Skip to main content
Log in

Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Exercise training (ExT) prompts multiple beneficial adaptations associated with vascular health, such as increases in skeletal muscle capillarization and vascular dilator function and decreases in arterial stiffness. However, whether ExT performed in hypoxic conditions induces enhanced effects is unclear.

Objective

We sought to systematically review the literature and determine whether hypoxic ExT leads to superior vascular adaptations compared with normoxic ExT.

Methods

We searched MEDLINE, Scopus, and Web of Science from their inception until September 2015 for articles assessing vascular adaptations to ExT performed under hypoxic and normoxic conditions. We performed meta-analyses to determine the standardized mean difference (SMD) between the effects of ExT performed in hypoxia versus normoxia on vascular adaptations. We assessed heterogeneity among studies using I 2 statistics and evaluated publication bias via the Begg and Mazumdar’s rank correlation test and Egger’s regression test.

Results

After systematic review, we included 21 controlled studies, including a total of 331 individuals (mean age 19–57 years, 265 males). ExT programs primarily consisted of cycling endurance training performed in normobaric hypoxia or normoxia; duration ranged from 3 to 10 weeks. The exercise intensity was similar in relative terms in the groups trained in hypoxia and normoxia in the majority of studies (17 of 21). After data pooling, skeletal muscle capillarization (n = 182, SMD = 0.40, 95 % confidence interval [CI] 0.10–0.70; P = 0.01) and vascular dilator function (n = 71, SMD = 0.67, 95 % CI 0.17–1.18; P = 0.009) but not arterial stiffness (n = 112, SMD = −0.03, 95 % CI −0.69 to 0.63; P = 0.93), were enhanced with ExT performed in hypoxia versus normoxia. We only found heterogeneity among studies assessing arterial stiffness (I 2 = 63 %, P = 0.02), and no publication bias was detected.

Conclusion

Based on current published studies, hypoxic ExT potentiates vascular adaptations related to skeletal muscle capillarization and dilator function. These findings may contribute to establishing effective exercise programs designed to enhance vascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587(Pt 23):5551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spence AL, Carter HH, Naylor LH, et al. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. J Physiol. 2013;591(Pt 5):1265–75.

    Article  PubMed  Google Scholar 

  3. Montero D, Walther G, Diaz-Canestro C, et al. Microvascular dilator function in athletes: a systematic review and meta-analysis. Med Sci Sports Exerc. 2015;47(7):1485–94.

    Article  PubMed  Google Scholar 

  4. Montero D, Padilla J, Diaz-Canestro C, et al. Flow-mediated dilation in athletes: influence of aging. Med Sci Sports Exerc. 2014;46(11):2148–58.

    Article  PubMed  Google Scholar 

  5. Turner DL, Hoppeler H, Claassen H, et al. Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand. 1997;161(4):459–64.

    Article  CAS  PubMed  Google Scholar 

  6. Hoppeler H, Howald H, Conley K, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59(2):320–7.

    CAS  PubMed  Google Scholar 

  7. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106.

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka H, Dinenno FA, Monahan KD, et al. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102(11):1270–5.

    Article  CAS  PubMed  Google Scholar 

  9. Montero D, Vinet A, Roberts CK. Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. Int J Cardiol. 2015;15(178):69–76.

    Article  Google Scholar 

  10. van den Oord SC, Sijbrands EJ, ten Kate GL, et al. Carotid intima-media thickness for cardiovascular risk assessment: systematic review and meta-analysis. Atherosclerosis. 2013;228(1):1–11.

    Article  PubMed  Google Scholar 

  11. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26(6):631–40.

    Article  PubMed  Google Scholar 

  12. Prior SJ, Goldberg AP, Ortmeyer HK, et al. Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes. 2015;64(10):3386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Sloten TT, Schram MT, van den Hurk K, et al. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: the Hoorn study. J Am Coll Cardiol. 2014;63(17):1739–47.

    Article  PubMed  Google Scholar 

  14. Tinken TM, Thijssen DH, Black MA, et al. Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol. 2008;586(Pt 20):5003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    Article  PubMed  Google Scholar 

  16. Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports. 2008;18(Suppl 1):38–49.

    Article  PubMed  Google Scholar 

  17. Schreuder THA, Nyakayiru J, Houben J, et al. Impact of hypoxic versus normoxic training on physical fitness and vasculature in diabetes. High Alt Med Biol. 2014;15(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  18. Kong Z, Zang Y, Hu Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath. 2014;18(3):591–7.

    Article  PubMed  Google Scholar 

  19. Nishiwaki M, Kawakami R, Saito K, et al. Vascular adaptations to hypobaric hypoxic training in postmenopausal women. J Physiol Sci. 2011;61(2):83–91.

    Article  PubMed  Google Scholar 

  20. Park H, Nam S, Kim S, et al. Effects of 10 weeks aerobic training in normobaric hypoxia on improvement of body composition, physical fitness, blood variables and vascular compliance. J Exerc Nutrition Biochem. 2010;14(1):7–16.

    Google Scholar 

  21. Lundby C, Millet GP, Calbet JA, et al. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med. 2012;46(11):792–5.

    Article  PubMed  Google Scholar 

  22. Casey DP, Joyner MJ. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590(Pt 24):6321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Alonso J, Mortensen SP, Dawson EA, et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol. 2006;572(Pt 1):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geiser J, Vogt M, Billeter R, et al. Training high–living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med. 2001;22(8):579–85.

    Article  CAS  PubMed  Google Scholar 

  25. Hellsten Y, Hoier B. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans. 2014;42(6):1616–22.

    Article  CAS  PubMed  Google Scholar 

  26. Ridnour LA, Isenberg JS, Espey MG, et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA. 2005;102(37):13147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tinken TM, Thijssen DH, Hopkins N, et al. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):312–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kon M, Ohiwa N, Honda A, et al. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol Rep. 2015;3(1):e12267.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol (1985). 2001;91(1):173–82.

    CAS  Google Scholar 

  30. Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists Eur J Appl Physiol Occup Physiol. 1988;57(2):203–9.

    CAS  PubMed  Google Scholar 

  31. Shi B, Watanabe T, Shin S, et al. Effect of hypoxic training on inflammatory and metabolic risk factors: a crossover study in healthy subjects. Physiol Rep. 2014;2(1):e00198-e.

    Article  Google Scholar 

  32. Shi B, Watanabe T, Shin S, et al. Effect of normobaric hypoxia on cardiorespiratory and metabolic risk markers in healthy subjects. Adv Biosci Biotechnol. 2013;4:340–5.

    Article  Google Scholar 

  33. Wang JS, Wu MH, Mao TY, et al. Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. J Appl Physiol (1985). 2010;109(1):219–29.

    Article  Google Scholar 

  34. Desplanches D, Amami M, Dupre-Aucouturier S, et al. Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work. Eur J Appl Physiol. 2014;114(2):405–17.

    Article  CAS  PubMed  Google Scholar 

  35. Messonnier L, Freund H, Féasson L, et al. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. Eur J Appl Physiol. 2001;84(5):403–12.

    Article  CAS  PubMed  Google Scholar 

  36. Masuda K, Okazaki K, Kuno S, et al. Endurance training under 2500-m hypoxia does not increase myoglobin content in human skeletal muscle. Eur J Appl Physiol. 2001;85(5):486–90.

    Article  CAS  PubMed  Google Scholar 

  37. Melissa L, MacDougall JD, Tarnopolsky MA, et al. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med Sci Sports Exerc. 1997;29(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  38. Desplanches D, Hoppeler H, Tuscher L, et al. Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia. J Appl Physiol. 1996;81(5):1946–51.

    CAS  PubMed  Google Scholar 

  39. Terrados N, Jansson E, Sylven C, et al. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol (1985). 1990;68(6):2369–72.

    CAS  Google Scholar 

  40. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16.

    Article  CAS  PubMed  Google Scholar 

  41. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Higgins JPT, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. http://www.cochrane-handbook.org. Accessed 20 Aug 2015.

  43. Bhogal SK, Teasell RW, Foley NC, et al. The PEDro scale provides a more comprehensive measure of methodological quality than the Jadad scale in stroke rehabilitation literature. J Clin Epidemiol. 2005;58(7):668–73.

    Article  PubMed  Google Scholar 

  44. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.

    Article  PubMed  Google Scholar 

  45. Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    PubMed  Google Scholar 

  46. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  47. Cohen J. Statistical power analysis for the behavioral sciences, vol. 2. Hillsdale: Lawrence Erlbaum Associates Publishers; 1988.

    Google Scholar 

  48. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katayama K, Fujita O, Iemitsu M, et al. The effect of acute exercise in hypoxia on flow-mediated vasodilation. Eur J Appl Physiol. 2013;113(2):349–57.

    Article  PubMed  Google Scholar 

  50. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol. 2001;204(Pt 18):3133–9.

    CAS  PubMed  Google Scholar 

  51. Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol (1985). 2006;100(4):1258–66.

    Article  CAS  Google Scholar 

  52. Mounier R, Pialoux V, Roels B, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol. 2009;105(4):515–24.

    Article  PubMed  Google Scholar 

  53. Lundby C, Montero D. CrossTalk opposing view: diffusion limitation of O2 from microvessels into muscle does not contribute to the limitation of VO2max. J Physiol. 2015;593(17):3759–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hedman A, Berglund L, Essen-Gustavsson B, et al. Relationships between muscle morphology and insulin sensitivity are improved after adjustment for intra-individual variability in 70-year-old men. Acta Physiol Scand. 2000;169(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  55. Xu Y, Arora RC, Hiebert BM, et al. Non-invasive endothelial function testing and the risk of adverse outcomes: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15(7):736–46.

    Article  PubMed  Google Scholar 

  56. Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc. 2000;32(2):332–48.

    Article  CAS  PubMed  Google Scholar 

  57. Calbet JA. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol. 2003;551(Pt 1):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Neubauer JA. Invited review: physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol (1985). 2001;90(4):1593–9.

    CAS  Google Scholar 

  59. Vock R, Weibel ER, Hoppeler H, et al. Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells. J Exp Biol. 1996;199(Pt 8):1675–88.

    CAS  PubMed  Google Scholar 

  60. Olfert IM, Baum O, Hellsten Y, et al. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol. 2016;310(3):H326–36.

    Article  PubMed  Google Scholar 

  61. Mathieu O, Cruz-Orive LM, Hoppeler H, et al. Estimating length density and quantifying anisotropy in skeletal muscle capillaries. J Microsc. 1983;131(Pt 2):131–46.

    Article  CAS  PubMed  Google Scholar 

  62. Montero D, Roche E, Martinez-Rodriguez A. The impact of aerobic exercise training on arterial stiffness in pre- and hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2014;173(3):361–8.

    Article  PubMed  Google Scholar 

  63. Gilmartin GS, Lynch M, Tamisier R, et al. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2010;299(3):H925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pratley R, Nicklas B, Rubin M, et al. Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. J Appl Physiol (1985). 1994;76(1):133–7.

    CAS  Google Scholar 

  65. Swierblewska E, Hering D, Kara T, et al. An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J Hypertens. 2010;28(5):979–84.

    Article  CAS  PubMed  Google Scholar 

  66. Hanssen H, Nussbaumer M, Moor C, et al. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men. Atherosclerosis. 2015;238(2):399–406.

    Article  CAS  PubMed  Google Scholar 

  67. Yoon ES, Jung SJ, Cheun SK, et al. Effects of acute resistance exercise on arterial stiffness in young men. Korean Circ J. 2010;40(1):16–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Montero.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

David Montero and Carsten Lundby have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, D., Lundby, C. Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health. Sports Med 46, 1725–1736 (2016). https://doi.org/10.1007/s40279-016-0570-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0570-5

Keywords

Navigation