Sports Medicine

, Volume 47, Issue 2, pp 277–293 | Cite as

The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis

  • Caio Victor de SousaEmail author
  • Marcelo Magalhães Sales
  • Thiago Santos Rosa
  • John Eugene Lewis
  • Rosangela Vieira de Andrade
  • Herbert Gustavo Simões
Systematic Review



Physical activity has been associated with reduced oxidative stress (OS) in observational studies and clinical trials.


The purpose of this systematic review and meta-analysis of controlled trials was to determine the effect of physical exercise on OS parameters.


We conducted a systematic review of the literature up to March 2016 that included the following databases: PubMed, SCOPUS, and Web of Science. A keyword combination referring to exercise training and OS was included as part of a more thorough search process. We also manually searched the reference lists of the articles. From an initial 1573 references, we included 30 controlled trials (1346 participants) in the qualitative analysis, 19 of which were included in the meta-analysis. All trials were conducted in humans and had at least one exercise intervention and a paired control group. Using a standardized protocol, two investigators independently abstracted data on study design, sample size, participant characteristics, intervention, follow-up duration, outcomes, and quantitative data for the meta-analysis. Thus, the investigators independently assigned quality scores with a methodological quality assessment (MQA).


The agreement level between the reviewers was 85.3 %. Discrepancies were solved in a consensus meeting. The MQA showed a total score in the quality index between 40 and 90 % and a mean quality of 55 %. Further, in a random-effects model, data from each trial were pooled and weighted by the inverse of the total variance. Physical training was associated with a significant reduction in pro-oxidant parameters (standard mean difference [SMD] –1.08; 95 % confidence interval [CI] –1.57 to –0.58; p < 0.001) and an increase in antioxidant capacity (SMD 1.45; 95 % CI 0.83–2.06; p < 0.001).


The pooled analysis revealed that regardless of intensity, volume, type of exercise, and studied population, the antioxidant indicators tended to increase and pro-oxidant indicators tended to decrease after training. Therefore, we conclude that exercise training seems to induce an antioxidant effect. Thus, it is suggested that people practice some kind of exercise to balance the redox state, regardless of their health status, to improve health-related outcomes.


Exercise Training Resistance Training Physical Training Standardize Mean Difference Aerobic Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards


The authors are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting scholarships at undergraduate research (CNPq), MSc (CAPES), and PhD (CAPES) levels. No specific sources of funding were used to assist in the preparation of this article.

Conflict of interest

Caio Victor de Sousa, Marcelo Magalhães Sales, Thiago Santos Rosa, John Eugene Lewis, Rosangela Vieira de Andrade, and Herbert Gustavo Simões have no conflicts of interest relevant to the content of this review.


  1. 1.
    Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57. doi: 10.1016/S0140-6736(12)60646-1.CrossRefPubMedGoogle Scholar
  2. 2.
    Blair SN, Kampert JB, Kohl HW 3rd, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA. 1996;276(3):205–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122(16):1637–48. doi: 10.1161/CIRCULATIONAHA.110.948349.CrossRefPubMedGoogle Scholar
  4. 4.
    Vincent HK, Innes KE, Vincent KR. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab. 2007;9(6):813–39. doi: 10.1111/j.1463-1326.2007.00692.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Larsen BA, Martin L, Strong DR. Sedentary behavior and prevalent diabetes in Non-Latino Whites, Non-Latino Blacks and Latinos: findings from the National Health Interview Survey. J Public Health (Oxf). 2015;37(4):634–40. doi: 10.1093/pubmed/fdu103.Google Scholar
  6. 6.
    Beunza JJ, Martinez-Gonzalez MA, Ebrahim S, et al. Sedentary behaviors and the risk of incident hypertension: the SUN Cohort. Am J Hypertens. 2007;20(11):1156–62. doi: 10.1016/j.amjhyper.2007.06.007.PubMedGoogle Scholar
  7. 7.
    Hamer M, Venuraju SM, Urbanova L, et al. Physical activity, sedentary time, and pericardial fat in healthy older adults. Obesity (Silver Spring). 2012;20(10):2113–7. doi: 10.1038/oby.2012.61.CrossRefPubMedGoogle Scholar
  8. 8.
    Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.CrossRefPubMedGoogle Scholar
  9. 9.
    Metter EJ, Talbot LA, Schrager M, et al. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10):B359–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Blair SN, Cheng Y, Holder JS. Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc. 2001;33(6):379–99.CrossRefGoogle Scholar
  11. 11.
    Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol. 2011;11(2):81–3.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. doi: 10.1038/nature05485.CrossRefPubMedGoogle Scholar
  13. 13.
    Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118(2):789–800. doi: 10.1172/JCI32601.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44(2):153–9. doi: 10.1016/j.freeradbiomed.2007.01.029.CrossRefPubMedGoogle Scholar
  15. 15.
    Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol. 2011;589(9):2129–38.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev. 2015;2015:610813. doi: 10.1155/2015/610813.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;71:40–56. doi: 10.1016/j.vph.2015.03.005.CrossRefPubMedGoogle Scholar
  18. 18.
    Sarmiento D, Montorfano I, Cerda O, et al. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel. Microvasc Res. 2015;98:187–96. doi: 10.1016/j.mvr.2014.02.001.CrossRefPubMedGoogle Scholar
  19. 19.
    Schepers E, Glorieux G, Dhondt A, et al. Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrol Dial Transplant. 2009;24(5):1429–35. doi: 10.1093/ndt/gfn670.CrossRefPubMedGoogle Scholar
  20. 20.
    Pratico D, Iuliano L, Mauriello A, et al. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest. 1997;100(8):2028–34. doi: 10.1172/JCI119735.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989;84(4):1086–95. doi: 10.1172/JCI114271.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24–38. doi: 10.1002/jbt.10058.CrossRefPubMedGoogle Scholar
  23. 23.
    Totter JR. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci. 1980;77(4):1763–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu JD, Lin DW, Page ST, et al. Oxidative DNA damage in the prostate may predispose men to a higher risk of prostate cancer. Transl Oncol. 2009;2(1):39–45.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621S–9S.PubMedGoogle Scholar
  26. 26.
    Gjevestad GO, Holven KB, Ulven SM. Effects of exercise on gene expression of inflammatory markers in human peripheral blood cells: a systematic review. Curr Cardiovasc Risk Rep. 2015;9(7):34. doi: 10.1007/s12170-015-0463-4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15. doi: 10.1038/nri3041.CrossRefPubMedGoogle Scholar
  28. 28.
    Dias RG, Silva MS, Duarte NE, et al. PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiol Genomics. 2015;47(2):13–23. doi: 10.1152/physiolgenomics.00072.2014.CrossRefPubMedGoogle Scholar
  29. 29.
    Radom-Aizik S, Zaldivar FP Jr, Haddad F, et al. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease. Brain Behav Immun. 2014;39:121–9. doi: 10.1016/j.bbi.2014.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fernandez-Gonzalo R, De Paz JA, Rodriguez-Miguelez P, et al. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J Appl Physiol (1985). 2012;112(12):2011–8. doi: 10.1152/japplphysiol.01499.2011.
  31. 31.
    Puterman E, Lin J, Blackburn E, et al. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5(5):e10837. doi: 10.1371/journal.pone.0010837.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gordon B, Chen S, Durstine JL. The effects of exercise training on the traditional lipid profile and beyond. Curr Sports Med Rep. 2014;13(4):253–9. doi: 10.1249/JSR.0000000000000073.CrossRefPubMedGoogle Scholar
  33. 33.
    Roque FR, Hernanz R, Salaices M, et al. Exercise training and cardiometabolic diseases: focus on the vascular system. Curr Hypertens Rep. 2013;15(3):204–14. doi: 10.1007/s11906-013-0336-5.CrossRefPubMedGoogle Scholar
  34. 34.
    Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231–55. doi: 10.1038/sj.bjp.0705776.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. doi: 10.1186/1476-5918-8-1.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Camiletti-Moirón D, Aparicio VA, Aranda P, et al. Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Sports. 2013;23(4):e202–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Bouzid MA, Filaire E, McCall A, et al. Radical oxygen species, exercise and aging: an update. Sports Med. 2015;45(9):1245–61. doi: 10.1007/s40279-015-0348-1.CrossRefPubMedGoogle Scholar
  38. 38.
    Edwards DG, Schofield RS, Lennon SL, et al. Effect of exercise training on endothelial function in men with coronary artery disease. Am J Cardiol. 2004;93(5):617–20. doi: 10.1016/j.amjcard.2003.11.032.CrossRefPubMedGoogle Scholar
  39. 39.
    Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–84.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ruiz JR, Castro-Pinero J, Artero EG, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–23. doi: 10.1136/bjsm.2008.056499.CrossRefPubMedGoogle Scholar
  41. 41.
    Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. West Sussex: Wiley; 2011.Google Scholar
  42. 42.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi: 10.1136/bmj.327.7414.557.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cohen J. Statistical power analysis for the behavioral sciences. Cambridge: Academic Press; 2013.Google Scholar
  45. 45.
    Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Linke A, Adams V, Schulze PC, et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation. 2005;111(14):1763–70. doi: 10.1161/01.CIR.0000165503.08661.E5.CrossRefPubMedGoogle Scholar
  47. 47.
    Kelly AS, Steinberger J, Olson TP, et al. In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism. 2007;56(7):1005–9. doi: 10.1016/j.metabol.2007.03.009.CrossRefPubMedGoogle Scholar
  48. 48.
    Onur E, Kabaroglu C, Gunay O, et al. The beneficial effects of physical exercise on antioxidant status in asthmatic children. Allergol Immunopathol (Madr). 2011;39(2):90–5. doi: 10.1016/j.aller.2010.04.006.CrossRefPubMedGoogle Scholar
  49. 49.
    Dennis BA, Ergul A, Gower BA, et al. Oxidative stress and cardiovascular risk in overweight children in an exercise intervention program. Child Obes. 2013;9(1):15–21. doi: 10.1089/chi.2011.0092.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Garcia-Lopez D, Hakkinen K, Cuevas MJ, et al. Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men. Scand J Med Sci Sports. 2007;17(5):595–604. doi: 10.1111/j.1600-0838.2006.00620.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Fatouros IG, Jamurtas AZ, Villiotou V, et al. Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc. 2004;36(12):2065–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Azizbeigi K, Azarbayjani MA, Peeri M, et al. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab. 2013;23(3):230–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Karabolut AB, Kafkas ME, Kafkas AS, et al. The effect of regular exercise and massage on oxidant and antioxidant parameters. Indian J Physiol Pharmacol. 2013;57(4):6.Google Scholar
  54. 54.
    Beltran Valls MR, Dimauro I, Brunelli A, et al. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. Age (Dordr). 2014;36(2):759–72. doi: 10.1007/s11357-013-9584-1.CrossRefPubMedGoogle Scholar
  55. 55.
    Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016;2016:7239639. doi: 10.1155/2016/7239639.CrossRefPubMedGoogle Scholar
  56. 56.
    Konopka AR, Sreekumaran Nair K. Mitochondrial and skeletal muscle health with advancing age. Mol Cell Endocrinol. 2013;379(1–2):19–29. doi: 10.1016/j.mce.2013.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bejma J, Ji LL. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol (1985). 1999;87(1):465–70.Google Scholar
  58. 58.
    Malbut KE, Dinan S, Young A. Aerobic training in the ‘oldest old’: the effect of 24 weeks of training. Age Ageing. 2002;31(4):255–60.CrossRefPubMedGoogle Scholar
  59. 59.
    Kallinen M, Sipila S, Alen M, et al. Improving cardiovascular fitness by strength or endurance training in women aged 76–78 years. A population-based, randomized controlled trial. Age Ageing. 2002;31(4):247–54.CrossRefPubMedGoogle Scholar
  60. 60.
    Bacon AP, Carter RE, Ogle EA, et al. VO2max trainability and high intensity interval training in humans: a meta-analysis. PLoS One. 2013;8(9):e73182. doi: 10.1371/journal.pone.0073182.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vincent HK, Bourguignon C, Vincent KR. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity (Silver Spring). 2006;14(11):1921–30. doi: 10.1038/oby.2006.224.CrossRefPubMedGoogle Scholar
  62. 62.
    Jain SK, McVie R. Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism. 1994;43(3):306–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Obrosova IG, Van Huysen C, Fathallah L, et al. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J. 2002;16(1):123–5. doi: 10.1096/fj.01-0603fje.PubMedGoogle Scholar
  64. 64.
    Mitranun W, Deerochanawong C, Tanaka H, et al. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24(2):e69–76. doi: 10.1111/sms.12112.CrossRefPubMedGoogle Scholar
  65. 65.
    Kurban S, Mehmetoglu I, Yerlikaya HF, et al. Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus. Endocr Res. 2011;36(3):116–23. doi: 10.3109/07435800.2011.566236.CrossRefPubMedGoogle Scholar
  66. 66.
    Gordon LA, Morrison EY, McGrowder DA, et al. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. BMC Complement Altern Med. 2008;8:21. doi: 10.1186/1472-6882-8-21.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    de Oliveira VN, Bessa A, Jorge ML, et al. The effect of different training programs on antioxidant status, oxidative stress, and metabolic control in type 2 diabetes. Appl Physiol Nutr Metab. 2012;37(2):334–44. doi: 10.1139/h2012-004.CrossRefPubMedGoogle Scholar
  68. 68.
    Gomes VA, Casella-Filho A, Chagas AC, et al. Enhanced concentrations of relevant markers of nitric oxide formation after exercise training in patients with metabolic syndrome. Nitric Oxide. 2008;19(4):345–50. doi: 10.1016/j.niox.2008.08.005.CrossRefPubMedGoogle Scholar
  69. 69.
    Rosety-Rodríguez M, Díaz-Ordonez A, Rosety I, et al. Mejora de defensas antioxidantes mediante ejercicio aeróbico en mujeres con síndrome metabólico [Aerobic training improves antioxidant defense system in women with metabolic syndrome]. Medicina. 2012;72(1):4.Google Scholar
  70. 70.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.CrossRefPubMedGoogle Scholar
  71. 71.
    Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274(39):27905–13.CrossRefPubMedGoogle Scholar
  72. 72.
    Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456–80. doi: 10.4239/wjd.v6.i3.456.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Braith RW, Schofield RS, Hill JA, et al. Exercise training attenuates progressive decline in brachial artery reactivity in heart transplant recipients. J Heart Lung Transplant. 2008;27(1):52–9. doi: 10.1016/j.healun.2007.09.032.CrossRefPubMedGoogle Scholar
  74. 74.
    Beck DT, Martin JS, Casey DP, et al. Exercise training improves endothelial function in resistance arteries of young prehypertensives. J Hum Hypertens. 2014;28(5):303–9. doi: 10.1038/jhh.2013.109.CrossRefPubMedGoogle Scholar
  75. 75.
    Luk TH, Dai YL, Siu CW, et al. Effect of exercise training on vascular endothelial function in patients with stable coronary artery disease: a randomized controlled trial. Eur J Prev Cardiol. 2012;19(4):830–9. doi: 10.1177/1741826711415679.CrossRefPubMedGoogle Scholar
  76. 76.
    Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008;31(Suppl 2):S185–9. doi: 10.2337/dc08-s246.CrossRefPubMedGoogle Scholar
  77. 77.
    Ghoreishian H, Tohidi M, Derakhshan A, et al. Presence of hypertension modifies the impact of insulin resistance on incident cardiovascular disease in a Middle Eastern population: the Tehran Lipid and Glucose Study. Diabet Med. 2015;32(10):1311–8. doi: 10.1111/dme.12733.CrossRefPubMedGoogle Scholar
  78. 78.
    Schiffrin EL, Canadian Institutes of Health Research Multidisciplinary Research Group on Hypertension. Beyond blood pressure: the endothelium and atherosclerosis progression. Am J Hypertens. 2002;15(10 Pt 2):115S–22S.Google Scholar
  79. 79.
    López-Suárez A, Bascuñana-Quirell A, Beltrán-Robles M, et al. Metabolic syndrome does not improve the prediction of 5-year cardiovascular disease and total mortality over standard risk markers. Prospective population based study. Medicine. 2014;93(27):e212.Google Scholar
  80. 80.
    Bastani NE, Kostovski E, Sakhi AK, et al. Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients. Arch Phys Med Rehabil. 2012;93(12):2223–8 e2. doi: 10.1016/j.apmr.2012.06.021.
  81. 81.
    LaVela SL, Evans CT, Prohaska TR, et al. Males aging with a spinal cord injury: prevalence of cardiovascular and metabolic conditions. Arch Phys Med Rehabil. 2012;93(1):90–5. doi: 10.1016/j.apmr.2011.07.201.CrossRefPubMedGoogle Scholar
  82. 82.
    Ordonez FJ, Rosety MA, Camacho A, et al. Arm-cranking exercise reduced oxidative damage in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2013;94(12):2336–41. doi: 10.1016/j.apmr.2013.05.029.CrossRefPubMedGoogle Scholar
  83. 83.
    Wadley AJ, Veldhuijzen van Zanten JJ, Stavropoulos-Kalinoglou A, et al. Three months of moderate-intensity exercise reduced plasma 3-nitrotyrosine in rheumatoid arthritis patients. Eur J Appl Physiol. 2014;114(7):1483–92. doi: 10.1007/s00421-014-2877-y.CrossRefPubMedGoogle Scholar
  84. 84.
    Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001;358(9285):903–11. doi: 10.1016/S0140-6736(01)06075-5.CrossRefPubMedGoogle Scholar
  85. 85.
    Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age (Dordr). 2013;35(3):705–18. doi: 10.1007/s11357-012-9402-1.
  86. 86.
    Hakkinen A, Sokka T, Kautiainen H, et al. Sustained maintenance of exercise induced muscle strength gains and normal bone mineral density in patients with early rheumatoid arthritis: a 5 year follow up. Ann Rheum Dis. 2004;63(8):910–6. doi: 10.1136/ard.2003.013003.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S26–36. doi: 10.1002/ana.10483 (discussion S-8).
  88. 88.
    Tuon T, Valvassori SS, Lopes-Borges J, et al. Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease. Neuroscience. 2012;227:305–12. doi: 10.1016/j.neuroscience.2012.09.063.CrossRefPubMedGoogle Scholar
  89. 89.
    Maes M, Galecki P, Chang YS, et al. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. doi: 10.1016/j.pnpbp.2010.05.004.CrossRefPubMedGoogle Scholar
  90. 90.
    Schuch FB, Vasconcelos-Moreno MP, Borowsky C, et al. The effects of exercise on oxidative stress (TBARS) and BDNF in severely depressed inpatients. Eur Arch Psychiatry Clin Neurosci. 2014;264(7):605–13. doi: 10.1007/s00406-014-0489-5.CrossRefPubMedGoogle Scholar
  91. 91.
    Bloomer RJ, Schilling BK, Karlage RE, et al. Effect of resistance training on blood oxidative stress in Parkinson disease. Med Sci Sports Exerc. 2008;40(8):1385–9. doi: 10.1249/MSS.0b013e31816f1550.CrossRefPubMedGoogle Scholar
  92. 92.
    Arikawa AY, Thomas W, Gross M, et al. Aerobic training reduces systemic oxidative stress in young women with elevated levels of F2-isoprostanes. Contemp Clin Trials. 2013;34(2):212–7. doi: 10.1016/j.cct.2012.11.003.CrossRefPubMedGoogle Scholar
  93. 93.
    Chandwaney R, Leichtweis S, Leeuwenburgh C, et al. Oxidative stress and mitochondrial function in skeletal muscle: effects of aging and exercise training. Age (Omaha). 1998;21(3):109–17. doi: 10.1007/s11357-998-0017-5.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Daussin FN, Rasseneur L, Bouitbir J, et al. Different timing of changes in mitochondrial functions following endurance training. Med Sci Sports Exerc. 2012;44(2):217–24. doi: 10.1249/MSS.0b013e31822b0bd4.CrossRefPubMedGoogle Scholar
  95. 95.
    Phillips SM, Winett RA. Uncomplicated resistance training and health-related outcomes: evidence for a public health mandate. Curr Sports Med Rep. 2010;9(4):208–13. doi: 10.1249/JSR.0b013e3181e7da73.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Holviala J, Kraemer WJ, Sillanpaa E, et al. Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol. 2012;112(4):1335–47. doi: 10.1007/s00421-011-2089-7.CrossRefPubMedGoogle Scholar
  97. 97.
    Li JX, Hong Y, Chan KM. Tai chi: physiological characteristics and beneficial effects on health. Br J Sports Med. 2001;35(3):148–56.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Elwy AR, Groessl EJ, Eisen SV, et al. A systematic scoping review of yoga intervention components and study quality. Am J Prev Med. 2014;47(2):220–32. doi: 10.1016/j.amepre.2014.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Pescatello LS, Arena R, Riebe D, Thompson PD, editors. ACSM’s guidelines for exercise testing and prescription. American College of Sports Medicine. Baltimore: Lippincott Williams & Wilkins; 2013.Google Scholar
  100. 100.
    Goon JA, Aini AH, Musalmah M, et al. Effect of tai chi exercise on DNA damage, antioxidant enzymes, and oxidative stress in middle-age adults. J Phys Act Health. 2009;6(1):43–54.CrossRefPubMedGoogle Scholar
  101. 101.
    Rosado-Pérez J, Santiago-Osorio E, Ortiz R, et al. Tai chi diminishes oxidative stress in Mexican older adults. J Nutr Health Aging. 2012;16(7):5.CrossRefGoogle Scholar
  102. 102.
    Buttle H. Measuring a journey without goal: meditation, spirituality, and physiology. Biomed Res Int. 2015;2015:891671. doi: 10.1155/2015/891671.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kabat-Zinn J, Massion AO, Kristeller J, et al. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. Am J Psychiatry. 1992;149(7):936–43.CrossRefPubMedGoogle Scholar
  104. 104.
    Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:761264. doi: 10.1155/2014/761264.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Hamberg-van Reenen HH, Ariëns GAM, Blatter BM, et al. A systematic review of the relation between physical capacity and future low back and neck/shoulder pain. Pain. 2007;130(1):93–107.CrossRefPubMedGoogle Scholar
  106. 106.
    Vinetti G, Mozzini C, Desenzani P, et al. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: a randomized controlled trial. Sci Rep. 2015;5:9238. doi: 10.1038/srep09238.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Soares JP, Silva AM, Oliveira MM, et al. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age (Dordr). 2015;37(3):9799. doi: 10.1007/s11357-015-9799-4.CrossRefPubMedGoogle Scholar
  108. 108.
    Johnson ML, Irving BA, Lanza IR, et al. Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1386–93. doi: 10.1093/gerona/glu221.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Caio Victor de Sousa
    • 1
    Email author
  • Marcelo Magalhães Sales
    • 1
  • Thiago Santos Rosa
    • 1
  • John Eugene Lewis
    • 2
  • Rosangela Vieira de Andrade
    • 3
  • Herbert Gustavo Simões
    • 1
  1. 1.Graduate Program in Physical EducationUniversidade Católica de BrasíliaBrasíliaBrazil
  2. 2.Department of Psychiatry and Behavioral Sciences, Miller School of MedicineUniversity of MiamiMiamiUSA
  3. 3.Graduate Program in Genomic Sciences and BiotechnologyUniversidade Católica de BrasíliaBrasíliaBrazil

Personalised recommendations