–95.

    Article  PubMed  Google Scholar 

  47. Minett GM, Gale R, Wingfield G, et al. Sleep quantity and quality during heat-based training and the effects of cold-water immersion recovery. Extrem Physiol Med. 2015;4(1):1.

    Article  Google Scholar 

  48. Taylor NAS, Cotter JD. Heat adaptation: guidelines for the optimisation of human performance. Int Sport Med J. 2006;7(1):33–57.

    Google Scholar 

  49. Wingfield GL, Gale R, Minett GM, et al. The effect of high versus low intensity heat acclimation on performance and neuromuscular responses. J Therm Biol. 2016;58:50–9.

    Article  PubMed  Google Scholar 

  50. Montain SJ, Latzka WA, Sawka MN. Impact of muscle injury and accompanying inflammatory response on thermoregulation during exercise in the heat. J Appl Physiol. 2000;89(3):1123–30.

    CAS  PubMed  Google Scholar 

  51. Fortes MB, Di Felice U, Dolci A, et al. Muscle-damaging exercise increases heat strain during subsequent exercise heat stress. Med Sci Sports Exerc. 2013;45(10):1915–24.

    Article  CAS  PubMed  Google Scholar 

  52. Dolci A, Fortes MB, Walker FS, et al. Repeated muscle damage blunts the increase in heat strain during subsequent exercise heat stress. Eur J Appl Physiol. 2015;115(7):1577–88.

    Article  CAS  PubMed  Google Scholar 

  53. Nosaka K, Muthalib M, Lavender A, et al. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise. Eur J Appl Physiol. 2007;99(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  54. Goto K, Oda H, Kondo H, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27.

    Article  PubMed  Google Scholar 

  55. Goto K, Oda H, Morioka S, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. Jpn J Aerosp Env Med. 2007;44(1):13–8.

    Google Scholar 

  56. Kakigi R, Naito H, Ogura Y, et al. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci. 2011;61(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  57. Yoshihara T, Naito H, Kakigi R, et al. Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol. 2013;207(2):416–26.

    Article  CAS  Google Scholar 

  58. Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med. 2009;39(9):779–95.

    Article  PubMed  Google Scholar 

  59. Kraemer WJ, Duncan ND, Volek JS. Resistance training and elite athletes: adaptations and program considerations. J Orthop Sports Phys Ther. 1998;28(2):110–9.

    Article  CAS  PubMed  Google Scholar 

  60. Plews DJ, Laursen PB, Stanley J, et al. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–81.

    Article  PubMed  Google Scholar 

  61. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):1448–56.

    CAS  PubMed  Google Scholar 

  62. Bergeron MF, Bahr R, Bärtsch P, et al. International olympic committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br J Sports Med. 2012;46(11):770–9.

    Article  CAS  PubMed  Google Scholar 

  63. Gagnon D, Kenny GP. Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol. 2011;589(24):6205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gagnon D, Kenny GP. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J Appl Physiol. 2012;113(5):746–57.

    Article  PubMed  Google Scholar 

  65. Ulmasov KA, Shammakov S, Karaev K, et al. Heat shock proteins and thermoresistance in lizards. Proc Natl Acad Sci USA. 1992;89(5):1666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ladell WS. Terrestrial animals in humid heat: man. In: Dill DB, Adolph EF, Wilber CG, editors. Adaptations to the environment. Handbook of physiology. American Physiological Society. Washington, D. C; 1964.

  67. Lyashko VN, Vikulova VK, Chernicov VG, et al. Comparison of the heat shock response in ethnically and ecologically different human populations. Proc Natl Acad Sci USA. 1994;91(26):12492–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Horowitz M. Heat acclimation, epigenetics, and cytoprotection memory. Compr Physiol. 2014;4:199–230.

    Article  PubMed  Google Scholar 

  69. Amano T, Koga S, Inoue Y, et al. Characteristics of sweating responses and peripheral sweat gland function during passive heating in sprinters. Eur J Appl Physiol. 2013;113(8):2067–75.

    Article  PubMed  Google Scholar 

  70. Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998;84(5):1731–9.

    CAS  PubMed  Google Scholar 

  71. Piwonka RW, Robinson S, Gay VL, et al. Preacclimatization of men to heat by training. J Appl Physiol. 1965;20(3):379–83.

    CAS  PubMed  Google Scholar 

  72. Banfi G, Malavazos A, Iorio E, et al. Plasma oxidative stress biomarkers, nitric oxide and heat shock protein 70 in trained elite soccer players. Eur J Appl Physiol. 2006;96(5):483–6.

    Article  CAS  PubMed  Google Scholar 

  73. Havenith G. Human surface to mass ratio and body core temperature in exercise heat stress—a concept revisited. J Therm Biol. 2001;26(4):387–93.

    Article  Google Scholar 

  74. Havenith G, Luttikholt VGM, Vrijkotte TGM. The relative influence of body characteristics on humid heat stress response. Eur J Appl Physiol Occup Physiol. 1995;70(3):270–9.

    Article  CAS  PubMed  Google Scholar 

  75. Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol. 2001;91(5):2055–63.

    CAS  PubMed  Google Scholar 

  76. Hayward JS, Eckerson JD, Dawson BT. Effect of mesomorphy on hyperthermia during exercise in a warm, humid environment. Am J Phys Anthropol. 1986;70(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  77. Chung NK, Pin CH. Obesity and the occurrence of heat disorders. Mil Med. 1996;161(12):739–42.

    CAS  PubMed  Google Scholar 

  78. Armstrong LE, De Luca JP, Hubbard RW. Time course of recovery and heat acclimation ability of prior heatstroke patients. Med Sci Sports Exerc. 1990;22:36–48.

    Article  CAS  PubMed  Google Scholar 

  79. Johnson EC, Kolkhorst FW, Richburg A, et al. Specific exercise heat stress protocol for a triathlete’s return from exertional heat stroke. Curr Sports Med Rep. 2013;12(2):106–9.

    Article  PubMed  Google Scholar 

  80. Inoue Y, Tanaka Y, Omori K, et al. Sex-and menstrual cycle-related differences in sweating and cutaneous blood flow in response to passive heat exposure. Eur J Appl Physiol. 2005;94(3):323–32.

    Article  PubMed  Google Scholar 

  81. Avellini BA, Kamon E, Krajewski JT. Physiological responses of physically fit men and women to acclimation to humid heat. J Appl Physiol. 1980;49:254–61.

    CAS  PubMed  Google Scholar 

  82. Carpenter AJ, Nunneley SA. Endogenous hormones subtly alter women’s response to heat stress. J Appl Physiol. 1988;65(5):2313–7.

    CAS  PubMed  Google Scholar 

  83. Kolka MA, Stephenson LA. Control of sweating during the human menstrual cycle. Eur J Appl Physiol Occup Physiol. 1989;58(8):890–5.

    Article  CAS  PubMed  Google Scholar 

  84. Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol. 2000;88(5):1643–9.

    CAS  PubMed  Google Scholar 

  85. Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol. 1999;80(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  86. Armstrong LE, Maresh CM, Keith NR, et al. Heat acclimation and physical training adaptations of young women using different contraceptive hormones. Am J Physiol Endocrinol Metab. 2005;288(5):E868–75.

    Article  CAS  PubMed  Google Scholar 

  87. Frye AJ, Kamon E, Webb M. Responses of menstrual women, amenorrheal women, and men to exercise in a hot, dry environment. Eur J Appl Physiol Occup Physiol. 1982;48(2):279–88.

    Article  CAS  PubMed  Google Scholar 

  88. Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42(5):327–33.

    Article  CAS  PubMed  Google Scholar 

  89. Castle PC, Kularatne BP, Brewer J, et al. Partial heat acclimation of athletes with spinal cord lesion. Eur J Appl Physiol. 2013;113(1):109–15.

    Article  PubMed  Google Scholar 

  90. Sawka MN, Latzka WA, Pandolf KB. Temperature regulation during upper body exercise: able bodied and spinal cord injured: US Army Research Institute of Environmental Medicine. Med Sci Sports Exerc. 1989;21(5 Suppl):S132–40.

    CAS  PubMed  Google Scholar 

  91. Price MJ, Campbell IG. Thermoregulatory responses during prolonged upper body exercise in cool and warm conditions. J Sports Sci. 2002;20(7):519–44.

    Article  CAS  PubMed  Google Scholar 

  92. Sithinamsuwan P, Piyavechviratana K, Kitthaweesin T, et al. Exertional heatstroke: early recognition and outcome with aggressive combined cooling. A 12-year experience. Mil Med. 2009;174(5):496–502.

    Article  PubMed  Google Scholar 

  93. Cooper KE. Some responses of the cardiovascular system to heat and fever. The Can J Cardiol. 1994;10(4):444–8.

    CAS  PubMed  Google Scholar 

  94. Yamada PM, Amorim FT, Moseley PL, et al. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. J Appl Physiol. 2007;103(4):1196–204.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia R. Casadio.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Julia Casadio, Andrew Kilding, James Cotter and Paul Laursen declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casadio, J.R., Kilding, A.E., Cotter, J.D. et al. From Lab to Real World: Heat Acclimation Considerations for Elite Athletes. Sports Med 47, 1467–1476 (2017). https://doi.org/10.1007/s40279-016-0668-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0668-9

Keywords

Navigation