Skip to main content

Biomechanics and Physiology of Uphill and Downhill Running


Most running studies have considered level running (LR), yet the regulation of locomotor behaviour during uphill (UR) and downhill (DR) running is fundamental to increase our understanding of human locomotion. The purpose of this article was to review the existing literature regarding biomechanical, neuromuscular and physiological adaptations during graded running. Relative to LR, UR is characterized by a higher step frequency, increased internal mechanical work, shorter swing/aerial phase duration, and greater duty factor, while DR is characterized by increased aerial time, reduced step frequency and decreased duty factor. Grade also modifies foot strike patterns, with a progressive adoption of a mid- to fore-foot strike pattern during UR, and rear-foot strike patterns during DR. In UR, lower limb muscles perform a higher net mechanical work compared to LR and DR to increase the body’s potential energy. In DR, energy dissipation is generally prevalent compared to energy generation. The increased demands for work as running incline increases are met by an increase in power output at all joints, particularly the hip. This implies that UR requires greater muscular activity compared to LR and DR. Energy cost of running (C r) linearly increases with positive slope but C r of DR decreases until a minimum slope is reached at −20 %, after which C r increases again. The effects of slope on biomechanics, muscle contraction patterns and physiological responses have important implications for injury prevention and success of athletes engaged in graded running competitions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432:345–52.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Lieberman DE, Bramble DM. The evolution of marathon running : capabilities in humans. Sports Med. 2007;37:288–90.

    Article  PubMed  Google Scholar 

  3. 3.

    Burfoot A. The history of the marathon : 1976-present. Sports Med. 2007;37:284–7.

    Article  PubMed  Google Scholar 

  4. 4.

    Hoffman MD, Ong JC, Wang G. Historical analysis of participation in 161 km ultramarathons in North America. Int J Hist Sport. 2010;27:1877–91.

    Article  PubMed  Google Scholar 

  5. 5.

    Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One. 2011;6:e17059.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Saugy J, Place N, Millet GY, et al. Alterations of neuromuscular function after the world’s most challenging mountain ultra-marathon. PLoS One. 2013;8:e65596.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Vernillo G, Rinaldo N, Giorgi A, et al. Changes in lung function during an extreme mountain ultramarathon. Scand J Med Sci Sports. 2015;25:e374–80.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Vernillo G, Savoldelli A, Zignoli A, et al. Influence of the world’s most challenging mountain ultra-marathon on energy cost and running mechanics. Eur J Appl Physiol. 2014;114:929–39.

    Article  PubMed  Google Scholar 

  9. 9.

    Cavagna GA, Saibene FP, Margaria R. Mechanical work in running. J Appl Physiol. 1964;19:249–56.

    CAS  PubMed  Google Scholar 

  10. 10.

    Gottschall JS, Kram R. Ground reaction forces during downhill and uphill running. J Biomech. 2005;38:445–52.

    Article  PubMed  Google Scholar 

  11. 11.

    Higham TE, Biewener AA. Integration within and between muscles during terrestrial locomotion: effects of incline and speed. J Exp Biol. 2008;211:2303–16.

    Article  PubMed  Google Scholar 

  12. 12.

    Minetti AE, Ardigo LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol. 1994;195:211–25.

    CAS  PubMed  Google Scholar 

  13. 13.

    Roberts TJ, Belliveau RA. Sources of mechanical power for uphill running in humans. J Exp Biol. 2005;208:1963–70.

    Article  PubMed  Google Scholar 

  14. 14.

    Snyder KL, Farley CT. Energetically optimal stride frequency in running: the effects of incline and decline. J Exp Biol. 2011;214:2089–95.

    Article  PubMed  Google Scholar 

  15. 15.

    Snyder KL, Kram R, Gottschall JS. The role of elastic energy storage and recovery in downhill and uphill running. J Exp Biol. 2012;215:2283–7.

    Article  PubMed  Google Scholar 

  16. 16.

    Mastroianni GR, Zupan MF, Chuba DM, et al. Voluntary pacing and energy cost of off-road cycling and running. Appl Ergon. 2000;31:479–85.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Townshend AD, Worringham CJ, Stewart IB. Spontaneous pacing during overground hill running. Med Sci Sports Exerc. 2010;42:160–9.

    Article  PubMed  Google Scholar 

  18. 18.

    Millet GP, Millet GY. Ultramarathon is an outstanding model for the study of adaptive responses to extreme load and stress. BMC Med. 2012;10:77.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lussiana T, Fabre N, Hebert-Losier K, et al. Effect of slope and footwear on running economy and kinematics. Scand J Med Sci Sports. 2013;23:e246–53.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Padulo J, Annino G, Migliaccio GM, et al. Kinematics of running at different slopes and speeds. J Strength Cond Res. 2012;26:1331–9.

    Article  PubMed  Google Scholar 

  21. 21.

    Padulo J, Annino G, Smith L, et al. Uphill running at iso-efficiency speed. Int J Sports Med. 2012;33:819–23.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Padulo J, Powell D, Milia R, et al. A paradigm of uphill running. PLoS One. 2013;8:e69006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Swanson SC, Caldwell GE. An integrated biomechanical analysis of high speed incline and level treadmill running. Med Sci Sports Exerc. 2000;32:1146–55.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Telhan G, Franz JR, Dicharry J, et al. Lower limb joint kinetics during moderately sloped running. J Athl Train. 2010;45:16–21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lussiana T, Hébert-Losier K, Mourot L. Effect of minimal shoes and slope on vertical and leg stiffness during running. J Sport Health Sci. 2015;4:195–202.

    Article  Google Scholar 

  26. 26.

    DeVita P, Janshen L, Rider P, et al. Muscle work is biased toward energy generation over dissipation in non-level running. J Biomech. 2008;41:3354–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Horvais N, Giandolini M. Foot strike pattern during downhill trail running. Footwear Sci. 2013;5:S26–7.

    Article  Google Scholar 

  28. 28.

    Giandolini M, Pavailler S, Samozino P, et al. Foot strike pattern and impact continuous measurement during a trail running race: proof of concept in a world-class athlete. Footwear Sci. 2015;7:127–37.

    Article  Google Scholar 

  29. 29.

    Giandolini M, Horvais N, Rossi J, et al. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J Biomech. 2016. doi:10.1016/j.jbiomech.2016.04.001.

    PubMed  Google Scholar 

  30. 30.

    Gerritsen KG, van den Bogert AJ, Nigg BM. Direct dynamics simulation of the impact phase in heel-toe running. J Biomech. 1995;28:661–8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Liu W, Nigg BM. A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J Biomech. 2000;33:219–24.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ardigò LP, Saibene F, Minetti AE. The optimal locomotion on gradients: walking, running or cycling? Eur J Appl Physiol. 2003;90:365–71.

    Article  PubMed  Google Scholar 

  33. 33.

    Saibene F, Minetti AE. Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol. 2003;88:297–316.

    Article  PubMed  Google Scholar 

  34. 34.

    Mizrahi J, Verbitsky O, Isakov E. Fatigue-induced changes in decline running. Clin Biomech (Bristol, Avon). 2001;16:207–12.

  35. 35.

    Buczek FL, Cavanagh PR. Stance phase knee and ankle kinematics and kinetics during level and downhill running. Med Sci Sports Exerc. 1990;22:669–77.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Yokozawa T, Fujii N, Ae M. Muscle activities of the lower limb during level and uphill running. J Biomech. 2007;40:3467–75.

    Article  PubMed  Google Scholar 

  37. 37.

    Chu JJ, Caldwell GE. Stiffness and damping response associated with shock attenuation in downhill running. J Appl Biomech. 2004;20:291–308.

    Article  Google Scholar 

  38. 38.

    Hamill CL, Clarke TE, Frederick EC, et al. Effects of grade running on kinematics and impact force. Med Sci Sports Exerc. 1984;16:185.

    Article  Google Scholar 

  39. 39.

    Shorten MR, Winslow DS. Spectral analysis of impact shock during running. Int J Sport Biomech. 1992;8:288–304.

    Article  Google Scholar 

  40. 40.

    Shih Y, Lin KL, Shiang TY. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait Posture. 2013;38:490–4.

    Article  PubMed  Google Scholar 

  41. 41.

    Derrick TR. The effects of knee contact angle on impact forces and accelerations. Med Sci Sports Exerc. 2004;36:832–7.

    Article  PubMed  Google Scholar 

  42. 42.

    Derrick TR, Hamill J, Caldwell GE. Energy absorption of impacts during running at various stride lengths. Med Sci Sports Exerc. 1998;30:128–35.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Edwards WB, Derrick TR, Hamill J. Musculoskeletal attenuation of impact shock in response to knee angle manipulation. J Appl Biomech. 2012;28:502–10.

    Article  PubMed  Google Scholar 

  44. 44.

    Lafortune MA, Lake MJ, Hennig EM. Differential shock transmission response of the human body to impact severity and lower limb posture. J Biomech. 1996;29:1531–7.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Abe D, Fukuoka Y, Muraki S, et al. Effects of load and gradient on energy cost of running. J Physiol Anthropol. 2011;30:153–60.

    Article  PubMed  Google Scholar 

  46. 46.

    McClay IS, Lake MJ, Cavanagh PR. Muscle activity in running. In: Cavanagh PR, editor. Biomechanics of distance running. Champaign: Human Kinetics; 1990. p. 165–86.

    Google Scholar 

  47. 47.

    Wall-Scheffler CM, Chumanov E, Steudel-Numbers K, et al. Electromyography activity across gait and incline: the impact of muscular activity on human morphology. Am J Phys Anthropol. 2010;143:601–11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mero A, Komi PV. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. Eur J Appl Physiol Occup Physiol. 1986;55:553–61.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Sloniger MA, Cureton KJ, Prior BM, et al. Anaerobic capacity and muscle activation during horizontal and uphill running. J Appl Physiol. 1985;1997(83):262–9.

    Google Scholar 

  50. 50.

    Sloniger MA, Cureton KJ, Prior BM, et al. Lower extremity muscle activation during horizontal and uphill running. J Appl Physiol. 1985;1997(83):2073–9.

    Google Scholar 

  51. 51.

    di Prampero PE, Atchou G, Bruckner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.

    Article  PubMed  Google Scholar 

  52. 52.

    Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol. 1963;18:367–70.

    CAS  PubMed  Google Scholar 

  53. 53.

    Fletcher JR, Esau SP, Macintosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 1985;2009(107):1918–22.

    Google Scholar 

  54. 54.

    Shaw AJ, Ingham SA, Folland JP. The valid measurement of running economy in runners. Med Sci Sports Exerc. 2014;46:1968–73.

    Article  PubMed  Google Scholar 

  55. 55.

    Nicol C, Avela J, Komi PV. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue. Sports Med. 2006;36:977–99.

    Article  PubMed  Google Scholar 

  56. 56.

    Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech. 2000;33:1197–206.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Cavagna GA. Storage and utilization of elastic energy in skeletal muscle. Exerc Sport Sci Rev. 1977;5:89–129.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Cavagna GA, Heglund NC, Taylor CR. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol. 1977;233:R243–61.

    CAS  PubMed  Google Scholar 

  59. 59.

    Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol. 1977;268:467–81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lichtwark GA, Wilson AM. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol. 2006;209:4379–88.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 1985;2002(93):1039–46.

    Google Scholar 

  62. 62.

    Olesen HL. Accumulated oxygen deficit increases with inclination of uphill running. J Appl Physiol. 1985;1992(73):1130–4.

    Google Scholar 

  63. 63.

    Dick RW, Cavanagh PR. An explanation of the upward drift in oxygen uptake during prolonged sub-maximal downhill running. Med Sci Sports Exerc. 1987;19:310–7.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Robergs RA, Wagner DR, Skemp KM. Oxygen consumption and energy expenditure of level versus downhill running. J Sports Med Phys Fit. 1997;37:168–74.

    CAS  Google Scholar 

  65. 65.

    Pivarnik JM, Sherman NW. Responses of aerobically fit men and women to uphill/downhill walking and slow jogging. Med Sci Sports Exerc. 1990;22:127–30.

    CAS  PubMed  Google Scholar 

  66. 66.

    Maciejczyk M, Więcek M, Szymura J, et al. Comparison of physiological and acid-base balance response during uphill, level and downhill running performed at constant velocity. Acta Physiol Hung. 2013;100:347–54.

    Article  PubMed  Google Scholar 

  67. 67.

    Giovanelli N, Ortiz AL, Henninger K, et al. Energetics of vertical kilometer foot races; is steeper cheaper? J Appl Physiol (1985). 2016;120:370–5.

    CAS  Article  Google Scholar 

  68. 68.

    Staab JS, Agnew JW, Siconolfi SF. Metabolic and performance responses to uphill and downhill running in distance runners. Med Sci Sports Exerc. 1992;24:124–7.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Gregor RJ, Costill DL. A comparison of the energy expenditure during positive and negative grade running. J Sports Med Phys Fit. 1973;13:248–52.

    CAS  Google Scholar 

  70. 70.

    Kolkhorst FW, Mittelstadt SW, Dolgener FA. Perceived exertion and blood lactate concentration during graded treadmill running. Eur J Appl Physiol Occup Physiol. 1996;72:272–7.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Takano N. Phase relation and breathong pattern during locomotor/respiratory coupling in uphill and downhill running. Jpn J Physiol. 1990;45:47–58.

    Article  Google Scholar 

  72. 72.

    Costill DL, Jansson E, Gollnick PD, et al. Glycogen utilization in leg muscles of men during level and uphill running. Acta Physiol Scand. 1974;91:475–81.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Saltin B, Karlsson J. Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Springer US; 1971. p. 289–99.

  74. 74.

    Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1985;1988(64):50–60.

    Google Scholar 

  75. 75.

    Walker GT, Cureton KJ, DuVal HP, et al. Effects of external loading on peak oxygen deficit during treadmill running (Abstract). Med Sci Sports Exerc. 1994;26:S179.

    Article  Google Scholar 

  76. 76.

    Bangsbo J. Is the O2 deficit an accurate quantitative measure of the anaerobic energy production during intense exercise? J Appl Physiol. 1985;1992(73):1207–9.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Guillaume Y. Millet.

Ethics declarations


No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Gianluca Vernillo, Marlène Giandolini, W. Brent Edwards, Jean-Benoît Morin, Pierre Samozino, Nicolas Horvais and Guillaume Y. Millet declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vernillo, G., Giandolini, M., Edwards, W.B. et al. Biomechanics and Physiology of Uphill and Downhill Running. Sports Med 47, 615–629 (2017).

Download citation


  • Ground Reaction Force
  • Lower Limb Muscle
  • Stride Frequency
  • Level Running
  • Shock Attenuation