Skip to main content
Log in

Combined Effects of Physical Activity and Obesity on Cognitive Function: Independent, Overlapping, Moderator, and Mediator Models

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This article reviews studies on physical activity, obesity, and cognition to explore how physical activity and obesity may work independently or together in affecting cognitive function. In particular, we propose six hypotheses derived from four conceptual models to advance our understanding of the combined effects of physical activity and obesity on cognition. The four conceptual models are distinguished by the presumed temporal relationship and the presumed correlation between physical activity and obesity and include an independent model, an overlapping model, a moderator model, and a mediator model. Among the 16 studies testing the effects of physical activity and obesity on cognition in a combined approach, the moderator model, viewing either physical activity or obesity as the potential moderator, was most frequently examined (n = 10), mediator (n = 3) and independent (n = 2) models received relatively less attention, and only a single study used an overlapping model. Results were mixed when considering the moderator, independent, and mediator models. The single study that took an overlapping model approach found support for the model hypothesis. One relevant observation from this review is that the variance within the small extant literature with respect to the choice of conceptual model limits our ability to make assertive conclusions relative to the relations among the examined variables. Given the logic supporting a combined effect of physical activity and obesity on cognition, researchers are encouraged to consider the possible models of the relationship as they design studies to further address this research question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kohl HW, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305.

    Article  PubMed  Google Scholar 

  3. Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.

    Article  PubMed  Google Scholar 

  4. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park MH, Falconer C, Viner RM, et al. The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review. Obes Rev. 2012;13(11):985–1000.

    Article  CAS  PubMed  Google Scholar 

  6. Aichberger MC, Busch MA, Reischies FM, et al. Effect of physical inactivity on cognitive performance after 2.5 years of follow-up: longitudinal results from the Survey of Health, Ageing, and Retirement (SHARE). GeroPsych. 2010;23(1):7–15.

    Article  Google Scholar 

  7. Scherder EJA, Bogen T, Eggermont LHP, et al. The more physical inactivity, the more agitation in dementia. Int Psychogeriatr. 2010;22(08):1203–8.

    Article  PubMed  Google Scholar 

  8. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  9. Etnier JL, Chang YK. The effect of physical activity on executive function: a brief commentary on definitions, measurement issues, and the current state of the literature. J Sport Exerc Psychol. 2009;31:469–83.

    Article  PubMed  Google Scholar 

  10. Pesce C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J Sport Exerc Psychol. 2012;34(6):766–86.

    Article  PubMed  Google Scholar 

  11. Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35(Suppl 2):S20–8.

    Article  PubMed  Google Scholar 

  12. Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci. 2014;26(2):138–46.

    Article  PubMed  Google Scholar 

  13. Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med. 2011;269:107–17.

    Article  CAS  PubMed  Google Scholar 

  14. Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Angevaren M, Aufdemkampe G, Verhaar HJ, et al. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;16(3):CD005381.

    Google Scholar 

  16. Liang J, Matheson BE, Kaye WH, et al. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes. 2014;38(4):494–506.

    Article  CAS  Google Scholar 

  17. Prickett C, Brennan L, Stolwyk R. Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract. 2015;9(2):93–113.

    Article  PubMed  Google Scholar 

  18. Kamijo K, Pontifex MB, Khan NA, et al. The negative association of childhood obesity to cognitive control of action monitoring. Cereb Cortex. 2012;24(3):654–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reinert KR, Po’e EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes. 2013;2013:820956.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126(1):126–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Metcalf BS, Hosking J, Jeffery AN, et al. Fatness leads to inactivity, but inactivity does not lead to fatness: a longitudinal study in children (EarlyBird 45). Arch Dis Child. 2011;96(10):942–7.

    Article  CAS  PubMed  Google Scholar 

  22. Pontifex MB, Kamijo K, Scudder MR, et al. V. The differential association of adiposity and fitness with cognitive control in preadolescent children. Monogr Soc Res Child Dev. 2014;79(4):72–92.

    Article  PubMed  Google Scholar 

  23. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 9th ed. New York: Lippincott Williams and Wilkins; 2014.

    Google Scholar 

  24. Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  PubMed  Google Scholar 

  25. Flegal KM, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.

    Article  PubMed  Google Scholar 

  26. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carroll JB. Human cognitive abilities: a survey of factor-analytic studies. New York: Cambridge University Press; 1993.

    Book  Google Scholar 

  28. Colcombe SJ, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.

    Article  PubMed  Google Scholar 

  29. Chang YK, Labban JD, Gapin JI, et al. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87–101.

    Article  CAS  PubMed  Google Scholar 

  30. Jurado MB, Rosselli M. The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev. 2007;17:213–33.

    Article  PubMed  Google Scholar 

  31. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    Article  PubMed  Google Scholar 

  32. Kraemer HC, Stice E, Kazdin A, et al. How do risk factors work together? Mediators, moderators, and independent, overlapping, and proxy risk factors. Am J Psychiatry. 2001;158(6):848–56.

    Article  CAS  PubMed  Google Scholar 

  33. Salthouse TA. Neuroanatomical substrates of age-related cognitive decline. Psychol Bull. 2011;137(5):753.

    Article  PubMed  PubMed Central  Google Scholar 

  34. MacKinnon DP. Introduction to statistical mediation analysis. Mahwah: Lawrence Erlbaum Associates; 2008.

    Google Scholar 

  35. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51(6):1173–82.

    Article  CAS  PubMed  Google Scholar 

  36. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York: The Guilford; 2013.

    Google Scholar 

  37. Katz P, Julian L, Tonner MC, et al. Physical activity, obesity, and cognitive impairment among women with systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2012;64(4):502–10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Napoli N, Shah K, Waters DL, et al. Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr. 2014;100(1):189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kerwin DR, Zhang Y, Kotchen JM, et al. The cross-sectional relationship between body mass index, waist-hip ratio, and cognitive performance in postmenopausal women enrolled in the Women’s Health Initiative. J Am Geriatr Soc. 2010;58(8):1427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Davis CL, Tomporowski PD, McDowell JE, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 2011;30(1):91–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krafft CE, Schaeffer DJ, Schwarz NF, et al. Improved frontoparietal white matter integrity in overweight children is associated with attendance at an after-school exercise program. Dev Neurosci. 2014;36(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krafft CE, Schwarz NF, Chi L, et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity. 2014;22(1):232–42.

    Article  PubMed  Google Scholar 

  43. Davis CL, Tomporowski PD, Boyle CA, et al. Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport. 2007;78(5):510.

    PubMed  PubMed Central  Google Scholar 

  44. Cancela Carral JM, Ayan Perez C. Effects of high-intensity combined training on women over 65. Gerontology. 2007;53(6):340–6.

    Article  CAS  PubMed  Google Scholar 

  45. Crova C, Struzzolino I, Marchetti R, et al. Cognitively challenging physical activity benefits executive function in overweight children. J Sports Sci. 2014;32(3):201–11.

    Article  PubMed  Google Scholar 

  46. Galioto Wiedemann R, Calvo D, Meister J, et al. Self-reported physical activity is associated with cognitive function in lean, but not obese individuals. Clin Obes. 2014;4(6):309–15.

    CAS  PubMed  Google Scholar 

  47. Langenberg S, Schulze M, Bartsch M, et al. Physical activity is unrelated to cognitive performance in pre-bariatric surgery patients. J Psychosom Res. 2015;79(2):165–70.

    Article  PubMed  Google Scholar 

  48. Galioto R, King WC, Bond DS, et al. Physical activity and cognitive function in bariatric surgery candidates. Int J Neurosci. 2014;124(12):912–8.

    Article  PubMed  Google Scholar 

  49. Ruiz JR, Ortega FB, Castillo R, et al. Physical activity, fitness, weight status, and cognitive performance in adolescents. J Pediatr. 2010;157(6):917–22 e1–5.

  50. Dore GA, Elias MF, Robbins MA, et al. Relation between central adiposity and cognitive function in the Maine-Syracuse study: attenuation by physical activity. Ann Behav Med. 2008;35(3):341–50.

    Article  PubMed  Google Scholar 

  51. Smith PJ, Blumenthal JA, Babyak MA, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55(6):1331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dannhauser TM, Cleverley M, Whitfield TJ, et al. A complex multimodal activity intervention to reduce the risk of dementia in mild cognitive impairment: ThinkingFit: pilot and feasibility study for a randomized controlled trial. BMC Psychiatry. 2014;14:129.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mapstone M, Hilton TN, Yang H, et al. Poor aerobic fitness may contribute to cognitive decline in HIV-infected older adults. Aging Dis. 2013;4(6):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kimhy D, Vakhrusheva J, Bartels MN, et al. Aerobic fitness and body mass index in individuals with schizophrenia: implications for neurocognition and daily functioning. Psychiatry Res. 2014;220(3):784–91.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bugg JM, Shah K, Villareal DT, et al. Cognitive and neural correlates of aerobic fitness in obese older adults. Exp Aging Res. 2012;38(2):131–45.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang T, Tarp J, Domazet SL, et al. Associations of adiposity and aerobic fitness with executive function and math performance in Danish adolescents. J Pediatr. 2015;167(4):810–5.

    Article  PubMed  Google Scholar 

  57. Fedewa AL, Ahn S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: a meta-analysis. Res Q Exerc Sport. 2011;82(3):521–35.

    Article  PubMed  Google Scholar 

  58. Szabo AN, McAuley E, Erickson KI, et al. Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults. Neuropsychology. 2011;25(5):545–53.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lakes KD, Bryars T, Sirisinahal S, et al. The healthy for life taekwondo pilot study: a preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. Ment Health Phys Act. 2013;6(3):181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Romero-Corral A, Somers VK, Sierra-Johnson J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32(6):959–66.

    Article  CAS  Google Scholar 

  61. Etnier JL, Nowell PM, Landers DM, et al. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev. 2006;52:119–30.

    Article  PubMed  Google Scholar 

  62. Alosco ML, Spitznagel MB, Cohen R, et al. Obesity and cognitive dysfunction in heart failure: the role of hypertension, type 2 diabetes, and physical fitness. Eur J Cardiovasc Nurs. 2014;14(4):334–41.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Etnier JL. Interrelationships of exercise, mediator variables, and cognition. In: Spalding TW, Poon LW, Chodzko-Zajko W, editors. Exercise and its mediating effects on cognition. Champaign: Human Kinetics; 2008. p. 13–32.

    Google Scholar 

  64. Appel M, Richter T. Transportation and need for affect in narrative persuasion: a mediated moderation model. Media Psychol. 2010;13(2):101–35.

    Article  Google Scholar 

  65. Pesce C, Masci I, Marchetti R, et al. Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects. Front Psychol. 2016;7:349.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chang YK, Chu IH, Chen FT, et al. Dose-response effect of acute resistance exercise on Tower of London in middle-aged adults. J Sport Exerc Psychol. 2011;33(6):866–83.

    Article  PubMed  Google Scholar 

  67. Chang YK, Etnier JL. Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol. 2009;31(5):640–56.

    Article  PubMed  Google Scholar 

  68. Chang YK, Chu CH, Wang CC, et al. Dose-response relation between exercise duration and cognition. Med Sci Sports Exerc. 2015;47(1):159–65.

    Article  PubMed  Google Scholar 

  69. Chang YK, Pan CY, Chen FT, et al. Effect of resistance exercise training on cognitive function in healthy older adults: a review. J Aging Phys Act. 2012;20(4):497–516.

    Article  PubMed  Google Scholar 

  70. Fong DY, Chi LK, Li F, et al. Endurance exercise and Tai Chi Chuan benefit the task-switching aspect of executive function in older adults: an ERP study. Front Aging Neurosci. 2014;6:295.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9 Pt B):2268–95.

    Article  PubMed  Google Scholar 

  72. Voelcker-Rehage C, Godde B, Staudinger UM. Physical and motor fitness are both related to cognition in old age. Eur J Neurosci. 2010;31(1):167–76.

    Article  PubMed  Google Scholar 

  73. Pedersen M, Pedersen KK, Bruunsgaard H, et al. Cognitive functions in middle aged individuals are related to metabolic disturbances and aerobic capacity: a cross-sectional study. PLoS ONE. 2012;7(12):e51132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pentz MA, Riggs NR. Longitudinal relationships of executive cognitive function and parent influence to child substance use and physical activity. Prev Sci. 2013;14(3):229–37.

    Article  PubMed  Google Scholar 

  75. Spitznagel MB, Garcia S, Miller LA, et al. Cognitive function predicts weight loss after bariatric surgery. Surg Obes Relat Dis. 2013;9(3):453–9.

    Article  PubMed  Google Scholar 

  76. Verbeken S, Braet C, Goossens L, et al. Executive function training with game elements for obese children: a novel treatment to enhance self-regulatory abilities for weight-control. Behav Res Ther. 2013;51(6):290–9.

    Article  PubMed  Google Scholar 

  77. Davis CL, Cooper S. Fitness, fatness, cognition, behavior, and academic achievement among overweight children: do cross-sectional associations correspond to exercise trial outcomes? Prev Med. 2011;52:65–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Kai Chang or Jennifer L. Etnier.

Ethics declarations

Funding

This research was supported by a portion of a Grant from the Ministry of Science and Technology, Taiwan to Yu-Kai Chang (NSC 102-2420-H-179-014-MY3).

Conflicts of interest

Yu-Kai Chang, Chien-Heng Chu, Feng-Tzu Chen, Tsung-Min Hung, and Jennifer L. Etnier declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YK., Chu, CH., Chen, FT. et al. Combined Effects of Physical Activity and Obesity on Cognitive Function: Independent, Overlapping, Moderator, and Mediator Models. Sports Med 47, 449–468 (2017). https://doi.org/10.1007/s40279-016-0589-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0589-7

Keywords

Navigation