Skip to main content
Log in

Eccentric Exercise: Physiological Characteristics and Acute Responses

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

An eccentric contraction involves the active lengthening of muscle under an external load. The molecular and neural mechanisms underpinning eccentric contractions differ from those of concentric and isometric contractions and remain less understood. A number of molecular theories have been put forth to explain the unexplained observations during eccentric contractions that deviate from the predictions of the established theories of muscle contraction. Postulated mechanisms include a strain-induced modulation of actin-myosin interactions at the level of the cross-bridge, the activation of the structural protein titin, and the winding of titin on actin. Accordingly, neural strategies controlling eccentric contractions also differ with a greater, and possibly distinct, cortical activation observed despite an apparently lower activation at the level of the motor unit. The characteristics of eccentric contractions are associated with several acute physiological responses to eccentrically-emphasised exercise. Differences in neuromuscular, metabolic, hormonal and anabolic signalling responses during, and following, an eccentric exercise bout have frequently been observed in comparison to concentric exercise. Subsequently, the high levels of muscular strain with such exercise can induce muscle damage which is rarely observed with other contraction types. The net result of these eccentric contraction characteristics and responses appears to be a novel adaptive signal within the neuromuscular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data from Amiridis et al. [31]

Similar content being viewed by others

References

  1. Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci. 2001;16:256–61.

    CAS  PubMed  Google Scholar 

  2. Vogt M, Hoppeler HH. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct. J Appl Physiol. 2014;116(11):1446–54.

    Article  PubMed  Google Scholar 

  3. Huxley AF, Niedergerke R. Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature. 1954;173:971–3.

    Article  CAS  PubMed  Google Scholar 

  4. Huxley HE, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954;173:971–3.

    Article  CAS  PubMed  Google Scholar 

  5. Herzog W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol. 2014;116(11):1407–17.

    Article  PubMed  Google Scholar 

  6. Herzog W, Powers K, Johnston K, et al. A new paradigm for muscle contraction. Front Physiol. 2015;6(174):1–11.

    Google Scholar 

  7. Schmidtbleicher D. Training for power events. In: Komi PV, editor. Strength and power in sport: the encyclopaedia of sports medicine. Encyclopaedia of sports medicine. Oxford: Blackwell Science Ltd; 1992. p. 381–395.

  8. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.

    CAS  PubMed  Google Scholar 

  9. Linari M, Lucii L, Reconditi M, et al. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibers. J Physiol. 2000;526(3):589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edman KAP, Elzinga G, Noble MIM. Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol. 1982;80:769–84.

    Article  CAS  PubMed  Google Scholar 

  11. Curtin NA, Davies RE. Very high tension with very little ATP breakdown by active skeletal muscle. J Mechanochem Cell Motil. 1975;3(2):147–54.

    CAS  PubMed  Google Scholar 

  12. Linari M, Bottinelli R, Pellegrino MA, et al. The mechanism of the force response to stretch in human skinned muscle fibers with different myosin isoforms. J Physiol. 2004;554(2):335–52.

    Article  CAS  PubMed  Google Scholar 

  13. Huxley AF. Biological motors: energy storage in myosin molecules. Curr Biol. 1998;8(14):R485–8.

    Article  CAS  PubMed  Google Scholar 

  14. Herzog W. The role of titin in eccentric muscle contraction. J Exp Biol. 2014;217:2825–33.

    Article  CAS  PubMed  Google Scholar 

  15. Herzog W, Leonard TR, Joumaa V, et al. Mysteries of muscle contraction. J Appl Biomech. 2008;24:1–13.

    Article  PubMed  Google Scholar 

  16. Menard MR, Penn AM, Lee JW, et al. Relative metabolic efficiency of concentric and eccentric exercise determined by 31P magnetic resonance spectroscopy. Arch Phys Med Rehab. 1991;72(12):976–83.

    CAS  Google Scholar 

  17. Rassier DE, Herzog W, Pollack GH. Stretch-induced force enhancement and stability of skeletal muscle myofibrils. Adv Exp Med Biol. 2003;538:501–15.

    Article  PubMed  Google Scholar 

  18. Leonard TR, Herzog W. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol. 2010;229:C14–20.

    Article  CAS  Google Scholar 

  19. Kellermayer MSZ, Smith SB, Granzier HL, et al. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997;276:1112–6.

    Article  CAS  PubMed  Google Scholar 

  20. Horowits R, Podolsky RJ. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987;105:2217–23.

    Article  CAS  PubMed  Google Scholar 

  21. Herzog JA, Leonard TR, Jinha A, et al. Are titin properties reflected in single myofibrils? J Biomech. 2012;45:1893–9.

    Article  PubMed  Google Scholar 

  22. DuVall MM, Gifford JL, Amrein M, et al. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium. Eur Biophys J. 2013;42:301–7.

    Article  CAS  PubMed  Google Scholar 

  23. Labeit D, Watanabe K, Witt C, et al. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA. 2003;100:13716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishikawa KC, Monroy JA, Uyeno TE, et al. Is titin a ‘winding filament’? A new twist on muscle contraction. Proc Biol Sci. 2012;279:981–90.

    Article  CAS  PubMed  Google Scholar 

  25. Enoka RM. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol. 1996;81(6):2339–46.

    CAS  PubMed  Google Scholar 

  26. Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31(2):61–7.

    Article  PubMed  Google Scholar 

  27. Duchateau J, Baudry S. Insights into the neural control of eccentric contractions. J Appl Physiol. 2014;116(11):1418–25.

    Article  PubMed  Google Scholar 

  28. Aagaard P, Simonsen EB, Andersen JL, et al. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89:2249–57.

    CAS  PubMed  Google Scholar 

  29. Kellis E, Baltzopoulos V. Muscle activation differences between eccentric and concentric isokinetic exercise. Med Sci Sports Exerc. 1998;30(11):1616–23.

    Article  CAS  PubMed  Google Scholar 

  30. Westing SH, Cresswell AG, Thorstensson A. Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur J Appl Physiol Occup Physiol. 1991;62(2):104–8.

    Article  CAS  PubMed  Google Scholar 

  31. Amiridis IG, Martin A, Morlon B, et al. Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol. 1996;73:149–56.

    Article  CAS  Google Scholar 

  32. Duclay J, Martin A. Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction. J Neurophysiol. 2005;94(5):3555–62.

    Article  PubMed  Google Scholar 

  33. Babault N, Pousson M, Ballay Y, et al. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol. 2001;91:2628–34.

    CAS  PubMed  Google Scholar 

  34. Baudry S, Klass M, Pasquet B, et al. Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol. 2007;100:515–25.

    Article  PubMed  Google Scholar 

  35. Herbert RD, Gandevia SC. Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol. 1999;82:2271–83.

    CAS  PubMed  Google Scholar 

  36. Beltman JGM, Sargeant AJ, van Mechelen W, et al. Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions. J Appl Physiol. 2004;97(2):619–26.

    Article  CAS  PubMed  Google Scholar 

  37. Westing SH, Seger JY, Thorstensson A. Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man. Acta Physiol Scand. 1990;140:17–22.

    Article  CAS  PubMed  Google Scholar 

  38. Del Valle A, Thomas CK. Firing rates during strong dynamic contractions. Muscle Nerve. 2005;32:316–25.

    Article  PubMed  Google Scholar 

  39. Duchateau J, Enoka RM. Neural control of lengthening contractions. J Exp Biol. 2016;219:197–204.

    Article  PubMed  Google Scholar 

  40. Nardone A, Romano C, Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol. 1989;409(1):451–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kulig K, Powers CM, Shellock FG, et al. The effects of eccentric velocity on activation of elbow flexors: evaluation by magnetic resonance imaging. Med Sci Sports Exerc. 2001;33(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  42. Nardone A, Schieppati M. Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscles in humans. J Physiol. 1988;395:363–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pasquet B, Carpentier A, Duchateau J. Specific modulation of motor unit discharge for a similar change in fascicle length during shortening and lengthening contractions in humans. J Physiol. 2006;577(Pt 2):753–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Søgaard K, Christensen H, Jensen BR, et al. Motor control and kinetics during low level concentric and eccentric contractions in man. Electroencephalogr Clin Neurophysiol. 1996;101(5):453–60.

    Article  PubMed  Google Scholar 

  45. Stotz PJ, Bawa P. Motor unit recruitment during lengthening contractions of human wrist flexors. Muscle Nerve. 2001;24(11):1535–41.

    Article  CAS  PubMed  Google Scholar 

  46. Bawa P, Jones KE. Do lengthening contractions represent a case of reversal in recruitment order? Prog Brain Res. 1999;123:215–20.

    Article  CAS  PubMed  Google Scholar 

  47. Henneman E. Relationship between size of neurons and their susceptibility to discharge. Science. 1957;126(3287):1345–7.

    Article  CAS  PubMed  Google Scholar 

  48. Fang Y, Siemionow V, Sahgal V, et al. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions. Brain Res. 2004;1023:200–12.

    Article  CAS  PubMed  Google Scholar 

  49. Fang Y, Siemionow V, Sahgal V, et al. Greater movement-related cortical potential during human eccentric versus concentric muscle contractions. J Neurophysiol. 2001;86(4):1764–72.

    CAS  PubMed  Google Scholar 

  50. Gruber M, Linnamo V, Strojnik V, et al. Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J Neurophysiol. 2009;101(4):2030–40.

    Article  CAS  PubMed  Google Scholar 

  51. Abbruzzese G, Morena M, Spadavecchia L, et al. Response of arm flexor muscles to magnetic and electrical brain stimulation during shortening and lengthening tasks in man. J Physiol. 1994;481(Pt 2):499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sekiguchi H, Kimura T, Yamanaka K, et al. Lower excitability of the corticospinal tract to transcranial magnetic stimulation during lengthening contractions in human elbow flexors. Neurosci Lett. 2001;312(2):83–6.

    Article  CAS  PubMed  Google Scholar 

  53. Pinniger GJ, Steele JR, Thorstensson A, et al. Tension regulation during lengthening and shortening actions of the human soleus muscle. Eur J Appl Physiol. 2000;81:375–83.

    Article  CAS  PubMed  Google Scholar 

  54. Prilutsky BI. Eccentric muscle action in sport and exercise. In: Zatsiorsky VM, editor. Biomechanics in sport: volume IX encyclopaedia of sports medicine. encyclopaedia of sports medicine. Oxford: Blackwell Science Ltd; 2000. p. 56–86.

  55. Cavagna GA, Citterio G. Effects of stretching on the elastic characteristics and the contractile component of frog striated muscle. J Physiol. 1974;239:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Westing SH, Seger JY, Karlson E, et al. Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur J Appl Physiol Occup Physiol. 1988;58:100–4.

    Article  CAS  PubMed  Google Scholar 

  57. Linnamo V, Strojnik V, Komi PV. Maximal force during eccentric and isometric actions at different elbow angles. Eur J Appl Physiol. 2006;96(6):672–8.

    Article  CAS  PubMed  Google Scholar 

  58. Hollander DB, Kraemer RR, Kilpatrick MW, et al. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J Strength Cond Res. 2007;21(3):34–40.

    PubMed  Google Scholar 

  59. Hortobagyi T, Katch F. Eccentric and concentric torque velocity relationships during arm flexion and extension: influence of strength level. Eur J Appl Physiol. 1990;60:395–401.

    Article  CAS  Google Scholar 

  60. Griffin JW, Tooms RE, Vander Zwaag R, et al. Eccentric muscle performance of elbow and knee muscle groups in untrained men and women. Med Sci Sports Exerc. 1993;25(8):936–44.

    Article  CAS  PubMed  Google Scholar 

  61. Reeves ND, Narici MV. Behavior of human muscle fascicles during shortening and lengthening contractions in vivo. J Appl Physiol. 2003;95(3):1090–6.

    Article  PubMed  Google Scholar 

  62. Christou EA, Carlton LG. Motor output is more variable during eccentric compared with concentric contractions. Med Sci Sports Exerc. 2002;34(11):1773–8.

    Article  PubMed  Google Scholar 

  63. Christou EA, Carlton LG. Age and contraction type influence motor output variability in rapid discrete tasks. J Appl Physiol. 2002;93:489–98.

    Article  PubMed  Google Scholar 

  64. Guilhem G, Cornu C, Guevel A. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann Phys Rehabil Med. 2010;53:319–41.

    Article  CAS  PubMed  Google Scholar 

  65. Dufour SP, Lampert E, Doutreleau S, et al. Eccentric cycle exercise: training application of specific circulatory adjustments. Med Sci Sports Exerc. 2004;36(11):1900–6.

    Article  PubMed  Google Scholar 

  66. Penailillo L, Blazevich A, Numazawa H, et al. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med Sci Sports Exerc. 2013;45(9):1773–81.

    Article  CAS  PubMed  Google Scholar 

  67. Perrey S, Betik A, Candau R, et al. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. J Appl Physiol. 2001;91(5):2135–42.

    CAS  PubMed  Google Scholar 

  68. Navalta JW, Sedlock DA, Park KS. Physiological responses to downhill walking in older and younger individuals. J Exerc Physiol. 2004;7(6):45–51.

    Google Scholar 

  69. Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.

    Article  PubMed  Google Scholar 

  70. Abbott BC, Bigland B, Ritchie JM. The physiological cost of negative work. J Physiol. 1952;117:380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lechauve JB, Parrault H, Aguilaniu B, et al. Breathing patterns during eccentric exercise. Respir Physiol Neurobiol. 2014;202:53–8.

    Article  CAS  PubMed  Google Scholar 

  72. Knuttgen HG, Patton JF, Vogel JA. An ergometer for concentric and eccentric muscular exercise. J Appl Physiol. 1982;53(3):784–8.

    CAS  PubMed  Google Scholar 

  73. Dudley GA, Tesch PA, Harris RT, et al. Influence of eccentric actions on the metabolic cost of resistance exercise. Aviat Space Environ Med. 1991;62(7):678–82.

    CAS  PubMed  Google Scholar 

  74. Isner-Horobeti M, Dufour SP, Vautravers P, et al. Eccentric exercise training: modalities, applications and perspectives. Sports Med. 2013;43:483–512.

    Article  PubMed  Google Scholar 

  75. Bigland-Ritchie B, Woods JJ. Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol. 1976;260(2):267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bonde-Petersen F, Knuttgen HG, Henriksson J. Muscle metabolism during exercise with concentric and eccentric contractions. J Appl Physiol. 1972;33(6):792–5.

    CAS  PubMed  Google Scholar 

  77. Penailillo L, Blazevich A, Nosaka K. Energy expenditure and substrate oxidation during and after eccentric cycling. Eur J Appl Physiol. 2014;114:805–14.

    Article  CAS  PubMed  Google Scholar 

  78. Knuttgen HG, Klausen K. Oxygen debt in short-term exercise with concentric and eccentric muscle contractions. J Appl Physiol. 1971;30(5):632–5.

    CAS  PubMed  Google Scholar 

  79. Davies CT, Barnes C. Negative (eccentric) work. II. Physiological responses to walking uphill and downhill on a motor-driven treadmill. Ergonomics. 1972;15:121–31.

    Article  CAS  PubMed  Google Scholar 

  80. Nielsen B, Nielsen SL, Petersen FB. Thermoregulation during positive and negative work at different environmental temperatures. Acta Physiol Scand. 1972;85:249–57.

    Article  CAS  PubMed  Google Scholar 

  81. Grabiner MD, Owings TM. Effects of eccentrically and concentrically induced unilateral fatigue on the involved and uninvolved limbs. J Electromyogr Kinesiol. 1999;9(3):185–9.

    Article  CAS  PubMed  Google Scholar 

  82. Baroni BM, Stocchero CMA, do Espírito Santo RC, et al. The effect of contraction type on muscle strength, work and fatigue in maximal isokinetic exercise. Isokinet Exerc Sci. 2011;19(3):215–20.

    Google Scholar 

  83. Hortobagyi T, Barrier J, Beard D, et al. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. J Appl Physiol. 1996;81(4):1677–82.

    CAS  PubMed  Google Scholar 

  84. Dolezal BA, Potteiger JA, Jacobsen DJ, et al. Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Med Sci Sports Exerc. 2000;32(7):1202–7.

    Article  CAS  PubMed  Google Scholar 

  85. Hackney KJ, Engels HJ, Gretebeck RJ. Resting energy expenditure and delayed-onset muscle soreness after full-body resistance training with an eccentric concentration. J Strength Cond Res. 2008;22(5):1602–9.

    Article  PubMed  Google Scholar 

  86. Durand RJ, Castracane VD, Hollander DB, et al. Hormonal responses from concentric and eccentric muscle contractions. Med Sci Sports Exerc. 2003;35(6):937–43.

    Article  CAS  PubMed  Google Scholar 

  87. Kraemer RR, Hollander DB, Reeves GV, et al. Similar hormonal responses to concentric and eccentric muscle actions using relative loading. Eur J Appl Physiol. 2006;96:551–7.

    Article  CAS  PubMed  Google Scholar 

  88. Kraemer RR, Castracane VD. Endocrine alterations from concentric vs. eccentric muscle actions: a brief review. Metabolism. 2015;64(2):190–201.

    Article  CAS  PubMed  Google Scholar 

  89. Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentration in humans. Am J Physiol Endocrinol Metab. 2001;280:E383–90.

    CAS  PubMed  Google Scholar 

  90. Ojasto T, Hakkinen K. Effects of different accentuated eccentric loads on acute neuromuscular, growth hormone, and blood lactate responses during a hypertrophic protocol. J Strength Cond Res. 2009;23(3):946–53.

    Article  PubMed  Google Scholar 

  91. Calixto RD, Verlengia R, Crisp AH, et al. Acute effects of movement velocity on blood lactate and growth hormone responses after eccentric bench press exercise in resistance-trained men. Biol Sport. 2014;31(4):289–94.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res. 2013;27(6):1720–30.

    Article  PubMed  Google Scholar 

  93. Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97:643–63.

    Article  PubMed  Google Scholar 

  94. Cermak NM, Snijders T, McKay BR, et al. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc. 2013;45(2):230–7.

    Article  PubMed  Google Scholar 

  95. Hyldahl RD, Olson T, Welling T, et al. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol. 2014;5(485):1–11.

    Google Scholar 

  96. McKay BR, De Lisio M, Johnston APW, et al. Association of interleukin-6 signalling with muscle stem cell response following muscle-lengthening contractions in humans. PLoS One. 2009;4(6):1–13.

    Article  CAS  Google Scholar 

  97. Dreyer HC, Blanco CE, Sattler FR, et al. Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve. 2006;33:242–53.

    Article  PubMed  Google Scholar 

  98. Willoughby DS, McFarlin B, Bois C. Interleukin-6 expression after repeated bouts of eccentric exercise. Int J Sports Med. 2003;24:15–21.

    Article  CAS  PubMed  Google Scholar 

  99. Crameri RM, Langberg H, Magnusson P, et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol. 2004;558(1):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moore DR, Phillips SM, Babraj JA, et al. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab. 2005;288:E1153–9.

    Article  CAS  PubMed  Google Scholar 

  101. Eliasson J, Elfegoun T, Nilsson J, et al. Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab. 2006;291:E1197–205.

    Article  CAS  PubMed  Google Scholar 

  102. Roschel H, Ugrinowistch C, Barroso R, et al. Effects of eccentric exercise velocity on akt/mtor/p70s6k signalling in human skeletal muscle. Appl Physiol Nutr Metab. 2011;36:283–90.

    Article  CAS  PubMed  Google Scholar 

  103. Tannerstedt J, Apró W, Blomstrand E. Maximal lengthening contractions induce different signalling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol. 2009;106:1412–8.

    Article  CAS  PubMed  Google Scholar 

  104. Vissing K, Rahbek SK, Lamon S, et al. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. J Physiol. 2013;591(15):3749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kostek MC, Chen YW, Cuthbertson DJ, et al. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics. 2007;31:42–52.

    Article  CAS  PubMed  Google Scholar 

  106. Heinemeier KM, Olesen JL, Haddad F, et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol. 2007;582(3):1303–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Proske U, Allen TJ. Damage to skeletal muscle from eccentric exercise. Med Sci Sports Exerc. 2005;33(2):98–104.

    Article  Google Scholar 

  108. Elmer SJ, Martin JC. Joint-specific power loss after eccentric exercise. Med Sci Sports Exerc. 2010;42(9):1723–30.

    Article  PubMed  Google Scholar 

  109. McHugh MP, Tetro DT. Changes in the relationship between joint angle and torque production associated with the repeated bout effect. J Sport Sci. 2003;21:927–32.

    Article  Google Scholar 

  110. Chapman D, Newton M, Sacco P, et al. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int J Sports Med. 2006;27:591–8.

    Article  CAS  PubMed  Google Scholar 

  111. Newton MJ, Morgan GT, Sacco P, et al. Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res. 2008;22(2):597–607.

    Article  PubMed  Google Scholar 

  112. Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37(10):827–36.

    Article  PubMed  Google Scholar 

  113. Murayama M, Nosaka K, Yoneda T, et al. Changes in hardness of the human elbow flexor muscles after eccentric exercise. Eur J Appl Physiol. 2000;82(5–6):361–7.

    Article  CAS  PubMed  Google Scholar 

  114. Raastad T, Owe SG, Paulsen G, et al. Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sports Exerc. 2010;42(1):86–95.

    Article  PubMed  Google Scholar 

  115. Elmer SJ, McDaniel J, Martin JC. Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise. Eur J Appl Physiol. 2010;110:1225–33.

    Article  PubMed  Google Scholar 

  116. Piitulainen H, Bottas R, Komi P, et al. Impaired action potential conduction at high force levels after eccentric exercise. J Electromyogr Kinesiol. 2010;20:879–87.

    Article  PubMed  Google Scholar 

  117. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.

    CAS  PubMed  Google Scholar 

  118. Cheung K, Hume PA, Maxwell L. Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med. 2003;33(2):145–64.

    Article  PubMed  Google Scholar 

  119. Nosaka K, Newton M, Sacco P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sports. 2002;12:337–46.

    Article  PubMed  Google Scholar 

  120. Crameri RM, Aagaard P, Qvortrup K, et al. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol. 2007;583(1):365–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gibson W, Arendt-Nielsen L, Taguchi T, et al. Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp Brain Res. 2009;194(2):299–388.

    Article  PubMed  Google Scholar 

  122. Lau WY, Blazevich AJ, Newton MJ, et al. Changes in electrical pain threshold of fascia and muscle after initial and secondary bouts of elbow flexor eccentric exercise. Eur J Appl Physiol. 2015;115(5):959–68.

    Article  PubMed  Google Scholar 

  123. Chen TC, Nosaka K, Tu JH. Changes in running economy following downhill running. J Sport Sci. 2007;25(1):55–63.

    Article  Google Scholar 

  124. Chen TC, Nosaka K, Lin MJ, et al. Changes in running economy at different intensities following downhill running. J Sport Sci. 2009;27(11):1137–44.

    Article  Google Scholar 

  125. Paschalis V, Giakas G, Baltzopoulos V, et al. The effects of muscle damage following eccentric exercise on gait biomechanics. Gait Posture. 2007;25:236–42.

    Article  PubMed  Google Scholar 

  126. Harrison AJ, Gaffney SD. Effects of muscle damage on stretch-shortening cycle function and muscle stiffness control. J Strength Cond Res. 2004;18(4):771–6.

    PubMed  Google Scholar 

  127. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical adaptations. J Physiol. 2001;537:333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morgan DL. New insights into the behaviour of muscle during active lengthening. Biophys J. 1990;57:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wood SA, Morgan DL, Proske U. Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle. Am J Physiol. 1993;265(3):C792–800.

    CAS  PubMed  Google Scholar 

  130. Piitulainen H, Holobar A, Avela J. Changes in motor unit characteristics after eccentric elbow flexor exercise. Scand J Med Sci Sports. 2012;22:418–29.

    Article  CAS  PubMed  Google Scholar 

  131. Vijayan K, Thompson JL, Norenberg KM, et al. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles. J Physiol. 2001;90:770–6.

    CAS  Google Scholar 

  132. Fridén J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med. 1983;04(3):170–6.

    Article  Google Scholar 

  133. McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):88–97.

    Article  PubMed  Google Scholar 

  134. Morgan DL, Proske U. Popping sarcomere hypothesis explains stretch-induced muscle damage. Clin Exp Pharmacol Physiol. 2004;31:541–5.

    Article  CAS  PubMed  Google Scholar 

  135. Brughelli M, Cronin J. Altering the length-tension relationship with eccentric exercise: implications for performance and injury. Sports Med. 2007;37(9):807–26.

    Article  PubMed  Google Scholar 

  136. Nosaka K, Sakamoto K, Newton M, et al. How long does the protective effect on eccentric exercise-induced muscle damage last? Med Sci Sports Exerc. 2001;33(9):1490–5.

    Article  CAS  PubMed  Google Scholar 

  137. Nosaka K, Clarkson PM. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc. 1995;27:1263–9.

    Article  CAS  PubMed  Google Scholar 

  138. Howatson G, van Someren KA. Evidence of a contralateral repeated bout effect after maximal eccentric contractions. Eur J Appl Physiol. 2007;101(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  139. Barash IA, Peters D, Friden J, et al. Desmin cytoskeletal modifications after a bout of eccentric exercise in the rat. Am J Physiol Regul Integr Comp Physiol. 2002;283:R958–63.

    Article  PubMed  Google Scholar 

  140. McHugh MP, Connolly DAJ, Eston RG, et al. The role of passive muscle stiffness in symptoms of exercise-induced muscle damage. Am J Sports Med. 1999;27(5):594–9.

    CAS  PubMed  Google Scholar 

  141. Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–90.

    Article  CAS  PubMed  Google Scholar 

  142. Morgan DL, Talbot JA. The addition of sarcomeres in series is the main protective mechanism following eccentric exercise. J Mech Med Biol. 2002;2(3&4):421–31.

    Article  Google Scholar 

  143. Pizza FX, Koh TJ, McGregor SJ, et al. Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol. 2002;92(5):1873–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Douglas.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Jamie Douglas, Simon Pearson, Angus Ross and Mike McGuigan declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglas, J., Pearson, S., Ross, A. et al. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med 47, 663–675 (2017). https://doi.org/10.1007/s40279-016-0624-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0624-8

Keywords

Navigation