Should Return to Sport be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations

Abstract

Anterior cruciate ligament (ACL) tears are common knee injuries sustained by athletes during sports participation. A devastating complication of returning to sport following ACL reconstruction (ACLR) is a second ACL injury. Strong evidence now indicates that younger, more active athletes are at particularly high risk for a second ACL injury, and this risk is greatest within the first 2 years following ACLR. Nearly one-third of the younger cohort that resumes sports participation will sustain a second ACL injury within the first 2 years after ACLR. The evidence indicates that the risk of second injury may abate over this time period. The incidence rate of second injuries in the first year after ACLR is significantly greater than the rate in the second year. The lower relative risk in the second year may be related to athletes achieving baseline joint health and function well after the current expected timeline (6–12 months) to be released to unrestricted activity. This highlights a considerable debate in the return to sport decision process as to whether an athlete should wait until 2 years after ACLR to return to unrestricted sports activity. In this review, we present evidence in the literature that athletes achieve baseline joint health and function approximately 2 years after ACLR. We postulate that delay in returning to sports for nearly 2 years will significantly reduce the incidence of second ACL injuries.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–70.

    PubMed  Article  Google Scholar 

  2. 2.

    Wright RW, Magnussen RA, Dunn WR, et al. Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction a systematic review. J Bone Joint Surg Am. 2011;93A(12):1159–65.

    Article  Google Scholar 

  3. 3.

    Bourke HE, Salmon LJ, Waller A, et al. Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med. 2012;40(9):1985–92.

    PubMed  Article  Google Scholar 

  4. 4.

    Drogset JO, Grontvedt T, Robak OR, et al. A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am. 2006;88(5):944–52.

    PubMed  Google Scholar 

  5. 5.

    Morgan MD, Salmon LJ, Waller A, et al. Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med. 2016;44(2):384–92.

    PubMed  Article  Google Scholar 

  6. 6.

    Brophy RH, Selby RM, Altchek DW. Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy. 2006;22(6):683 (e1–5).

    PubMed  Article  Google Scholar 

  7. 7.

    Marchant BG, Noyes FR, Barber-Westin SD, et al. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med. 2010;38(10):1987–96.

    PubMed  Article  Google Scholar 

  8. 8.

    Hui C, Salmon LJ, Kok A, et al. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med. 2011;39(1):89–98.

    PubMed  Article  Google Scholar 

  9. 9.

    Leys T, Salmon L, Waller A, et al. Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med. 2012;40(3):595–605.

    PubMed  Article  Google Scholar 

  10. 10.

    Laboute E, Savalli L, Puig P, et al. Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sportspeople. Ann Phys Rehabil Med. 2010;53(10):598–614.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Gifstad T, Foss OA, Engebretsen L, et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med. 2014;42(10):2319–28.

    PubMed  Article  Google Scholar 

  12. 12.

    Persson A, Fjeldsgaard K, Gjertsen JE, et al. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med. 2014;42(2):285–91.

    PubMed  Article  Google Scholar 

  13. 13.

    Maletis GB, Inacio MC, Desmond JL, et al. Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J. 2013;95-B(5):623–8.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2009;37(2):246–51.

    PubMed  Article  Google Scholar 

  15. 15.

    Paterno MV, Rauh MJ, Schmitt LC, et al. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116–21.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Allen MM, Pareek A, Krych AJ, et al. Are female soccer players at an increased risk of second anterior cruciate ligament injury compared with their athletic peers? Am J Sports Med. 2016. doi:10.1177/0363546516648439.

  17. 17.

    Kamien PM, Hydrick JM, Replogle WH, et al. Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2013;41(8):1808–12.

    PubMed  Article  Google Scholar 

  18. 18.

    Magnussen RA, Lawrence JT, West RL, et al. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31.

    PubMed  Article  Google Scholar 

  19. 19.

    Webster KE, Feller JA, Leigh WB, et al. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641–7.

    PubMed  Article  Google Scholar 

  20. 20.

    Paterno MV, Rauh MJ, Schmitt LC, et al. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Maletis GB, Inacio MC, Reynolds S, et al. Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med. 2013;41(8):1780–5.

    PubMed  Article  Google Scholar 

  22. 22.

    Salmon L, Russell V, Musgrove T, et al. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948–57.

    PubMed  Article  Google Scholar 

  23. 23.

    Borchers JR, Pedroza A, Kaeding C. Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study. Am J Sports Med. 2009;37(12):2362–7.

    PubMed  Article  Google Scholar 

  24. 24.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Fauno P, Rahr-Wagner L, Lind M. Risk for revision after anterior cruciate ligament reconstruction is higher among adolescents: results from the Danish registry of knee ligament reconstruction. Orthop J Sports Med. 2014;2(10):2325967114552405.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med. 2012;40(7):1551–7.

    PubMed  Article  Google Scholar 

  27. 27.

    Paulos L, Noyes FR, Grood E, et al. Knee rehabilitation after anterior cruciate ligament reconstruction and repair. Am J Sports Med. 1981;9(3):140–9.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Shelbourne KD, Nitz P. Accelerated rehabilitation after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1992;15(6):256–64.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Grindem H, Snyder-Mackler L, Moksnes H, et al. Simple decision rules can reduce reinjury risk by 84 % after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804–8.

  30. 30.

    Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(9):834–42.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Amiel D, Kleiner JB, Roux RD, et al. The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986;4(2):162–72.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64(2):217–24.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Claes S, Verdonk P, Forsyth R, et al. The “ligamentization” process in anterior cruciate ligament reconstruction what happens to the human graft? a systematic review of the literature. Am J Sports Med. 2011;39(11):2476–83.

    PubMed  Article  Google Scholar 

  34. 34.

    Pauzenberger L, Syre S, Schurz M. “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy. 2013;29(10):1712–21.

    PubMed  Article  Google Scholar 

  35. 35.

    Abe S, Kurosaka M, Iguchi T, et al. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy. 1993;9(4):394–405.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Rougraff B, Shelbourne KD, Gerth PK, et al. Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(2):277–84.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Borchers JR, Kaeding CC, Pedroza AD, et al. Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery: a comparison of the MOON and MARS study groups. Am J Sports Med. 2011;39(9):1889–93.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Spindler KP, Schils JP, Bergfeld JA, et al. Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med. 1993;21(4):551–7.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Boden BP, Dean GS, Feagin JA Jr, et al. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Rosen MA, Jackson DW, Berger PE. Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy. 1991;7(1):45–51.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Dunn WR, Spindler KP, Amendola A, et al. Which preoperative factors, including bone bruise, are associated with knee pain/symptoms at index anterior cruciate ligament reconstruction (ACLR)? A Multicenter Orthopaedic Outcomes Network (MOON) ACLR Cohort Study. Am J Sports Med. 2010;38(9):1778–87.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Vellet AD, Marks PH, Fowler PJ, et al. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178(1):271–6.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Mink JH, Deutsch AL. Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology. 1989;170(3 Pt 1):823–9.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Roemer FW, Frobell R, Hunter DJ, et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage. 2009;17(9):1115–31.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Johnson DL, Bealle DP, Brand JC Jr, et al. The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med. 2000;28(2):152–5.

    CAS  PubMed  Google Scholar 

  46. 46.

    Boks SS, Vroegindeweij D, Koes BW, et al. Clinical consequences of posttraumatic bone bruise in the knee. Am J Sports Med. 2007;35(6):990–5.

    PubMed  Article  Google Scholar 

  47. 47.

    Costa-Paz M, Muscolo DL, Ayerza M, et al. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy. 2001;17(5):445–9.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Hanypsiak BT, Spindler KP, Rothrock CR, et al. Twelve-year follow-up on anterior cruciate ligament reconstruction: long-term outcomes of prospectively studied osseous and articular injuries. Am J Sports Med. 2008;36(4):671–7.

    PubMed  Article  Google Scholar 

  49. 49.

    Papalia R, Torre G, Vasta S, et al. Bone bruises in anterior cruciate ligament injured knee and long-term outcomes. A review of the evidence. Open Access. J Sports Med. 2015;6:37–48.

    Google Scholar 

  50. 50.

    Boks SS, Vroegindeweij D, Koes BW, et al. Magnetic resonance imaging abnormalities in symptomatic and contralateral knees: prevalence and associations with traumatic history in general practice. Am J Sports Med. 2006;34(12):1984–91.

    PubMed  Article  Google Scholar 

  51. 51.

    Boks SS, Vroegindeweij D, Koes BW, et al. Follow-up of posttraumatic ligamentous and meniscal knee lesions detected at MR imaging: systematic review. Radiology. 2006;238(3):863–71.

    PubMed  Article  Google Scholar 

  52. 52.

    Dye SF, Chew MH. The use of scintigraphy to detect increased osseous metabolic activity about the knee. Instr Course Lect. 1994;43:453–69.

    CAS  PubMed  Google Scholar 

  53. 53.

    Leppala J, Kannus P, Natri A, et al. Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-up study. Calcif Tissue Int. 1999;64(4):357–63.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Nyland J, Fisher B, Brand E, et al. Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy. 2010;26(9):1248–57.

    PubMed  Article  Google Scholar 

  55. 55.

    Zerahn B, Munk AO, Helweg J, et al. Bone mineral density in the proximal tibia and calcaneus before and after arthroscopic reconstruction of the anterior cruciate ligament. Arthroscopy. 2006;22(3):265–9.

    PubMed  Article  Google Scholar 

  56. 56.

    Sievanen H, Kannus P, Heinonen A, et al. Bone mineral density and muscle strength of lower extremities after long-term strength training, subsequent knee ligament injury and rehabilitation: a unique 2-year follow-up of a 26-year-old female student. Bone. 1994;15(1):85–90.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Dye SF, Chew MH. Restoration of osseous homeostasis after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(5):748–50.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    van Meer BL, Waarsing JH, van Eijsden WA, et al. Bone mineral density changes in the knee following anterior cruciate ligament rupture. Osteoarthritis Cartilage. 2014;22(1):154–61.

    PubMed  Article  Google Scholar 

  59. 59.

    Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. Anat Rec. 1986;214(2):204–9.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Schultz RA, Miller DC, Kerr CS, et al. Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am. 1984;66(7):1072–6.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Solomonow M, Baratta R, Zhou BH, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207–13.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Dyhre-Poulsen P, Krogsgaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol. 2000;89(6):2191–5.

    CAS  PubMed  Google Scholar 

  63. 63.

    Krogsgaard MR, Fischer-Rasmussen T, Dyhre-Poulsen P. Absence of sensory function in the reconstructed anterior cruciate ligament. J Electromyogr Kinesiol. 2011;21(1):82–6.

    PubMed  Article  Google Scholar 

  64. 64.

    Ochi M, Iwasa J, Uchio Y, et al. The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br. 1999;81(5):902–6.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ochi M, Iwasa J, Uchio Y, et al. Induction of somatosensory evoked potentials by mechanical stimulation in reconstructed anterior cruciate ligaments. J Bone Joint Surg Br. 2002;84(5):761–6.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Nyland J, Brosky T, Currier D, et al. Review of the afferent neural system of the knee and its contribution to motor learning. J Orthop Sports Phys Ther. 1994;19(1):2–11.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Hewett TE, Paterno MV, Myer GA. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop Relat Res. 2002;402:76–94.

    Article  Google Scholar 

  68. 68.

    Iwasa J, Ochi M, Adachi N, et al. Proprioceptive improvement in knees with anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2000;381:168–76.

    Article  Google Scholar 

  69. 69.

    MacDonald PB, Hedden D, Pacin O, et al. Proprioception in anterior cruciate ligament-deficient and reconstructed knees. Am J Sports Med. 1996;24(6):774–8.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Negahban H, Mazaheri M, Kingma I, et al. A systematic review of postural control during single-leg stance in patients with untreated anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2014;22(7):1491–504.

    PubMed  Google Scholar 

  71. 71.

    Roberts D, Friden T, Stomberg A, et al. Bilateral proprioceptive defects in patients with a unilateral anterior cruciate ligament reconstruction: a comparison between patients and healthy individuals. J Orthop Res. 2000;18(4):565–71.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Risberg MA, Beynnon BD, Peura GD, et al. Proprioception after anterior cruciate ligament reconstruction with and without bracing. Knee Surg Sports Traumatol Arthrosc. 1999;7(5):303–9.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Gokeler A, Benjaminse A, Hewett TE, et al. Proprioceptive deficits after ACL injury: are they clinically relevant? Br J Sports Med. 2012;46(3):180–92.

    PubMed  Article  Google Scholar 

  74. 74.

    Sanchez M, Anitua E, Azofra J, et al. Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy. 2010;26(4):470–80.

    PubMed  Article  Google Scholar 

  75. 75.

    Weiler A, Peters G, Maurer J, et al. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med. 2001;29(6):751–61.

    CAS  PubMed  Google Scholar 

  76. 76.

    Rabuck SJ, Baraga MG, Fu FH. Anterior cruciate ligament healing and advances in imaging. Clin Sports Med. 2013;32(1):13–20.

    PubMed  Article  Google Scholar 

  77. 77.

    Vogl TJ, Schmitt J, Lubrich J, et al. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol. 2001;11(8):1450–6.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Zaffagnini S, De Pasquale V, Marchesini Reggiani L, et al. Neoligamentization process of BTPB used for ACL graft: histological evaluation from 6 months to 10 years. Knee. 2007;14(2):87–93.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Gohil S, Annear PO, Breidahl W. Anterior cruciate ligament reconstruction using autologous double hamstrings: a comparison of standard versus minimal debridement techniques using MRI to assess revascularisation. A randomised prospective study with a one-year follow-up. J Bone Joint Surg Br. 2007;89(9):1165–71.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Ge Y, Li H, Tao H, et al. Comparison of tendon-bone healing between autografts and allografts after anterior cruciate ligament reconstruction using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):954–60.

    PubMed  Article  Google Scholar 

  81. 81.

    Li H, Tao H, Cho S, et al. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med. 2012;40(7):1519–26.

    PubMed  Article  Google Scholar 

  82. 82.

    Suomalainen P, Moisala AS, Paakkala A, et al. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: randomized clinical and magnetic resonance imaging study with 2-year follow-up. Am J Sports Med. 2011;39(8):1615–22.

    PubMed  Article  Google Scholar 

  83. 83.

    Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med. 2009;43(5):371–6.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Roewer BD, Di Stasi SL, Snyder-Mackler L. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction. J Biomech. 2011;44(10):1948–53.

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Di Stasi S, Hartigan EH, Snyder-Mackler L. Sex-specific gait adaptations prior to and up to 6 months after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2015;45(3):207–14.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Di Stasi SL, Logerstedt D, Gardinier ES, et al. Gait patterns differ between ACL-reconstructed athletes who pass return-to-sport criteria and those who fail. Am J Sports Med. 2013;41(6):1310–8.

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Xergia SA, Pappas E, Zampeli F, et al. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154–62.

    PubMed  Article  Google Scholar 

  88. 88.

    Gokeler A, Benjaminse A, van Eck CF, et al. Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int J Sports. Phys Ther. 2013;8(4):441–51.

    CAS  Google Scholar 

  89. 89.

    Hart HF, Culvenor AG, Collins NJ, et al. Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br J Sports Med. 2016;50(10):597–612.

    PubMed  Article  Google Scholar 

  90. 90.

    Xergia SA, McClelland JA, Kvist J, et al. The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):768–80.

    PubMed  Article  Google Scholar 

  91. 91.

    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405–24 (vii–ix).

    PubMed  Article  Google Scholar 

  92. 92.

    Wright RW, Huston LJ, Spindler KP, et al. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med. 2010;38(10):1979–86.

    PubMed  Article  Google Scholar 

  93. 93.

    Webster KE, Feller JA, Wittwer JE. Longitudinal changes in knee joint biomechanics during level walking following anterior cruciate ligament reconstruction surgery. Gait Posture. 2012;36(2):167–71.

    PubMed  Article  Google Scholar 

  94. 94.

    Delahunt E, Sweeney L, Chawke M, et al. Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. J Orthop Res. 2012;30(1):72–8.

    PubMed  Article  Google Scholar 

  95. 95.

    Delahunt E, Prendiville A, Sweeney L, et al. Hip and knee joint kinematics during a diagonal jump landing in anterior cruciate ligament reconstructed females. J Electromyogr Kinesiol. 2012;22(4):598–606.

    PubMed  Article  Google Scholar 

  96. 96.

    Paterno MV, Ford KR, Myer GD, et al. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258–62.

    PubMed  Article  Google Scholar 

  97. 97.

    Abrams GD, Harris JD, Gupta AK, et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014;2(1):2325967113518305.

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Tashman S, Araki D. Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function. Clin Sports Med. 2013;32(1):47–59.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Hoshino Y, Fu FH, Irrgang JJ, et al. Can joint contact dynamics be restored by anterior cruciate ligament reconstruction? Clin Orthop Relat Res. 2013;471(9):2924–31.

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Kaiser J, Vignos MF, Liu F, et al. American Society of Biomechanics Clinical Biomechanics Award 2015: MRI assessments of cartilage mechanics, morphology and composition following reconstruction of the anterior cruciate ligament. Clin Biomech (Bristol, Avon). 2016;34:38–44.

  101. 101.

    Myer GD, Ford KR, Barber Foss KD, et al. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8.

    PubMed  Article  Google Scholar 

  102. 102.

    Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750–9.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Schmitt LC, Paterno MV, Ford KR, et al. Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2015;47(7):1426–34.

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Aune AK, Holm I, Risberg MA, et al. Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction—a randomized study with two-year follow-up. Am J Sports Med. 2001;29(6):722–8.

  105. 105.

    Inagaki Y, Kondo E, Kitamura N, et al. Prospective clinical comparisons of semitendinosus versus semitendinosus and gracilis tendon autografts for anatomic double-bundle anterior cruciate ligament reconstruction. J Orthop Sci. 2013;18(5):754–61.

    PubMed  Article  Google Scholar 

  106. 106.

    Aglietti P, Giron F, Buzzi R, et al. Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am. 2004;86–A(10):2143–55.

  107. 107.

    Maletis GB, Cameron SL, Tengan JJ, et al. A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med. 2007;35(3):384–94.

    PubMed  Article  Google Scholar 

  108. 108.

    Keays SL, Bullock-Saxton JE, Keays AC, et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med. 2007;35(5):729–39.

    PubMed  Article  Google Scholar 

  109. 109.

    Lautamies R, Harilainen A, Kettunen J, et al. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc. 2008;16(11):1009–16.

    PubMed  Article  Google Scholar 

  110. 110.

    Moisala AS, Jarvela T, Kannus P, et al. Muscle strength evaluations after ACL reconstruction. Int J Sports Med. 2007;28(10):868–72.

    PubMed  Article  Google Scholar 

  111. 111.

    Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg. 2012;25(5):361–8.

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Rahr-Wagner L, Thillemann TM, Pedersen AB, et al. Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy. 2013;29(1):98–105.

    PubMed  Article  Google Scholar 

  113. 113.

    Xu Y, Liu J, Kramer S, et al. Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament. Am J Sports Med. 2011;39(2):272–8.

    PubMed  Article  Google Scholar 

  114. 114.

    Kato Y, Maeyama A, Lertwanich P, et al. Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):816–23.

    PubMed  Article  Google Scholar 

  115. 115.

    Fu FH, van Eck CF, Tashman S, et al. Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):640–8.

    PubMed  Article  Google Scholar 

  116. 116.

    Middleton KK, Hamilton T, Irrgang JJ, et al. Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc. 2014;22(7):1467–82.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Risberg MA, Lewek M, Snyder-Mackler L. A systematic review of evidence for anterior cruciate ligament rehabilitation: how much and what type? Phys Ther Sport. 2004;5(3):125–45.

    Article  Google Scholar 

  118. 118.

    Risberg MA, Holm I. The long-term effect of 2 postoperative rehabilitation programs after anterior cruciate ligament reconstruction: a randomized controlled clinical trial with 2 years of follow-up. Am J Sports Med. 2009;37(10):1958–66.

    PubMed  Article  Google Scholar 

  119. 119.

    Grindem H, Granan LP, Risberg MA, et al. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br J Sports Med. 2015;49(6):385–9.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Grant JA, Mohtadi NG. Two- to 4-year follow-up to a comparison of home versus physical therapy-supervised rehabilitation programs after anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38(7):1389–94.

    PubMed  Article  Google Scholar 

  121. 121.

    Wiggins AJ, Grandhi RK, Schneider DK, et al. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.

  122. 122.

    Christensen JJ, Krych AJ, Engasser WM, et al. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(10):2510–4.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Stephanie Di Stasi, Wendy Hurd, and Kate Webster for their input, clinical expertise, editorial work, and conversations regarding the topic presented in this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Hewett.

Ethics declarations

Funding

The authors acknowledge funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases: R01-AR049735, R01-AR055563, and R01AR056259 to TEH.

Conflicts of interest

Christopher Nagelli and Timothy Hewett have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagelli, C.V., Hewett, T.E. Should Return to Sport be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations. Sports Med 47, 221–232 (2017). https://doi.org/10.1007/s40279-016-0584-z

Download citation

Keywords

  • Anterior Cruciate Ligament
  • Anterior Cruciate Ligament Reconstruction
  • Anterior Cruciate Ligament Injury
  • Anterior Cruciate Ligament Graft
  • Anterior Cruciate Ligament Tear