Skip to main content

Chronic Adaptations to Eccentric Training: A Systematic Review



Resistance training is an integral component of physical preparation for athletes. A growing body of evidence indicates that eccentric strength training methods induce novel stimuli for neuromuscular adaptations.


The purpose of this systematic review was to determine the effects of eccentric training in comparison to concentric-only or traditional (i.e. constrained by concentric strength) resistance training.


Searches were performed using the electronic databases MEDLINE via EBSCO, PubMed and SPORTDiscus via EBSCO. Full journal articles investigating the long-term (≥4 weeks) effects of eccentric training in healthy (absence of injury or illness during the 4 weeks preceding the training intervention), adult (17–35 years), human participants were selected for the systematic review. A total of 40 studies conformed to these criteria.


Eccentric training elicits greater improvements in muscle strength, although in a largely mode-specific manner. Superior enhancements in power and stretch-shortening cycle (SSC) function have also been reported. Eccentric training is at least as effective as other modalities in increasing muscle cross-sectional area (CSA), while the pattern of hypertrophy appears nuanced and increased CSA may occur longitudinally within muscle (i.e. the addition of sarcomeres in series). There appears to be a preferential increase in the size of type II muscle fibres and the potential to exert a unique effect upon fibre type transitions. Qualitative and quantitative changes in tendon tissue that may be related to the magnitude of strain imposed have also been reported with eccentric training.


Eccentric training is a potent stimulus for enhancements in muscle mechanical function, and muscle-tendon unit (MTU) morphological and architectural adaptations. The inclusion of eccentric loads not constrained by concentric strength appears to be superior to traditional resistance training in improving variables associated with strength, power and speed performance.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    McGuigan MR, Wright GA, Fleck SJ. Strength training for athletes: does it really help sports performance? Int J Sports Physiol Perform. 2012;7:2–5.

    PubMed  Article  Google Scholar 

  2. 2.

    Beattie K, Kenny IC, Lyons M, et al. The effects of strength training on performance in endurance athletes. Sports Med. 2014;44:845–65.

    PubMed  Article  Google Scholar 

  3. 3.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1. Biological basis of maximal power production. Sports Med. 2011;41(1):17–38.

    PubMed  Article  Google Scholar 

  4. 4.

    Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci. 2001;16:256–61.

    CAS  PubMed  Google Scholar 

  5. 5.

    Hortobagyi T, Katch F. Eccentric and concentric torque velocity relationships during arm flexion and extension: influence of strength level. Eur J Appl Physiol. 1990;60:395–401.

    CAS  Article  Google Scholar 

  6. 6.

    Vogt M, Hoppeler HH. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct. J Appl Physiol (1985). 2014;116(11):1446–54.

    Article  Google Scholar 

  7. 7.

    Isner-Horobeti M, Dufour SP, Vautravers P, et al. Eccentric exercise training: modalities, applications and perspectives. Sports Med. 2013;43:483–512.

    PubMed  Article  Google Scholar 

  8. 8.

    Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556–68.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    PubMed  Article  Google Scholar 

  10. 10.

    Ben-Sira D, Ayalon A, Tavi M. The effect of different types of strength training on concentric strength in women. J Strength Cond Res. 1995;9(3):143–8.

    Google Scholar 

  11. 11.

    Blazevich AJ, Cannavan D, Coleman DR, et al. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol (1985). 2007;103(5):1565–75.

    Article  Google Scholar 

  12. 12.

    Brandenburg JP, Docherty D. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J Strength Cond Res. 2002;16(1):25–32.

    PubMed  Google Scholar 

  13. 13.

    Colliander EB, Tesch PA. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand. 1990;140(1):31–9.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Colliander EB, Tesch PA. Effects of detraining following short term resistance training on eccentric and concentric muscle strength. Acta Physiol Scand. 1992;144(1):23–9.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ellenbecker TS, Davies GJ, Rowinski MJ. Concentric versus eccentric isokinetic strengthening of the rotator cuff. Objective data versus functional test. Am J Sports Med. 1988;16(1):64–9.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    English K, Loehr J, Lee S, et al. Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training. Eur J Appl Physiol. 2014;114(11):2263–80.

    PubMed  Article  Google Scholar 

  17. 17.

    Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol. 2003;89:578–86.

    PubMed  Article  Google Scholar 

  18. 18.

    Farup J, Rahbek SK, Riis S, et al. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J Appl Physiol. 1985;2014(117):898–909.

    Google Scholar 

  19. 19.

    Friedmann-Bette B, Bauer T, Kinscherf R, et al. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur J Appl Physiol. 2010;108(4):821–36.

    PubMed  Article  Google Scholar 

  20. 20.

    Godard MP, Wygand JW, Carpinelli RN, et al. Effects of accentuated eccentric resistance training on concentric knee extensor strength. J Strength Cond Res. 1998;12(1):26–9.

    Google Scholar 

  21. 21.

    Hawkins SA, Schroeder ET, Wiswell RA, et al. Eccentric muscle action increases site-specific osteogenic response. Med Sci Sports Exerc. 1999;31(9):1287–92.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Hortobágyi T, Hill JP, Houmard JA, et al. Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol (1985). 1996;80(3):765–72.

    Google Scholar 

  23. 23.

    Hortobágyi T, Dempsey L, Fraser D, et al. Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol. 2000;524(Pt 1):293–304.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Kaminski TW, Wabbersen CV, Murphy RM. Concentric versus enhanced eccentric hamstring strength training: clinical implications. J Athletic Train. 1998;33(3):216–21.

    CAS  Google Scholar 

  25. 25.

    Komi PV, Buskirk ER. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics. 1972;15(4):417–34.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Malliaras P, Kamal B, Nowell A, et al. Patellar tendon adaptation in relation to load-intensity and contraction type. J Biomech. 2013;46(11):1893–9.

    PubMed  Article  Google Scholar 

  27. 27.

    Miller LE, Pierson LM, Nickols-Richardson SM, et al. Knee extensor and flexor torque development with concentric and eccentric isokinetic training. Res Q Exerc Sport. 2006;77(1):58–63.

    PubMed  Article  Google Scholar 

  28. 28.

    Mont MA, Cohen DB, Campbell KR, et al. Isokinetic concentric versus eccentric training of shoulder rotators with functional evaluation of performance enhancement in elite tennis players. Am J Sports Med. 1994;22(4):513–7.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Moore D, Young M, Phillips S. Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. Eur J Appl Physiol. 2012;112(4):1587–92.

    PubMed  Article  Google Scholar 

  30. 30.

    Nickols-Richardson SM, Miller LE, Wootten DF, et al. Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Osteoporos Int. 2007;18(6):789–96.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Vikne H, Refsnes PE, Ekmark M, et al. Muscular performance after concentric and eccentric exercise in trained men. Med Sci Sports Exerc. 2006;38(10):1770–81.

    PubMed  Article  Google Scholar 

  32. 32.

    Yarrow JF, Borsa PA, Borst SE, et al. Early-phase neuroendocrine responses and strength adaptations following eccentric-enhanced resistance training. J Strength Cond Res. 2008;22(4):1205–14.

    PubMed  Article  Google Scholar 

  33. 33.

    Blazevich AJ, Horne S, Cannavan D, et al. Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps. Muscle Nerve. 2008;38:1133–46.

    PubMed  Article  Google Scholar 

  34. 34.

    Gross M, Lüthy F, Kroell J, et al. Effects of eccentric cycle ergometry in alpine skiers. Int J Sports Med. 2010;31(8):572–6.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    LaStayo PC, Reich TE, Urquhart M, et al. Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am J Physiol. 1999;276(2):R611–5.

    CAS  PubMed  Google Scholar 

  36. 36.

    LaStayo PC, Pierotti DJ, Pifer J, et al. Eccentric ergometry: increases in locomotor muscle size and strength at low training intensities. Am J Physiol. 2000;278(5):R1282–8.

    CAS  Google Scholar 

  37. 37.

    Franchi MV, Atherton PJ, Reeves ND, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210:642–54.

    CAS  Article  Google Scholar 

  38. 38.

    Duncan PW, Chandler JM, Cavanaugh DK, et al. Mode and speed specificity of eccentric and concentric exercise training. J Orthop Sports Phys Ther. 1989;11(2):70–5.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Higbie EJ, Cureton KJ, Warren GL, et al. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol (1985). 1996;81(5):2173–81.

    CAS  Google Scholar 

  40. 40.

    Seger JY, Arvidsson B, Thorstensson A. Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur J Appl Physiol. 1998;79(1):49–57.

    CAS  Article  Google Scholar 

  41. 41.

    Tomberlin JP, Basford JR, Schwen EE, et al. Comparative study of isokinetic eccentric and concentric quadriceps training. J Orthop Sports Phys Ther. 1991;14(1):31–6.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Spurway NC. The effect of strength training on the apparent inhibition of eccentric force production in voluntary activated human quadriceps. Eur J Appl Physiol. 2000;82:374–80.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Barstow IK, Bishop MD, Kaminski TW. Is enhanced-eccentric resistance training superior to traditional training for increasing elbow flexor strength? J Sport Sci Med. 2003;2:62–9.

    Google Scholar 

  44. 44.

    Farthing JP, Chilibeck PD. The effect of eccentric training at different velocities on cross-education. Eur J Appl Physiol. 2003;89(6):570–7.

    PubMed  Article  Google Scholar 

  45. 45.

    Hortobagyi T, Lambert NJ, Hill JP. Greater cross education following training with muscle lengthening than shortening. Med Sci Sports Exerc. 1997;29(1):107–12.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Elmer S, Hahn S, McAllister P, et al. Improvements in multi-joint leg function following chronic eccentric exercise. Scand J Med Sci Sports. 2012;22(5):653–61.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Liu C, Chen CS, Ho WH, et al. The effects of passive leg press training on jumping performance, speed, and muscle power. J Strength Cond Res. 2013;27(6):1479–86.

    PubMed  Article  Google Scholar 

  48. 48.

    Aagaard P, Simonsen EB, Andersen JL, et al. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 1985;2000(89):2249–57.

    Google Scholar 

  49. 49.

    Vangsgaard S, Taylor JL, Hansen EA, et al. Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial. J Appl Physiol. 1985;2014(116):1623–31.

    Google Scholar 

  50. 50.

    Pensini M, Martin A, Maffiuletti NA. Central versus peripheral adaptations following eccentric resistance training. Int J Sports Med. 2002;23:567–74.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Beltman JGM, Sargeant AJ, van Mechelen W, et al. Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions. J Appl Physiol (1985). 2004;97(2):619–26.

    CAS  Article  Google Scholar 

  52. 52.

    Duchateau J, Baudry S. Insights into the neural control of eccentric contractions. J Appl Physiol (1985). 2014;116(11):1418–25.

    Article  Google Scholar 

  53. 53.

    Duclay J, Martin A, Robbe A, et al. Spinal reflex plasticity during maximal dynamic contractions after eccentric training. Med Sci Sports Exerc. 2008;40(4):722–34.

    PubMed  Article  Google Scholar 

  54. 54.

    Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31(2):61–7.

    PubMed  Article  Google Scholar 

  55. 55.

    Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5):S135–45.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Aagaard P. Neural adaptations to resistance exercise. In: Cardinale M, Newton R, Nosaka K, editors. Strength and conditioning: biological principles and practical applications. Chichester: Wiley-Blackwell; 2011. p. 105–24.

    Google Scholar 

  57. 57.

    Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(1):295–305.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Duchateau J, Semmler JG, Enoka RM. Training adaptations in the behaviour of human motor units. J Appl Physiol. 1985;2006(101):1766–75.

    Google Scholar 

  59. 59.

    Papadopoulos C, Theodosiou K, Bogdanis GC, et al. Multiarticular isokinetic high-load eccentric training induces large increases in eccentric and concentric strength and jumping performance. J Strength Cond Res. 2014;28(9):2680–8.

    PubMed  Article  Google Scholar 

  60. 60.

    Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. 2010;42(9):1731–44.

    PubMed  Article  Google Scholar 

  61. 61.

    Cook CJ, Beaven CM, Kilduff LP. Three weeks of eccentric training combined with overspeed exercises enhances power and running speed performance gains in trained athletes. J Strength Cond Res. 2013;27(5):1280–6.

    PubMed  Article  Google Scholar 

  62. 62.

    de Hoyo M, Pozzo M, Sanudo B, et al. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015;10:46–52.

    PubMed  Article  Google Scholar 

  63. 63.

    Bojsen-Moller J, Magnusson SP, Rasmussen LR, et al. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol. 1985;2005(99):986–94.

    Google Scholar 

  64. 64.

    Andersen LL, Aagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol. 2006;96:46–52.

    PubMed  Article  Google Scholar 

  65. 65.

    Oliveira AS, Corvino RB, Caputo F, et al. Effects of fast-velocity eccentric resistance training on early and late rate of force development. Eur J Sport Sci. 2016;16(2):199–205.

  66. 66.

    Bottinelli R, Canepari M, Pellegrino MA, et al. Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol. 1996;495(2):573–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Bottinelli R, Pellegrino MA, Canepari M, et al. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol. 1999;9:87–95.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Andersen LL, Andersen JL, Zebis MK, et al. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20:162–9.

    Article  Google Scholar 

  69. 69.

    de Oliveira FBD, Rizatto GF, Denadai BS. Are early and late rate of force development differently influenced by fast-velocity resistance training. Clin Physiol Funct Imaging. 2013;33:282–7.

    PubMed  Article  Google Scholar 

  70. 70.

    Tillin NA, Pain MTG, Folland JP. Short-term training for explosive strength causes neural and mechanical adaptations. Exp Physiol. 2012;97(5):630–41.

    PubMed  Article  Google Scholar 

  71. 71.

    Leong CH, McDermott WJ, Elmer SJ, et al. Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power. Int J Sports Med. 2014;35:559–65.

    CAS  PubMed  Google Scholar 

  72. 72.

    Farup J, Rahbek SK, Vendelbo MH, et al. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scand J Med Sci Sports. 2014;24:788–98.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Rahbek SK, Farup J, Moller AB, et al. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids. 2014;46(10):2377–92.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Goldspink G, Harridge S. Cellular and molecular aspects of adaptation in skeletal muscle. In: Komi PV, editor. Strength and power in sport. Volume III encyclopaedia of sports medicine. Encyclopaedia of Sports Medicine. Osney Mead: Blackwell Science Ltd; 2003. p. 231–51.

    Google Scholar 

  75. 75.

    Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–63.

    PubMed  Article  Google Scholar 

  76. 76.

    Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.

    PubMed  Article  Google Scholar 

  77. 77.

    Eliasson J, Elfegoun T, Nilsson J, et al. Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab. 2006;291:E1197–205.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97:643–63.

    PubMed  Article  Google Scholar 

  79. 79.

    Miller MK, Bang ML, Witt CC, et al. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J Mol Biol. 2003;333:951–64.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Kumar A, Chaudhry I, Reid MB, et al. Distinct signalling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem. 2002;277(48):46493–503.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical adaptations. J Physiol. 2001;537:333–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Baroni BM, Geremia JM, Rodrigues R, et al. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve. 2013;48:498–506.

    PubMed  Article  Google Scholar 

  83. 83.

    Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105:939–44.

    PubMed  Article  Google Scholar 

  84. 84.

    Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 1985;2007(102):368–73.

    Google Scholar 

  85. 85.

    Duclay J, Martin A, Duclay A, et al. Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve. 2009;39:819–27.

    PubMed  Article  Google Scholar 

  86. 86.

    Schoenfeld BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26(5):1441–53.

    PubMed  Article  Google Scholar 

  87. 87.

    Hyldahl RD, Olson T, Welling T, et al. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol. 2014;5(485):1–11.

    Google Scholar 

  88. 88.

    Crescioli C, Sottili M, Bonini P, et al. Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic agent. Eur J Cell Biol. 2012;91:139–49.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Burzyn D, Kuswanto W, Kolodin D, et al. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155(6):1282–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Hollander DB, Kraemer RR, Kilpatrick MW, et al. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J Strength Cond Res. 2007;21(3):34–40.

    PubMed  Google Scholar 

  91. 91.

    Prilutsky BI. Eccentric muscle action in sport and exercise. In: Zatsiorsky VM, editor. Biomechanics in sport. Volume IX encyclopaedia of sports medicine. Encyclopaedia of Sports Medicine. Osney Mead: Blackwell Science Ltd; 2000. p. 56–86.

    Google Scholar 

  92. 92.

    Chapman D, Newton M, Sacco P, et al. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int J Sports Med. 2006;27:591–8.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    McHugh MP, Tetro DT. Changes in the relationship between joint angle and torque production associated with the repeated bout effect. J Sport Sci. 2003;21:927–32.

    Article  Google Scholar 

  94. 94.

    Shepstone TN, Tang JE, Dallaire S, et al. Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol. 1985;2005(98):1768–76.

    Google Scholar 

  95. 95.

    Baroni BM, Stocchero CMA, do Espírito Santo RC, et al. The effect of contraction type on muscle strength, work and fatigue in maximal isokinetic exercise. Isokinet Exerc Sci. 2011;19(3):215–20.

    Google Scholar 

  96. 96.

    Horstmann T, Mayer F, Maschmann J, et al. Metabolic reaction after concentric and eccentric endurance-exercise of the knee and ankle. Med Sci Sports Exerc. 2001;33(5):791–5.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 1985;2016(121):129–38.

    Google Scholar 

  98. 98.

    Sudo M, Ando S, Poole DC, et al. Blood flow restriction prevents muscle damage but not protein synthesis signalling following eccentric contractions. Physiol Rep. 2015;3(7):1–10.

    Article  CAS  Google Scholar 

  99. 99.

    Campos GER, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88:50–60.

    PubMed  Article  Google Scholar 

  100. 100.

    Raue U, Terpstra B, Williamson DL, et al. Effects of short-term concentric vs. eccentric resistance training on single muscle fiber MHC distribution in humans. Int J Sports Med. 2005;26:339–43.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Paddon-Jones D, Leveritt M, Lonergan A, et al. Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity. Eur J Appl Physiol. 2001;85:466–71.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Andersen JL, Aagaard P. Myosin heavy chain IIx overshoot in human skeletal muscle. Muscle Nerve. 2000;23:1095–104.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Staron RS, Johnson P. Myosin polymorphism and differential expression in adult human skeletal muscle. Comp Biochem Physiol. 1993;106B(3):463–75.

    CAS  Google Scholar 

  104. 104.

    Andersen JL, Mohr T, Biering-Sorensen F, et al. Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflügers Arch. 1996;431:513–8.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Friedmann B, Kinscherf R, Vorwald S, et al. Muscular adaptations to computer-guided strength training with eccentric overload. Acta Physiol Scand. 2004;182:77–88.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Cermak NM, Snijders T, McKay BR, et al. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc. 2013;45(2):230–7.

    PubMed  Article  Google Scholar 

  107. 107.

    Tannerstedt J, Apró W, Blomstrand E. Maximal lengthening contractions induce different signalling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol. 1985;2009(106):1412–8.

    Google Scholar 

  108. 108.

    Mahieu NN, McNair P, Cools A, et al. Effects of eccentric training on the plantar flexor muscle-tendon tissue properties. Med Sci Sports Exerc. 2008;40(1):117–23.

    PubMed  Article  Google Scholar 

  109. 109.

    Ohberg L, Lorentzon R, Alfredson H. Eccentric training in patients with chronic Achilles tendinosis: normalised tendon structure and decreased thickness at follow up. Br J Sports Med. 2004;38:8–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol. 2007;210:2743–53.

    PubMed  Article  Google Scholar 

  111. 111.

    Pousson M, Van Hoecke J, Goubel F. Changes in elastic characteristics of human muscle induced by eccentric exercise. J Biomech. 1990;23(4):343–8.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Morrissey D, Roskilly A, Twycross-Lewis R, et al. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness. Clin Rehabil. 2011;25:238–47.

    PubMed  Article  Google Scholar 

  113. 113.

    Alfredson H, Pietila T, Jonsson P, et al. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998;26(3):360–6.

    CAS  PubMed  Google Scholar 

  114. 114.

    Magnusson SP, Narici MV, Maganaris CN, et al. Human tendon behaviour and adaptation, in vivo. J Physiol. 2008;586(1):71–81.

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Miller BF, Olesen JL, Hansen M, et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 2005;567(3):1021–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Foure A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol. 1985;2010(109):849–54.

    Google Scholar 

  117. 117.

    Kubo K, Morimoto M, Komuro T, et al. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39(10):1801–10.

    PubMed  Article  Google Scholar 

  118. 118.

    Magnusson SP, Kjaer M. Region-specific differences in Achilles tendon cross-sectional area in runners and non-runners. Eur J Appl Physiol. 2003;90:549–53.

    PubMed  Article  Google Scholar 

  119. 119.

    McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):88–97.

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jamie Douglas.

Ethics declarations


No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Jamie Douglas, Simon Pearson, Angus Ross and Mike McGuigan declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Douglas, J., Pearson, S., Ross, A. et al. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med 47, 917–941 (2017).

Download citation


  • Motor Unit
  • Resistance Training
  • Eccentric Exercise
  • Eccentric Contraction
  • Concentric Training