Skip to main content

Core Stability in Athletes: A Critical Analysis of Current Guidelines


Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete’s health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as ‘selective activation’ and training on unstable surfaces.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Hoshikawa Y, Iida T, Muramatsu M, et al. Effects of stabilization training on trunk muscularity and physical performances in youth soccer players. J Strength Cond Res. 2013;27(11):3142–9.

    PubMed  Article  Google Scholar 

  2. 2.

    Nesser TW, Huxel KC, Tincher JL, et al. The relationship between core stability and performance in division I Football players. J Strength Cond Res. 2008;22(6):1750–4.

    PubMed  Article  Google Scholar 

  3. 3.

    Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and performance. J Strength Cond Res. 2011;25(1):252–61.

    PubMed  Article  Google Scholar 

  4. 4.

    Sharrock C, Cropper J, Mostad J, et al. A pilot study of core stability and athletic performance: is there a relationship? Int J Sports Phys Ther. 2011;6(2):63–74.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stanton R, Reaburn PR, Humphries B. The effect of short-term swiss ball training on core stability and running economy. J Strength Cond Res. 2004;18(3):522–8.

    PubMed  Google Scholar 

  6. 6.

    Tse MA, McManus AM, Masters RSW. Development and validation of a core endurance intervention program. J Strength Cond Res. 2005;19(3):547–52.

    PubMed  Google Scholar 

  7. 7.

    Shinkle J, Nesser TW, Demchak TJ, et al. Effect of core strength on the measure of power in the extremities. J Strength Cond Res. 2012;26(2):373–80.

    PubMed  Article  Google Scholar 

  8. 8.

    Behm DG, Leonard AM, Young WB, et al. Trunk muscle electromyographic activity with unstable and unilateral exercises. J Strength Cond Res. 2005;19(1):193–201.

  9. 9.

    Cissik JM. Programming abdominal training. Part I. Strength Cond J. 2002;24(1):9–15.

    Article  Google Scholar 

  10. 10.

    Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189–98.

    PubMed  Article  Google Scholar 

  11. 11.

    Liemohn WP, Baumgartner TA, Gagnon LH. Measuring core stability. J Strength Cond Res. 2005;19(3):583–6.

    PubMed  Google Scholar 

  12. 12.

    Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–9.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390–7.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Bayramoğlu M, Akman MN, Klnç Ş, et al. Isokinetic measurement of trunk muscle strength in women with chronic low-back pain. Am J Phys Med Rehabil. 2001;80(9):650–5.

    PubMed  Article  Google Scholar 

  15. 15.

    Parkkola R, Rytökoski U, Kormano M. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine (Phila Pa 1976). 1993;18(7):830–6.

    CAS  Article  Google Scholar 

  16. 16.

    Lederman E. The myth of core stability. J Bodyw Mov Ther. 2010;14(1):84–98.

    PubMed  Article  Google Scholar 

  17. 17.

    Ezechieli M, Siebert CH, Ettinger M, et al. Muscle strength of the lumbar spine in different sports. Technol Health Care. 2013;21(4):379–86.

    CAS  PubMed  Google Scholar 

  18. 18.

    Cissik JM. The role of core training in athletic performance, injury prevention, and injury treatment. Strength Cond J. 2011;33(1):10–5.

    Article  Google Scholar 

  19. 19.

    Willardson JM. Core stability training. J Strength Cond Res. 2007;21(3):979–85.

    PubMed  Google Scholar 

  20. 20.

    Elia DS, Bohannon RW, Cameron D, et al. Dynamic pelvic stabilization during hip flexion: a comparison study. J Orthop Sports Phys Ther. 1996;24(1):30–6.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Gamble P. Periodization of training for team sports athletes. Strength Cond J. 2006;28(5):56–66.

    Article  Google Scholar 

  22. 22.

    McGill S. Core training: evidence translating to better performance and injury prevention. Strength Cond J. 2010;32(3):33–46.

    Article  Google Scholar 

  23. 23.

    Behm DG, Drinkwater EJ, Willardson JM, et al. The use of instability to train the core musculature. Appl Physiol Nutr Metab. 2010;35(1):91–108.

    PubMed  Article  Google Scholar 

  24. 24.

    Cissik JM. Programming abdominal training. Part II. Strength Cond J. 2002;24(2):9–12.

    Article  Google Scholar 

  25. 25.

    Panjabi M, Abumi K, Duranceau J, et al. Spinal stability and intersegmental muscle forces. Spine (Phila Pa 1976). 1989;14(2):194–200.

    CAS  Article  Google Scholar 

  26. 26.

    Akagi R, Kanehisa H, Kawakami Y, et al. Establishing a new index of muscle cross-sectional area and its relationship with isometric muscle strength. J Strength Cond Res. 2008;22(1):82–7.

    PubMed  Article  Google Scholar 

  27. 27.

    Akagi R, Takai Y, Kato E, et al. Relationships between muscle strength and indices of muscle cross-sectional area determined during maximal voluntary contraction in middle-aged and elderly individuals. J Strength Cond Res. 2009;23(4):1258–62.

    PubMed  Article  Google Scholar 

  28. 28.

    Alway SE, Stray-Gundersen J, Grumbt WH, et al. Muscle cross-sectional area and torque in resistance-trained subjects. Eur J Appl Physiol Occup Physiol. 1990;60(2):86–90.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Bamman MM, Newcomer BR, Larson-Meyer DE, et al. Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc. 2000;32(7):1307–13.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36.

    PubMed  Article  Google Scholar 

  31. 31.

    Fukunaga T, Miyatani M, Tachi M, et al. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172(4):249–55.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Gibbons LE, Latikka P, Videman T, et al. The association of trunk muscle cross-sectional area and magnetic resonance image parameters with isokinetic and psychophysical lifting strength and static back muscle endurance in men. J Spinal Disord. 1997;10(5):398–403.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Häkkinen K, Komi P. Changes in electrical and mechanical behavior of leg extensor muscles during heavy resistance strength training. Scand J Sports Sci. 1985;7(2):55–64.

    Google Scholar 

  34. 34.

    Häkkinen K, Komi P, Kauhanen H. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises. Int J Sports Med. 1986;07(03):144–51.

    Article  Google Scholar 

  35. 35.

    Ikai M, Fukunaga T. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1968;26(1):26–32.

    CAS  PubMed  Google Scholar 

  36. 36.

    Ikai M, Fukunaga T. A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1970;28(3):173–80.

    CAS  PubMed  Google Scholar 

  37. 37.

    Maughan RJ. Relationship between muscle strength and muscle cross-sectional area. Sports Med. 1984;1(4):263–9.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338(1):37–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Saczuk J, Wasiluk A. Dependence between body tissue composition and results achieved by weightlifters. Balt J Health Phys Act. 2012;4(1):15–20.

    Google Scholar 

  40. 40.

    Tonson A, Ratel S, Fur YL, Cozzone P, Bendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc. 2008;40(5):918–25.

    PubMed  Article  Google Scholar 

  41. 41.

    Young A, Stokes M, Crowe M. Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest. 1984;14(4):282–7.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Young A, Stokes M, Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin Physiol. 1985;5(2):145–54.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    McGill SM, Marshall L, Andersen J. Low back loads while walking and carrying: comparing the load carried in one hand or in both hands. Ergonomics. 2013;56(2):293–302.

    PubMed  Article  Google Scholar 

  44. 44.

    Tahcic D. Strength training for women high jumpers. In: Women’s track and field athletics. The official report of the first IAAF congress on womens’ athletics. Mainz, F.R. Germany, p. 340–5.

  45. 45.

    Deporte E, Van Gheluwe B. Ground reaction forces and moments in javelin throwing. Biomechanics XI-B. 1988;575–81.

  46. 46.

    Dursenev L, Raevsky L. Strength training of jumpers. Track Field Q Rev. 1982;4:53–5.

    Google Scholar 

  47. 47.

    Hay JG. The biomechanics of sports techniques. Englewood Cliffs, NJ: Prentice Hall; 1985.

  48. 48.

    Kreighbaum E. Biomechanics. A qualitative approach for studying human movement. Boston: Allyn and Bacon; 1996.

  49. 49.

    Nielsen L. Strength training in explosive-type sports: Athletics-jumping. In: Aagaard P, Madsen K, Magnusson P, Bojsen-Møller J, editors. Strength training for sport, health, aging, and rehabilitation. 5th international conference on strength training; Odense: University of SOuthern Denmark, 2006, p. 32–7.

  50. 50.

    Panzer V, Wood G, Bates B, et al. Lower extremity loads in landings of elite gymnasts. Biomechanics XI-B. 1988;727–35.

  51. 51.

    Storey A, Smith HK. Unique aspects of competitive weightlifting: performance, training and physiology. Sports Med. 2012;42(9):769–90.

    PubMed  Article  Google Scholar 

  52. 52.

    Bergmark A. Stability of the lumbar spine. Acta Orthop Scand. 1989;60(sup230):1–54.

    Article  Google Scholar 

  53. 53.

    O’Sullivan PB. Masterclass. Lumbar segmental ‘instability’: clinical presentation and specific stabilizing exercise management. Man Ther. 2000;5(1):2–12.

    PubMed  Article  Google Scholar 

  54. 54.

    Richardson CA, Jull GA. Muscle control–pain control. What exercises would you prescribe? Man Ther. 1995;1(1):2–10.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Hibbs AE, Thompson KG, French D, et al. Optimizing performance by improving core stability and core strength. Sports Med. 2008;38(12):995–1008.

    PubMed  Article  Google Scholar 

  56. 56.

    Willardson JM. Core stability training for healthy athletes: a different paradigm for fitness professionals. J Strength Cond. 2007;29(6):42.

    Google Scholar 

  57. 57.

    Stokes IAF, Gardner-Morse MG, Henry SM. Intra-abdominal pressure and abdominal wall muscular function: spinal unloading mechanism. Clin Biomech. 2010;25(9):859–66.

    Article  Google Scholar 

  58. 58.

    Stokes IAF, Gardner-Morse MG, Henry SM. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups. Clin Biomech. 2011;26(8):797–803.

    Article  Google Scholar 

  59. 59.

    Grenier SG, McGill SM. Quantification of lumbar stability by using 2 different abdominal activation strategies. Arch Phys Med Rehabil. 2007;88(1):54–62. doi:10.1016/j.apmr.2006.10.014.

    PubMed  Article  Google Scholar 

  60. 60.

    Kavcic N, Grenier S, McGill SM. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine (Phila Pa 1976). 2004;29(11):1254–65.

    Article  Google Scholar 

  61. 61.

    Cholewicki J, VanVliet JJ 4th. Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech. 2002;17(2):99–105.

    Article  Google Scholar 

  62. 62.

    McGill SM, Grenier S, Kavcic N, et al. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353–9.

    PubMed  Article  Google Scholar 

  63. 63.

    Stevens VK, Bouche KG, Mahieu NN, et al. Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet Disord. 2006;7(1):75.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Vera-Garcia FJ, Elvira JLL, Brown SHM, et al. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol. 2007;17(5):556–67.

    PubMed  Article  Google Scholar 

  65. 65.

    Stanton T, Kawchuk G. The effect of abdominal stabilization contractions on posteroanterior spinal stiffness. Spine (Phila Pa 1976). 2008;33(6):694–701.

    Article  Google Scholar 

  66. 66.

    Hodges PW, Richardson CA. Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. J Spinal Disord. 1998;11(1):46–56.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Hodges P, Cresswell A, Thorstensson A. Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res. 1999;124(1):69–79.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Adams MA, Hutton WC. Gradual disc prolapse. Spine (Phila Pa 1976). 1985;10(6):524–31.

    CAS  Article  Google Scholar 

  69. 69.

    Arokoski JP, Valta T, Airaksinen O, et al. Back and abdominal muscle function during stabilization exercises. Arch Phys Med Rehabil. 2001;82(8):1089–98.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Arokoski JPA, Kankaanpää M, Valta T, et al. Back and hip extensor muscle function during therapeutic exercises. Arch Phys Med Rehabil. 1999;80(7):842–50.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Crisco JJ, Panjabi MM. The intersegmental and multisegmental muscles of the lumbar spine. Spine (Phila Pa 1976). 1991;16(7):793–9.

    Article  Google Scholar 

  72. 72.

    Dofferhof A, Vink P. The stabilising function of the mm. iliocostales and the mm. multifidi during walking. J Anat. 1985;140(Pt 2):329.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    França FR, Burke TN, Hanada ES, et al. Segmental stabilization and muscular strengthening in chronic low back pain: a comparative study. Clinics. 2010;65(10):1013–7.

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Jonsson B. The functions of individual muscles in the lumbar part of the spinae muscle. Electromyography. 1969;10(1):5–21.

    Google Scholar 

  75. 75.

    Juker D, McGill S, Kropf P, et al. Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Med Sci Sports Exerc. 1998;30(2):301–10.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Tarnanen SP, Siekkinen KM, Häkkinen AH, et al. Core muscle activation during dynamic upper limb exercises in women. J Strength Cond Res. 2012;26(12):3217–24.

    PubMed  Article  Google Scholar 

  77. 77.

    Hodges PW, Cresswell AG, Daggfeldt K, et al. Three dimensional preparatory trunk motion precedes asymmetrical upper limb movement. Gait Posture. 2000;11(2):92–101.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. Spine (Phila Pa 1976). 1996;21(22):2640–50.

    CAS  Article  Google Scholar 

  79. 79.

    Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997;114(2):362–70.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132–42.

    CAS  PubMed  Google Scholar 

  81. 81.

    Cresswell AG. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol Occup Physiol. 1993;66(4):315–20.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Cresswell AG, Grundström H, Thorstensson A. Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand. 1992;144(4):409–18.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Cresswell AG, Oddsson L, Thorstensson A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp Brain Res. 1994;98(2):336–41.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Cresswell AG, Thorstensson A. Changes in intra-abdominal pressure, trunk muscle activation and force during isokinetic lifting and lowering. Eur J Appl Physiol Occup Physiol. 1994;68(4):315–21.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Bogduk N, Macintosh JE. The applied anatomy of the thoracolumbar fascia. Spine (Phila Pa 1976). 1984;9(2):164–70.

    CAS  Article  Google Scholar 

  86. 86.

    Tesh KM, Dunn JS, Evans JH. The abdominal muscles and vertebral stability. Spine (Phila Pa 1976). 1987;12(5):501–8.

    CAS  Article  Google Scholar 

  87. 87.

    Hodges P. Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res. 2001;141(2):261–6.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Hodges P, Kaigle Holm A, Holm S, et al. Intervertebral stiffness of the spine is increased by evoked contraction of transversus abdominis and the diaphragm: in vivo porcine studies. Spine (Phila Pa 1976). 2003;28(23):2594–601.

    Article  Google Scholar 

  89. 89.

    Mannion AF, Pulkovski N, Schenk P, et al. A new method for the noninvasive determination of abdominal muscle feedforward activity based on tissue velocity information from tissue Doppler imaging. J Appl Physiol. 2008;104(4):1192–201.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Tsao H, Hodges PW. Immediate changes in feedforward postural adjustments following voluntary motor training. Exp Brain Res. 2007;181(4):537–46.

    PubMed  Article  Google Scholar 

  91. 91.

    Tsao H, Hodges PW. Persistence of improvements in postural strategies following motor control training in people with recurrent low back pain. J Electromyogr Kinesiol. 2008;18(4):559–67.

    PubMed  Article  Google Scholar 

  92. 92.

    Urquhart DM, Hodges PW, Story IH. Postural activity of the abdominal muscles varies between regions of these muscles and between body positions. Gait Posture. 2005;22(4):295–301.

    PubMed  Article  Google Scholar 

  93. 93.

    Moseley GL, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine (Phila Pa 1976). 2002;27(2):E29–36.

    Article  Google Scholar 

  94. 94.

    White SG, McNair PJ. Abdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activity. Clin Biomech. 2002;17(3):177–84.

    Article  Google Scholar 

  95. 95.

    Allison GT, Morris SL. Transversus abdominis and core stability: has the pendulum swung? Br J Sports Med. 2008;42(11):630–1.

    Article  Google Scholar 

  96. 96.

    Allison GT, Morris SL, Lay B. Feedforward responses of transversus abdominis are directionally specific and act asymmetrically: implications for core stability theories. J Orthop Sports Phys Ther. 2008;38(5):228–37.

    PubMed  Article  Google Scholar 

  97. 97.

    Morris SL, Lay B, Allison GT. Corset hypothesis rebutted—transversus abdominis does not co-contract in unison prior to rapid arm movements. Clin Biomech. 2012;27(3):249–54.

    Article  Google Scholar 

  98. 98.

    Morris SL, Lay B, Allison GT. Transversus abdominis is part of a global not local muscle synergy during arm movement. Hum Mov Sci. 2013;32(5):1176–85.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Tokuno CD, Cresswell AG, Thorstensson A, et al. Recruitment order of the abdominal muscles varies with postural task. Scand J Med Sci Sports. 2011;23(3):349–54.

    PubMed  Article  Google Scholar 

  100. 100.

    Bjerkefors A, Ekblom MM, Josefsson K, et al. Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther. 2010;15(5):502–7.

    PubMed  Article  Google Scholar 

  101. 101.

    Strohl K, Mead J, Banzett R, et al. Regional differences in abdominal muscle activity during various maneuvers in humans. J Appl Physiol. 1981;51(6):1471–6.

    CAS  PubMed  Google Scholar 

  102. 102.

    Goldman JM, Lehr RP, Millar AB, et al. An electromyographic study of the abdominal muscles during postural and respiratory manoeuvres. J Neurol Neurosurg Psychiatry. 1987;50(7):866–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Urquhart DM, Hodges PW, Allen TJ, et al. Abdominal muscle recruitment during a range of voluntary exercises. Man Ther. 2005;10(2):144–53.

    PubMed  Article  Google Scholar 

  104. 104.

    Sapsford RR, Hodges PW, Richardson CA, et al. Co-activation of the abdominal and pelvic floor muscles during voluntary exercises. Neurourol Urodyn. 2000;20(1):31–42.

    Article  Google Scholar 

  105. 105.

    Akuthota V, Nadler SF. Core strengthening. Arch Phys Med Rehabil. 2004;85:86–92.

    Article  Google Scholar 

  106. 106.

    Barr KP, Griggs M, Cadby T. Lumbar stabilization: core concepts and current literature, part 1. Am J Phys Med Rehabil. 2005;84(6):473–80.

    PubMed  Article  Google Scholar 

  107. 107.

    Barr KP, Griggs M, Cadby T. Lumbar stabilization: a review of core concepts and current literature, part 2. Am J Phys Med Rehabil. 2007;86(1):72–80.

    PubMed  Article  Google Scholar 

  108. 108.

    Danneels LA, Vanderstraeten GG, Cambier DC, et al. CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J. 2000;9(4):266–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Faries MD, Greenwood M. Core training: stabilizing the confusion. J Strength Cond. 2007;29(2):10.

    Google Scholar 

  110. 110.

    Hides JA, Richardson CA, Jull GA. Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine (Phila Pa 1976). 1996;21(23):2763–9.

    CAS  Article  Google Scholar 

  111. 111.

    Johnson P. Training the trunk in the athlete. Strength Cond J. 2002;24(1):52–9.

    Article  Google Scholar 

  112. 112.

    Norris CM. Spinal stabilisation. Physiotherapy. 1995;81(3):138–46.

    Article  Google Scholar 

  113. 113.

    O’Sullivan PB, Twomey L, Allison GT. Dynamic stabilization of the lumbar spine. Crit Rev Phys Rehabil Med. 1997;9(3–4):315–30.

    Article  Google Scholar 

  114. 114.

    Sitilertpisan P, Hides J, Stanton W, et al. Multifidus muscle size and symmetry among elite weightlifters. Phys Ther Sport. 2012;13(1):11–5.

    PubMed  Article  Google Scholar 

  115. 115.

    Tsao H, Druitt TR, Schollum TM, et al. Motor training of the lumbar paraspinal muscles induces immediate changes in motor coordination in patients with recurrent low back pain. J Pain. 2010;11(11):1120–8.

    PubMed  Article  Google Scholar 

  116. 116.

    van Tulder M, Malmivaara A, Esmail R, et al. Exercise therapy for low back pain. Spine (Phila Pa 1976). 2000;25(21):2784–96.

    Article  Google Scholar 

  117. 117.

    Zhao W-P, Kawaguchi Y, Matsui H, et al. Histochemistry and morphology of the multifidus muscle in lumbar disc herniation. Spine (Phila Pa 1976). 2000;25(17):2191–9.

    CAS  Article  Google Scholar 

  118. 118.

    D’hooge R, Cagnie B, Crombez G, et al. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain. Clin J Pain. 2013;29(3):187–94.

    PubMed  Article  Google Scholar 

  119. 119.

    Dickx N, Cagnie B, Achten E, et al. Changes in lumbar muscle activity because of induced muscle pain evaluated by muscle functional magnetic resonance imaging. Spine (Phila Pa 1976). 2008;33(26):E983–9.

    Article  Google Scholar 

  120. 120.

    Huang Q, Li D, Yokotsuka N, et al. The intervention effects of different treatment for chronic low back pain as assessed by the cross-sectional area of the multifidus muscle. J Phys Ther Sci. 2013;25(7):811–3.

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Moffroid MT, Haugh LD, Haig AJ, et al. Endurance training of trunk extensor muscles. Phys Ther. 1993;73(1):3–10.

    Google Scholar 

  122. 122.

    Hides J, Stanton W, McMahon S, et al. Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. J Orthop Sports Phys Ther. 2008;38(3):101–8.

    PubMed  Article  Google Scholar 

  123. 123.

    Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55(2):145–9.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    MacDonald DA, Lorimer Moseley G, Hodges PW. The lumbar multifidus: does the evidence support clinical beliefs? Man Ther. 2006;11(4):254–63.

    PubMed  Article  Google Scholar 

  125. 125.

    Sung PS. Multifidi muscles median frequency before and after spinal stabilization exercises. Arch Phys Med Rehabil. 2003;84(9):1313–8.

    PubMed  Article  Google Scholar 

  126. 126.

    Parkkola R, Kujala U, Rytökoski U. Response of the trunk muscles to training assessed by magnetic resonance imaging and muscle strength. Eur J Appl Physiol Occup Physiol. 1992;65(5):383–7.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Manniche C, Bentzen L, Hesselse G, et al. Clinical trial of intensive muscle training for chronic back pain. Lancet. 1988;332(8626–8627):1473–6.

    Article  Google Scholar 

  128. 128.

    Jorgensen K, Nicolaisen TOM. Trunk extensor endurance: determination and relation to low-back trouble. Ergonomics. 1987;30(2):259–67.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Moffroid M, Haig A, Henry S, et al. Power spectrum analysis of longissimus and multifidus at one vertebral level. Orthop Trans. 1991;15:303.

    Google Scholar 

  130. 130.

    Moffroid M, Reid S, Henry SM, et al. Some Endurance measures in persons with chronic low back pain. J Orthop Sports Phys Ther. 1994;20(2):81–7.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Stokes IAF, Henry SM, Single RM. Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clin Biomech. 2003;18(1):9–13.

    Article  Google Scholar 

  132. 132.

    Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement. J Electromyogr Kinesiol. 2003;13(5):477–89.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Enoka RM, Duchateau J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. J Appl Physiol. 2015;119(12):1516–8.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Beith ID, Synnott RE, Newman SA. Abdominal muscle activity during the abdominal hollowing manoeuvre in the four point kneeling and prone positions. Man Ther. 2001;6(2):82–7.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Burden AM, Redmond C. Abdominal and hip flexor muscle activity during 2 minutes of sit-ups and curl-ups. J Strength Cond Res. 2013;27(8):2119–28.

    PubMed  Article  Google Scholar 

  136. 136.

    Chanthapetch P, Kanlayanaphotporn R, Gaogasigam C, et al. Abdominal muscle activity during abdominal hollowing in four starting positions. Man Ther. 2009;14(6):642–6.

    PubMed  Article  Google Scholar 

  137. 137.

    Kernell D. The motoneurone and its muscle fibres. Oxford: Oxford University Press (OUP); 2006.

  138. 138.

    Marshall P, Murphy B. Changes in muscle activity and perceived exertion during exercises performed on a swiss ball. Appl Physiol Nutr Metab. 2006;31(4):376–83.

    PubMed  Article  Google Scholar 

  139. 139.

    Marshall PW, Murphy BA. Core stability exercises on and off a Swiss ball. Arch Phys Med Rehabil. 2005;86(2):242–9.

    PubMed  Article  Google Scholar 

  140. 140.

    Vezina MJ, Hubley-Kozey CL. Muscle activation in therapeutic exercises to improve trunk stability. Arch Phys Med Rehabil. 2000;81(10):1370–9.

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Boyle M. Functional training for sports. Champaign, IL: Human Kinetics; 2004.

  142. 142.

    Boyle M. Advances in functional training. Train Techniques for Coaches, Personal Trainers. 2010.

  143. 143.

    Verstegen M, Williams P. Core performance: the revolutionary workout program to transform your body and your life. Rodale; 2005.

  144. 144.

    Verstegen M, Williams P. Core performance golf: The revolutionary training and nutrition program for success on and off the course. New York: Rodale; 2009.

  145. 145.

    Bader DL, Bouten C. Biomechanics of soft tissues. In: Dvir Z, editor. Clinical biomechanics. New York: Churchill Livingstone; 2000. p. 35–64.

    Google Scholar 

  146. 146.

    Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech. 1989;4:iii-27.

  147. 147.

    Contreras B, Schoenfeld B. To crunch or not to crunch: an evidence-based examination of spinal flexion exercises, their potential risks, and their applicability to program design. Strength Cond J. 2011;33(4):8–18.

    Article  Google Scholar 

  148. 148.

    Jager M, Luttmann A. Compressive strength of lumbar spine elements related to age, gender, and other influences. Electromyographical Kinesiology. Amsterdam: Elsevier; 1991. p. 291–4.

    Google Scholar 

  149. 149.

    Jensen GM. Biomechanics of the lumbar intervertebral disk: a review. Phys Ther. 1980;60(6):765–73.

    CAS  PubMed  Google Scholar 

  150. 150.

    McGill SM. The biomechanics of low back injury: Implications on current practice in industry and the clinic. J Biomech. 1997;30(5):465–75.

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Potvin JR, Norman RW, McGill SM. Reduction in anterior shear forces on the disc by the lumbar musculature. Clin Biomech. 1991;6(2):88–96.

    CAS  Article  Google Scholar 

  152. 152.

    Krismer M, Haid C, Rabl W. The contribution of anulus fibers to torque resistance. Spine (Phila Pa 1976). 1996;21(22):2551–7.

    CAS  Article  Google Scholar 

  153. 153.

    Hickey DS, Hukins DWL. Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine (Phila Pa 1976). 1980;5(2):106–16.

    CAS  Article  Google Scholar 

  154. 154.

    Schmidt H, Kettler A, Heuer F, et al. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine (Phila Pa 1976). 2007;32(7):748–55.

    Article  Google Scholar 

  155. 155.

    Brown T, Hansen RJ, Yorra AJ. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs. J Bone Joint Surg Am. 1957;39(5):1135–64.

    PubMed  Article  Google Scholar 

  156. 156.

    Roaf R. A study of the mechanics of spinal injuries. J Bone Joint Surg B. 1960;42(4):810–23.

    Google Scholar 

  157. 157.

    Virgin W. Experimental investigations into the physical properties of the intervertebral disc. J Bone Joint Surg B. 1951;33(4):607–11.

    Google Scholar 

  158. 158.

    Torén A. Muscle activity and range of motion during active trunk rotation in a sitting posture. Appl Ergon. 2001;32(6):583–91.

    PubMed  Article  Google Scholar 

  159. 159.

    Nachemson AL. Disc pressure measurements. Spine (Phila Pa 1976). 1981;6(1):93–7.

    CAS  Article  Google Scholar 

  160. 160.

    Farfan HF, Gracovetsky S. The nature of instability. Spine (Phila Pa 1976). 1984;9(7):714–9.

    CAS  Article  Google Scholar 

  161. 161.

    Hart DL, Stobbe TJ, Jaraied M. Effect of lumbar posture on lifting. Spine (Phila Pa 1976). 1987;12(2):138–45.

    CAS  Article  Google Scholar 

  162. 162.

    Willardson JM. The effectiveness of resistance exercises performed on unstable equipment. Strength Cond J. 2004;26(5):70–4.

    Article  Google Scholar 

  163. 163.

    Anderson K, Behm DG. Trunk muscle activity increases with unstable squat movements. Can J Appl Physiol. 2005;30(1):33–45.

    PubMed  Article  Google Scholar 

  164. 164.

    Behm DG, Anderson K, Curnew RS. Muscle force and activation under stable and unstable conditions. J Strength Cond Res. 2002;16(3):416–22.

    PubMed  Google Scholar 

  165. 165.

    Bressel E, Willardson JM, Thompson B, et al. Effect of instruction, surface stability, and load intensity on trunk muscle activity. J Electromyogr Kinesiol. 2009;19(6):e500–4.

    PubMed  Article  Google Scholar 

  166. 166.

    Chulvi-Medrano I, García-Massó X, Colado JC, et al. Deadlift muscle force and activation under stable and unstable conditions. J Strength Cond Res. 2010;24(10):2723–30.

    PubMed  Article  Google Scholar 

  167. 167.

    Clark DR, Lambert MI, Hunter AM. Muscle activation in the loaded free barbell squat. J Strength Cond Res. 2012;26(4):1169–78.

    PubMed  Article  Google Scholar 

  168. 168.

    Kibele A, Behm DG. Seven weeks of instability and traditional resistance training effects on strength, balance and functional performance. J Strength Cond Res. 2009;23(9):2443–50.

    PubMed  Article  Google Scholar 

  169. 169.

    Li Y, Cao C, Chen X. Similar electromyographic activities of lower limbs between squatting on a reebok core board and ground. J Strength Cond Res. 2013;27(5):1349–53.

    PubMed  Article  Google Scholar 

  170. 170.

    Wahl MJ, Behm DG. Not all instability training devices enhance muscle activation in highly resistance-trained individuals. J Strength Cond Res. 2008;22(4):1360–70.

    PubMed  Article  Google Scholar 

  171. 171.

    Willardson J, Fontana FE, Bressel E. Effect of surface stability on core muscle activity for dynamic resistance exercises. Int J Sports Physiol Perform. 2009;97:97–109.

    Article  Google Scholar 

  172. 172.

    Zemková E, Jeleň M, Kováčiková Z, et al. Power outputs in the concentric phase of resistance exercises performed in the interval mode on stable and unstable surfaces. J Strength Cond Res. 2012;26(12):3230–6.

    PubMed  Article  Google Scholar 

  173. 173.

    Drinkwater EJ, Pritchett EJ, Behm DG. Effect of instability and resistance on unintentional squat-lifting kinetics. Int J Sports Physiol Perform. 2007;2(4):400–13.

    PubMed  Article  Google Scholar 

  174. 174.

    Hartmann H, Wirth K, Klusemann M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med. 2013;43(10):993–1008.

    PubMed  Article  Google Scholar 

  175. 175.

    Keiner M, Sander A, Wirth K, et al. Correlations between maximal strength tests at different squat depths and sprint performance in adolescent soccer players. Am J Sports Sci. 2014;2(1):1–7.

    Article  Google Scholar 

  176. 176.

    Andersen LL, Magnusson SP, Nielsen M, et al. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther. 2006;86(5):683–97.

    PubMed  Google Scholar 

  177. 177.

    Hartmann H, Wirth K, Klusemann M, et al. Influence of squatting depth on jumping performance. J Strength Cond Res. 2012;26(12):3243–61.

    PubMed  Article  Google Scholar 

  178. 178.

    Anderson KG, Behm DG. Maintenance of emg activity and loss of force output with instability. J Strength Cond Res. 2004;18(3):637–40.

    PubMed  Google Scholar 

  179. 179.

    Leetun DT, Ireland ML, Willson JD, et al. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–34.

    PubMed  Article  Google Scholar 

  180. 180.

    McBride JM, Cormie P, Deane R. Isometric squat force output and muscle activity in stable and unstable conditions. J Strength Cond Res. 2006;20(4):915–8.

    PubMed  Google Scholar 

  181. 181.

    Saeterbakken AH, Fimland MS. Muscle force output and electromyographic activity in squats with various unstable surfaces. J Strength Cond Res. 2013;27(1):130–6.

    PubMed  Article  Google Scholar 

  182. 182.

    Santana JC, Vera-Garcia FJ, McGill SM. A kinetic and electromyographic comparison of the standing cable press and bench press. J Strength Cond Res. 2007;21(4):1271.

    PubMed  Google Scholar 

  183. 183.

    Hamlyn N, Behm DG, Young WB. Trunk muscle activation during dynamic weight-training exercises and isometric instability activities. J Strength Cond Res. 2007;21(4):1108–12.

    PubMed  Google Scholar 

  184. 184.

    McBride JM, Larkin TR, Dayne AM, et al. Effect of absolute and relative loading on muscle activity during stable and unstable squatting. Int J Sports Physiol Perform. 2010;5(2):177–83.

    PubMed  Article  Google Scholar 

  185. 185.

    Saeterbakken AH, Fimland MS. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces. J Strength Cond Res. 2013;27(4):1101–7.

    PubMed  Article  Google Scholar 

  186. 186.

    Behm DG. Neuromuscular implications and applications of resistance training. J Strength Cond Res. 1995;9(4):264–74.

    Google Scholar 

  187. 187.

    Behm DG, Anderson KG. The role of instability with resistance training. J Strength Cond Res. 2006;20(3):716–22.

    PubMed  Google Scholar 

  188. 188.

    Sale D, MacDougall D. Specificity in strength training: a review for the coach and athlete. Can J Appl Sport Sci. 1981;6(2):87.

    CAS  PubMed  Google Scholar 

  189. 189.

    Rutherford OM, Jones DA. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100–5.

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Shimada H, Obuchi S, Kamide N, et al. Relationship with dynamic balance function during standing and walking. Am J Phys Med Rehabil. 2003;82(7):511–6.

    PubMed  Google Scholar 

  191. 191.

    Clamann HP, Gillies JD, Skinner RD, et al. Quantitative measures of output of a motoneuron pool during monosynaptic reflexes. J Neurophysiol. 1974;37(6):1328–37.

    CAS  PubMed  Google Scholar 

  192. 192.

    Grillner S, Udo M. Recruitment in the tonic stretch reflex. Acta Physiol Scand. 1971;81(4):571–3.

    CAS  PubMed  Article  Google Scholar 

  193. 193.

    Hermans V, SAJ. Evaluation of EMG parameters during force production and sustained contractions. In: Hermens HJ, Merletti R, Freriks B, editors. Biomedical and Health Research Program SENIAM—European activities on surface electromyography. Roessingh Research and Development; 1996. p. 154–8.

  194. 194.

    Milner-Brown HS, Stein RB, Yemm R. The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol. 1973;230(2):359–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Milner-Brown HS, Stein RB, Yemm R. Changes in firing rate of human motor units during linearly changing voluntary contractions. J Physiol. 1973;230(2):371–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  196. 196.

    Duchateau J, Hainaut K. Mechanisms of muscle and motor unit adaptation to explosive power training. Strength and power in sport. Oxford, UK: Blackwell Science; 2003. p. 316–30.

  197. 197.

    Kraemer WJ, Zatsiorsky VM. Science and practice of strength training. Champaign: Human Kinetics; 2006. p. 50.

    Google Scholar 

  198. 198.

    Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol. 1976;40(1):12–6.

    CAS  PubMed  Google Scholar 

  199. 199.

    Perry J, Burnfield J. Gait analysis: normal and pathological function. New Jersey: Slack Incorporated; 2010.

  200. 200.

    Nuzzo JL, McCaulley GO, Cormie P, et al. Trunk muscle activity during stability ball and free weight exercises. J Strength Cond Res. 2008;22(1):95–102.

    PubMed  Article  Google Scholar 

  201. 201.

    Bandy WD, Hanten WP. Changes in torque and electromyographic activity of the quadriceps femoris muscles following isometric training. Phys Ther. 1993;73(7):455–65.

    CAS  PubMed  Google Scholar 

  202. 202.

    Gardner GW. Specificity of strength changes of the exercised and nonexercised limb following isometric training. Res Q. 1963;34(1):98–101.

    Google Scholar 

  203. 203.

    Kitai TA, Sale DG. Specificity of joint angle in isometric training. Eur J Appl Physiol Occup Physiol. 1989;58(7):744–8.

    CAS  PubMed  Article  Google Scholar 

  204. 204.

    Knapik JJ, Mawdsley RH, Ramos MU. Angular specificity and test mode specificity of isometric and isokinetic strength training. J Orthop Sports Phys Ther. 1983;5(2):58–65.

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Meyers CR. Effects of two isometric routines on strength, size, and endurance in exercised and nonexercised arms. Res Q. 1967;38(3):430–40.

    CAS  PubMed  Google Scholar 

  206. 206.

    Rasch PJ, Pierson WR. One position versus multiple positions in isometric exercise. Am J Phys Med Rehabil. 1964;43(1):10–2.

    CAS  Google Scholar 

  207. 207.

    Rasch PJ, Pierson WR, Logan GA. The effect of isometric exercise upon the strength of antagonistic muscles. Int Z Angew Physiol. 1961;19(1):18–22.

    CAS  PubMed  Google Scholar 

  208. 208.

    Thepaut-Mathieu C, Van Hoecke J, Maton B. Myoelectrical and mechanical changes linked to length specificity during isometric training. J Appl Physiol. 1988;64(4):1500–5.

    CAS  PubMed  Google Scholar 

  209. 209.

    Flicker PL, Fleckenstein JL, Ferry K, et al. Lumbar muscle usage in chronic low back pain. Spine (Phila Pa 1976). 1993;18(5):582–6.

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Professor J. Duchateau and Professor M. Stone for vital comments on an earlier version of the manuscript.

Author information



Corresponding author

Correspondence to Hagen Hartmann.

Ethics declarations


No sources of funding were used in the preparation of this review.

Conflict of interest

Klaus Wirth, Hagen Hartmann, Christoph Mickel, Elena Szilvas, Michael Keiner, and Andre Sander have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wirth, K., Hartmann, H., Mickel, C. et al. Core Stability in Athletes: A Critical Analysis of Current Guidelines. Sports Med 47, 401–414 (2017).

Download citation


  • Training Exercise
  • Trunk Muscle
  • Rectus Abdominis
  • Core Stability
  • Transversus Abdominis