Skip to main content
Log in

Will the Conscious–Subconscious Pacing Quagmire Help Elucidate the Mechanisms of Self-Paced Exercise? New Opportunities in Dual Process Theory and Process Tracing Methods

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The extent to which athletic pacing decisions are made consciously or subconsciously is a prevailing issue. In this article we discuss why the one-dimensional conscious–subconscious debate that has reigned in the pacing literature has suppressed our understanding of the multidimensional processes that occur in pacing decisions. How do we make our decisions in real-life competitive situations? What information do we use and how do we respond to opponents? These are questions that need to be explored and better understood, using smartly designed experiments. The paper provides clarity about key conscious, preconscious, subconscious and unconscious concepts, terms that have previously been used in conflicting and confusing ways. The potential of dual process theory in articulating multidimensional aspects of intuitive and deliberative decision-making processes is discussed in the context of athletic pacing along with associated process-tracing research methods. In attempting to refine pacing models and improve training strategies and psychological skills for athletes, the dual-process framework could be used to gain a clearer understanding of (1) the situational conditions for which either intuitive or deliberative decisions are optimal; (2) how intuitive and deliberative decisions are biased by things such as perception, emotion and experience; and (3) the underlying cognitive mechanisms such as memory, attention allocation, problem solving and hypothetical thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Koning JJ, Bobbert MF, Foster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport. 1999;2(3):266–77.

    Article  PubMed  Google Scholar 

  2. Foster C, De Koning JJ, Hettinga F, et al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35:826–31.

    Article  PubMed  Google Scholar 

  3. Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med. 2004;38:511–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med. 2006;39:120–4.

    Article  Google Scholar 

  5. Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39:52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. St Clair Gibson A, Noakes TD. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med. 2004;38(6):797–806.

    Article  CAS  PubMed  Google Scholar 

  7. St Clair Gibson A, Lambert EV, Rauch LHG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–22.

    Article  PubMed  Google Scholar 

  8. Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392–400.

    Article  CAS  PubMed  Google Scholar 

  9. Marcora S. Counterpoint: afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J Appl Physiol. 2010;108(2):454–6.

    Article  PubMed  Google Scholar 

  10. Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106:857–64.

    Article  PubMed  Google Scholar 

  11. Pageaux B, Lepers R, Dietz KC, et al. Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol. 2014;114(5):1095–105.

    Article  PubMed  Google Scholar 

  12. de Koning JJ, Foster C, Bakkum A, et al. Regulation of pacing strategy during athletic competition. PloS One. 2011;6(1):e15863.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coquart JB, Eston RG, Noakes TD, et al. Estimated time limit: a brief review of a perceptually based scale. Sports Med. 2012;42(10):845–55.

    Article  PubMed  Google Scholar 

  14. Faulkner J, Parfitt G, Eston R. The rating of perceived exertion during competitive running scales with time. Psychophysiology. 2008;45:1077–85.

    Article  Google Scholar 

  15. St Clair Gibson A, Baden DA, Lambert MI, et al. The conscious perception of the sensation of fatigue. Sports Med. 2003;33(3):167–76.

    Article  PubMed  Google Scholar 

  16. Edwards AM, Polman RCJ. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):1057–64.

    Article  CAS  PubMed  Google Scholar 

  17. Chalmers DJ. How can we construct a science of consciousness? Ann NY Acad Sci. 2013;1303(1):25–35.

    Article  PubMed  Google Scholar 

  18. Chalmers DJ. What is a neural correlate of consciousness? Neural correlates of consciousness: empirical and conceptual questions. In: Noë A, Thompson E, editors. Vision and mind: selected readings in the philosophy of perception. London: MIT Press; 2000. p. 531–66.

    Google Scholar 

  19. Moors A, De Houwer J. Automaticity: a theoretical and conceptual analysis. Psychol Bull. 2006;132(2):297.

    Article  PubMed  Google Scholar 

  20. Smits BL, Pepping GJ, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Med. 2014;44(6):763–75.

    Article  PubMed  Google Scholar 

  21. Renfree A, Martin L, Micklewright D, et al. Application of decision-making theory to the regulation of muscular work rate during self-paced competitive endurance activity. Sports Med. 2014;44(2):147–58.

    Article  PubMed  Google Scholar 

  22. Baden DA, McLean TL, Tucker R, et al. Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. Br J Sports Med. 2005;39(10):742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baron B, Deruelle F, Moullan F, et al. The eccentric muscle loading influences the pacing strategies during repeated downhill sprint intervals. Eur J Appl Physiol. 2009;105(5):749–57.

    Article  CAS  PubMed  Google Scholar 

  24. Marino FE, Gard M, Drinkwater EJ. The limits to exercise performance and the future of fatigue research. Br J Sports Med. 2009;45:65–7.

    Article  PubMed  Google Scholar 

  25. Freud S. The interpretation of dreams (trans: Brill AA). 3rd ed. New York: The Macmillan Company; 1913.

    Book  Google Scholar 

  26. Adler A. Individual psychology. J Abnorm Soc Psychol. 1927;22(2):116.

    Article  Google Scholar 

  27. Jung CG. The concept of the collective unconscious. Collect Works. 1936;9(1):42.

    Google Scholar 

  28. Klein M. Envy and gratitude. Psyche. 1957;11(5):241–55.

    CAS  PubMed  Google Scholar 

  29. Bion WR. The psycho-analytic study of thinking. Int J Psychoanal. 1962;43(4–5):306–10.

    CAS  PubMed  Google Scholar 

  30. Foster C, Hendrickson KJ, Peyer K, et al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765–9.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan WP, Raven PB, Drinkwater BL, et al. Perceptual and metabolic responsivity to standard bicycle ergometry following various hypnotic suggestions. Int J Clin Exp Hypn. 1973;21:86–101.

    Article  Google Scholar 

  32. Morgan WP, Hirota K, Weitz GA, et al. Hypnotic perturbation of perceived exertion: ventilatory consequences. Am J Clin Hypn. 1976;18:182–90.

    Article  CAS  PubMed  Google Scholar 

  33. Williamson JW, McColl R, Mathews D, et al. Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J Appl Physiol. 2001;90(4):1392–9.

    CAS  PubMed  Google Scholar 

  34. Block N. Perceptual consciousness overflows cognitive access. Trends Cogn Sci. 2011;15(12):567–75.

    Article  PubMed  Google Scholar 

  35. Aitchison C, Turner LA, Ansley L, et al. The inner dialogue and its relationship to RPE during different running intensities. Percept Mot Control. 2013;117(1):11–30.

    Article  Google Scholar 

  36. Tenenbaum G. A social-cognitive perspective of perceived exertion and exercise tolerance. In: Singer RN, Hausenblas HN, Janelle C, editors. Handbook of sport psychology. New York: Wiley; 2001. p. 810–22.

    Google Scholar 

  37. Tenenbaum G, Connoly CT. Attention allocation under varied workload and effort perception in rowers. Psychol Sport Exerc. 2008;9:704–17.

    Article  Google Scholar 

  38. Hutchinson JC, Tenenbaum G. Attention focus during physical effort: the mediating role of task intensity. Psychol Sport Exerc. 2007;8:233–45.

    Article  Google Scholar 

  39. Micklewright D, Parry D, Robinson T, et al. Risk perception influences athletic pacing strategy. Med Sci Sports Exerc. 2015;47(5):1026–37.

    Article  PubMed  Google Scholar 

  40. Larsen RJ, Buss DM. Personality psychology. Jastrebarsko: Naklada Slap; 2008. p. 269–71.

    Google Scholar 

  41. Kahneman D, Tversky A. On the psychology of prediction. Psychol Rev. 1973;80:237–51.

    Article  Google Scholar 

  42. Kahneman D, Tversky A. Prospect theory: an analysis of decisions under risk. Econometrica. 1979;47:263–91.

    Article  Google Scholar 

  43. Kahneman D, Tversky A. Choices, values, and frames. Am Psychol. 1984;39(4):341.

    Article  Google Scholar 

  44. Tversky A, Kahneman D. Availability: a heuristic for judging frequency and probability. Cogn Psychol. 1973;5:207–32.

    Article  Google Scholar 

  45. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 1974;185:1124–31.

    Article  CAS  PubMed  Google Scholar 

  46. Tversky A, Kahneman D. Rational choice and the framing of decisions. J Business. 1986;59:S251–78.

    Article  Google Scholar 

  47. Tversky A, Kahneman D. Loss aversion in riskless choice: a reference-dependent model. Quart J Econ. 1991;106:1039061.

    Article  Google Scholar 

  48. Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J Risk Uncertain. 1992;5:297–323.

    Article  Google Scholar 

  49. Nisbett RE, Wilson TD. Telling more than we can know: verbal reports on mental processes. Psychol Rev. 1977;84:231–95.

    Article  Google Scholar 

  50. Petty RE, Cacioppo JT. The effects of involvement on responses to argument quantity and quality: central and peripheral routes to persuasion. J Person Soc Psychol. 1984;46(1):69.

    Article  Google Scholar 

  51. Evans JSB. In two minds: dual-process accounts of reasoning. Trends Cogn Sci. 2003;7(10):454–9.

    Article  PubMed  Google Scholar 

  52. Evans JSB, Over DE. Rationality in the selection task: epistemic utility versus uncertainty reduction. Psychol Rev. 1996;103(2):356–63.

    Article  Google Scholar 

  53. Klaczynski PA. Motivated scientific reasoning biases, epistemological beliefs, and theory polarization: a two-process approach to adolescent cognition. Child Dev. 2000;71(5):1347–66.

    Article  CAS  PubMed  Google Scholar 

  54. Osman M. An evaluation of dual-process theories of reasoning. Psychon Bull Rev. 2005;11:988–1010.

    Article  Google Scholar 

  55. Sloman SA. The empirical case for two systems of reasoning. Psychol Bull. 1996;119:3–22.

    Article  Google Scholar 

  56. Stanovich KE. Who is rational? Studies of individual differences in reasoning. Hillsdale: Lawrence Erlbaum Associates; 1999.

    Google Scholar 

  57. Shiffrin RM, Schneider W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol Rev. 1977;84(2):127.

    Article  Google Scholar 

  58. Holyoak KJ, Simon D. Bidirectional reasoning in decision making by constraint satisfaction. J Exp Psychol: Gen. 1999;128:3–31.

    Article  Google Scholar 

  59. Simon D, Krawczyk DC, Holyoak KJ. Construction of preferences by constraint satisfaction. Psychol Sci. 2004;15:331–6.

    Article  PubMed  Google Scholar 

  60. Bowers KS, Regehr G, Balthazard C, et al. Intuition in the context of discovery. Cogn Psychol. 1990;22:72–110.

    Article  Google Scholar 

  61. Evans JSB. Intuition and reasoning: a dual-process perspective. Psychol Inq. 2010;21(4):313–26.

    Article  Google Scholar 

  62. King J, Just MA. Individual differences in syntactic processing: the role of working memory. J Mem Lang. 1991;30(5):580–602.

    Article  Google Scholar 

  63. Gilinsky AS, Judd BB. Working memory and bias in reasoning across the life span. Psychol Aging. 1994;9(3):356.

    Article  CAS  PubMed  Google Scholar 

  64. Bröder A. Decision making with the “adaptive toolbox”: influence of environmental structure, intelligence, and working memory load. J Exp Psychol Learn Mem Cogn. 2003;29:611–25.

    Article  PubMed  Google Scholar 

  65. Colom R, Rebollo I, Palacios A, et al. Working memory is (almost) perfectly predicted by g. Intelligence. 2004;32(3):277–96.

    Article  Google Scholar 

  66. Haidt J. The emotional dog and its rational tail: a social intuitionist approach to moral judgement. Psychol Rev. 2001;108(4):814–34.

    Article  CAS  PubMed  Google Scholar 

  67. Mynatt CR, Doherty ME, Dragan W. Information relevance, working memory, and the consideration of alternatives. Quart J Exp Psychol. 1993;46(4):759–78.

    Article  Google Scholar 

  68. Wang XT. Emotions within reason: resolving conflicts in risk preference. Cogn Emot. 2006;20(8):1132–52.

    Article  Google Scholar 

  69. Gigerenzer G, Todd PM. Simple heuristics that make us smart. New York: Oxford University Press; 1999.

    Google Scholar 

  70. Micklewright D, Papadopoulou E, Swart J, et al. Previous experience influences pacing during 20 km time trial cycling. Br J Sports Med. 2010;44(13):952–60.

    Article  CAS  PubMed  Google Scholar 

  71. Corbett J, Barwood MJ, Ouzounoglou A, et al. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509–15.

    Article  PubMed  Google Scholar 

  72. Stone M, Thomas K, Wilkinson M, et al. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Med Sci Sports Exerc. 2012;44(3):534–41.

    Article  PubMed  Google Scholar 

  73. Konings MJ, Schoenmakers PP, Walker AJ, et al. The behavior of an opponent alters pacing decisions in 4-km cycling time trials. Physiol Behav. 2016;158:1–5.

    Article  CAS  PubMed  Google Scholar 

  74. Beedie CJ, Lane AM, Wilson MG. A possible role for emotion and emotion regulation in physiological responses to false performance feedback in 10 mile laboratory cycling. Appl Psychophysiol Biofeedback. 2012;37(4):269–77.

    Article  PubMed  Google Scholar 

  75. Konings MJ, Noorbergen OS, Parry D, et al. Pacing behaviour and tactical positioning in 1500-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(1):122–9. doi:10.1123/ijspp.2015-0137.

    Article  PubMed  Google Scholar 

  76. Noorbergen OS, Konings MJ, Micklewright D, et al. Pacing behaviour and tactical positioning in 500- and 1000-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(6):742–8.

    Article  PubMed  Google Scholar 

  77. Brown DM, Bray SR. Isometric exercise and cognitive function: an investigation of acute dose–response effects during submaximal fatiguing contractions. J Sports Sci. 2015;33(5):487–97.

    Article  PubMed  Google Scholar 

  78. Hepler TJ, Feltz DL. Path analysis examining self-efficacy and decision-making performance on a simulated baseball task. Res Quart Exerc Sport. 2012;83(1):55–64.

    Article  Google Scholar 

  79. Wilson M. From processing efficiency to attentional control: a mechanistic account of the anxiety–performance relationship. Int Rev Sport Exerc Psychol. 2008;1(2):184–201.

    Article  Google Scholar 

  80. Evans JSB. The heuristic-analytic theory of reasoning: Extension and evaluation. Psychon Bull Rev. 2006;13(3):378–95.

    Article  PubMed  Google Scholar 

  81. Gilbert DT, Wilson TD. Prospection: experiencing the future. Science. 2007;317(5843):1351–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Micklewright.

Ethics declarations

Funding

This work was funded internally by the University of Essex and no other source of external funding or support was used.

Conflict of interest

Dominic Micklewright, Sue Kegerreis, John Raglin and Florentina Hettinga declare that they have no conflicts of interest or commercial relationships relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micklewright, D., Kegerreis, S., Raglin, J. et al. Will the Conscious–Subconscious Pacing Quagmire Help Elucidate the Mechanisms of Self-Paced Exercise? New Opportunities in Dual Process Theory and Process Tracing Methods. Sports Med 47, 1231–1239 (2017). https://doi.org/10.1007/s40279-016-0642-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0642-6

Keywords

Navigation