Can Exercise Positively Influence the Intervertebral Disc?

Abstract

To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a ‘critical period’ for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Brickley-Parsons D, Glimcher MJ. Is the chemistry of collagen in intervertebral discs an expression of Wolff’s Law? A study of the human lumbar spine. Spine. 1984;9:148–63.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Vanharanta H. The intervertebral disc: a biologically active tissue challenging therapy. Ann Med. 1994;26:395–9.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Scott JE, Bosworth TR, Cribb AM, et al. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat. 1994;184(Pt 1):73–82.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15:402–10.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Inoue H. Three-dimensional architecture of lumbar intervertebral discs. Spine. 1981;6:139–46.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Wade KR, Robertson PA, Broom ND. A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J. 2011;20:1225–32. doi:10.1007/s00586-011-1704-y.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–61. doi:10.1097/01.brs.0000231761.73859.2c.

    PubMed  Article  Google Scholar 

  8. 8.

    Vergroesen P-PA, Kingma I, Emanuel KS, et al. Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil. 2015;23:1057–70. doi:10.1016/j.joca.2015.03.028.

    PubMed  Article  Google Scholar 

  9. 9.

    Urban JPG, Smith S, Fairbank JCT. Nutrition of the intervertebral disc. Spine. 2004;29:2700–9.

    PubMed  Article  Google Scholar 

  10. 10.

    Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop. 1986;210:243–5.

    PubMed  Google Scholar 

  11. 11.

    Urban JP, Holm S, Maroudas A, et al. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop. 1982;170:296–302.

    CAS  PubMed  Google Scholar 

  12. 12.

    Urban JP, Holm S, Maroudas A. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology. 1978;15:203–21.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bayliss MT, Urban JP, Johnstone B, et al. In vitro method for measuring synthesis rates in the intervertebral disc. J Orthop Res. 1986;4:10–7. doi:10.1002/jor.1100040102.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ohshima H, Tsuji H, Hirano N, et al. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Spine. 1989;14:1234–44.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ohshima H, Urban JP, Bergel DH. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res. 1995;13:22–9. doi:10.1002/jor.1100130106.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis. 1996;55:880–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Arun R, Freeman BJC, Scammell BE, et al. 2009 ISSLS Prize Winner: what influence does sustained mechanical load have on diffusion in the human intervertebral disc?: an in vivo study using serial postcontrast magnetic resonance imaging. Spine. 2009;34:2324–37. doi:10.1097/BRS.0b013e3181b4df92.

    PubMed  Article  Google Scholar 

  18. 18.

    Das DB, Welling A, Urban JPG, et al. Solute transport in intervertebral disc: experiments and finite element modeling. Ann N Y Acad Sci. 2009;1161:44–61. doi:10.1111/j.1749-6632.2008.04075.x.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 2004;37:213–21.

    PubMed  Article  Google Scholar 

  20. 20.

    De Puky P. The physiological oscillation of the length of the body. Acta Orthop. 1935;6:338–47.

    Article  Google Scholar 

  21. 21.

    Ahrens SF. The effect of age on intervertebral disc compression during running. J Orthop Sports Phys Ther. 1994;20:17–21. doi:10.2519/jospt.1994.20.1.17.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Carrigg SY, Hillemeyer LE, Villanueva EE. The effect of running-induced intervertebral disc compression on thoracolumbar vertebral column mobility in young, healthy males. J Orthop Sports Phys Ther. 1992;16:19–24. doi:10.2519/jospt.1992.16.1.19.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Dowzer CN, Reilly T, Cable NT. Effects of deep and shallow water running on spinal shrinkage. Br J Sports Med. 1998;32:44–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    White TL, Malone TR. Effects of running on intervertebral disc height. J Orthop Sports Phys Ther. 1990;12:139–46.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Boocock MG, Garbutt G, Linge K, et al. Changes in stature following drop jumping and post-exercise gravity inversion. Med Sci Sports Exerc. 1990;22:385–90.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Fowler NE, Lees A, Reilly T. Spinal shrinkage in unloaded and loaded drop-jumping. Ergonomics. 1994;37:133–9. doi:10.1080/00140139408963631.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Leatt P, Reilly T, Troup JG. Spinal loading during circuit weight-training and running. Br J Sports Med. 1986;20:119–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Reilly T, Freeman KA. Effects of loading on spinal shrinkage in males of different age groups. Appl Ergon. 2006;37:305–10. doi:10.1016/j.apergo.2005.07.004.

    PubMed  Article  Google Scholar 

  29. 29.

    Tyrrell AR, Reilly T, Troup JD. Circadian variation in stature and the effects of spinal loading. Spine. 1985;10:161–4.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Van Dieën JH, Creemers M, Draisma I, et al. Repetitive lifting and spinal shrinkage, effects of age and lifting technique. Clin Biomech Bristol Avon. 1994;9:367–74. doi:10.1016/0268-0033(94)90067-1.

    Article  Google Scholar 

  31. 31.

    Malko JA, Hutton WC, Fajman WA. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Spine. 1999;24:1015–22.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Malko JA, Hutton WC, Fajiman WA. An in vivo study of the changes in volume (and fluid content) of the lumber intervertebral disc after overnight bed rest and during an 8-hour walking protocol. J Spinal Disord Tech. 2002;15:157–63.

    PubMed  Article  Google Scholar 

  33. 33.

    Dimitriadis AT, Papagelopoulos PJ, Smith FW, et al. Intervertebral disc changes after 1 h of running: a study on athletes. J Int Med Res. 2011;39:569–79.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Kingsley MI, D’Silva LA, Jennings C, et al. Moderate-intensity running causes intervertebral disc compression in young adults. Med Sci Sports Exerc. 2012;44:2199–204. doi:10.1249/MSS.0b013e318260dbc1.

    PubMed  Article  Google Scholar 

  35. 35.

    Botsford DJ, Esses SI, Ogilvie-Harris DJ. In vivo diurnal variation in intervertebral disc volume and morphology. Spine. 1994;19:935–40.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Hellström M, Jacobsson B, Swärd L, et al. Radiologic abnormalities of the thoraco-lumbar spine in athletes. Acta Radiol. 1990;31:127–32.

    PubMed  Article  Google Scholar 

  37. 37.

    Granhed H, Morelli B. Low back pain among retired wrestlers and heavyweight lifters. Am J Sports Med. 1988;16:530–3.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Swärd L, Hellstrom M, Jacobsson B, et al. Back pain and radiologic changes in the thoraco-lumbar spine of athletes. Spine. 1990;15:124–9.

    PubMed  Article  Google Scholar 

  39. 39.

    Nagashima M, Abe H, Amaya K, et al. Risk factors for lumbar disc degeneration in high school American football players: a prospective 2-year follow-up study. Am J Sports Med. 2013;41:2059–64. doi:10.1177/0363546513495173.

    PubMed  Article  Google Scholar 

  40. 40.

    Brüggemann G-P, Krahl H. Belastungen und Risiken im weiblichen Kunstturnen. Teil 1, Aus der Sicht von Biomechanik und Sportmedizin [Loading and risks in female gymnasts. Part 1, biomechanics and sports medicine]. Schorndorf: Hofmann; 2000.

  41. 41.

    Ranson CA, Kerslake RW, Burnett AF, et al. Magnetic resonance imaging of the lumbar spine in asymptomatic professional fast bowlers in cricket. J Bone Joint Surg Br. 2005;87:1111–6. doi:10.1302/0301-620X.87B8.16405.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Videman T, Battié MC, Gibbons LE, et al. Lifetime exercise and disk degeneration: an MRI study of monozygotic twins. Med Sci Sports Exerc. 1997;29:1350–6.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Maurer M, Soder RB, Baldisserotto M. Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers. Am J Sports Med. 2011;39:392–7. doi:10.1177/0363546510381365.

    PubMed  Article  Google Scholar 

  44. 44.

    Kraft CN, Pennekamp PH, Becker U, et al. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am J Sports Med. 2009;37:2205–13. doi:10.1177/0363546509336927.

    PubMed  Article  Google Scholar 

  45. 45.

    Bartolozzi C, Caramella D, Zampa V, et al. The incidence of disk changes in volleyball players. The magnetic resonance findings [in Italian]. Radiol Med. 1991;82:757–60.

    CAS  PubMed  Google Scholar 

  46. 46.

    Goldstein JD, Berger PE, Windler GE, et al. Spine injuries in gymnasts and swimmers. An epidemiologic investigation. Am J Sports Med. 1991;19:463–8.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Hangai M, Kaneoka K, Hinotsu S, et al. Lumbar intervertebral disk degeneration in athletes. Am J Sports Med. 2009;37:149–55. doi:10.1177/0363546508323252.

    PubMed  Article  Google Scholar 

  48. 48.

    Kaneoka K, Shimizu K, Hangai M, et al. Lumbar intervertebral disk degeneration in elite competitive swimmers: a case control study. Am J Sports Med. 2007;35:1341–5. doi:10.1177/0363546507300259.

    PubMed  Article  Google Scholar 

  49. 49.

    Videman T, Sarna S, Battié MC, et al. The long-term effects of physical loading and exercise lifestyles on back-related symptoms, disability, and spinal pathology among men. Spine. 1995;20:699–709.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Videman T, Nurminen M, Troup JD. 1990 Volvo Award in clinical sciences. Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation, and physical loading. Spine. 1990;15:728–40.

    CAS  PubMed  Google Scholar 

  51. 51.

    Kordi M, Belavý DL, Armbrecht G, et al. Loss and re-adaptation of lumbar intervertebral disc water signal intensity after prolonged bedrest. J Musculoskelet Neuronal Interact. 2015;15:294–300.

    CAS  PubMed  Google Scholar 

  52. 52.

    Hangai M, Kaneoka K, Kuno S, et al. Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J. 2008;8:732–40. doi:10.1016/j.spinee.2007.07.392.

    PubMed  Article  Google Scholar 

  53. 53.

    Adams MA, Hutton WC. Prolapsed intervertebral disc. A hyperflexion injury. 1981 Volvo Award in Basic Science. Spine. 1982;1982(7):184–91.

    Article  Google Scholar 

  54. 54.

    Wade KR, Robertson PA, Thambyah A, et al. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine. 2014;39:1018–28. doi:10.1097/BRS.0000000000000262.

    PubMed  Article  Google Scholar 

  55. 55.

    Roaf R. A study of the mechanics of spinal injuries. J Bone Joint Surg Br. 1960;42:810–23.

    Google Scholar 

  56. 56.

    Wang Y, Videman T, Battié MC. ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine. 2012;37:1490–6. doi:10.1097/BRS.0b013e3182608ac4.

    PubMed  Article  Google Scholar 

  57. 57.

    Holm S, Holm AK, Ekström L, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech. 2004;17:64–71.

    PubMed  Article  Google Scholar 

  58. 58.

    Schmidt H, Heuer F, Wilke H-J. Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads. Med Eng Phys. 2009;31:642–9. doi:10.1016/j.medengphy.2008.12.004.

    PubMed  Article  Google Scholar 

  59. 59.

    Adams MA, Hutton WC. Gradual disc prolapse. Spine. 1985;10:524–31.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Hansson TH, Keller TS, Spengler DM. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res. 1987;5:479–87. doi:10.1002/jor.1100050403.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Holm S, Nachemson A. Variations in the nutrition of the canine intervertebral disc induced by motion. Spine. 1983;8:866–74.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Säämänen AM, Puustjärvi K, Ilves K, et al. Effect of running exercise on proteoglycans and collagen content in the intervertebral disc of young dogs. Int J Sports Med. 1993;14:48–51. doi:10.1055/s-2007-1021145.

    PubMed  Article  Google Scholar 

  63. 63.

    Brisby H, Wei AQ, Molloy T, et al. The effect of running exercise on intervertebral disc extracellular matrix production in a rat model. Spine. 2010;35:1429–36. doi:10.1097/BRS.0b013e3181e0f5bc.

    PubMed  Article  Google Scholar 

  64. 64.

    Sasaki N, Henriksson HB, Runesson E, et al. Physical exercise affects cell proliferation in lumbar intervertebral disc regions in rats. Spine. 2012;37:1440–7. doi:10.1097/BRS.0b013e31824ff87d.

    PubMed  Article  Google Scholar 

  65. 65.

    Puustjärvi K, Lammi M, Kiviranta I, et al. Proteoglycan synthesis in canine intervertebral discs after long-distance running training. J Orthop Res. 1993;11:738–46. doi:10.1002/jor.1100110516.

    PubMed  Article  Google Scholar 

  66. 66.

    Puustjärvi K, Lammi M, Helminen H, et al. Proteoglycans in the intervertebral disc of young dogs following strenuous running exercise. Connect Tissue Res. 1994;30:225–40.

    PubMed  Article  Google Scholar 

  67. 67.

    Puustjärvi K, Takala T, Wang W, et al. Enhanced prolylhydroxylase activity in the posterior annulus fibrosus of canine intervertebral discs following long-term running exercise. Eur Spine J. 1993;2:126–31.

    PubMed  Article  Google Scholar 

  68. 68.

    Neufeld JH. Induced narrowing and back adaptation of lumbar intervertebral discs in biomechanically stressed rats. Spine. 1992;17:811–6.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Cassidy JD, Yong-Hing K, Kirkaldy-Willis WH, et al. A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat. Spine. 1988;13:301–8.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Higuchi M, Abe K, Kaneda K. Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study. Clin Orthop. 1983;175:251–7.

    PubMed  Google Scholar 

  71. 71.

    Yamada K. The dynamics of experimental posture. Experimental study of intervertebral disk herniation in bipedal animals. Clin Orthop. 1962;25:20–31.

    CAS  PubMed  Google Scholar 

  72. 72.

    Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J. 2011;20:1796–812. doi:10.1007/s00586-011-1827-1.

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Iatridis JC, MacLean JJ, Roughley PJ, et al. Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am. 2006;88(Suppl 2):41–6.

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Le Maitre CL, Frain J, Fotheringham AP, et al. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology. 2008;45:563–75.

    PubMed  Google Scholar 

  75. 75.

    Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999;24:755–62.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Mayer JE, Iatridis JC, Chan D, et al. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013;13:299–317. doi:10.1016/j.spinee.2013.01.041.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Elfering A, Semmer N, Birkhofer D, et al. Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine. 2002;27:125–34.

    PubMed  Article  Google Scholar 

  78. 78.

    Yuan H-Y, Tang Y, Liang Y-X, et al. Matrix metalloproteinase-3 and vitamin d receptor genetic polymorphisms, and their interactions with occupational exposure in lumbar disc degeneration. J Occup Health. 2010;52:23–30.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Coventry MB. Anatomy of the intervertebral disk. Clin Orthop. 1969;67:9–15.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Kraemer J, Kolditz D, Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine. 1985;10:69–71.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Koeller W, Muehlhaus S, Meier W, et al. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression–influence of age and degeneration. J Biomech. 1986;19:807–16.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Sether LA, Yu S, Haughton VM, et al. Intervertebral disk: normal age-related changes in MR signal intensity. Radiology. 1990;177:385–8. doi:10.1148/radiology.177.2.2217773.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine. 2002;27:2631–44. doi:10.1097/01.BRS.0000035304.27153.5B.

    PubMed  Article  Google Scholar 

  84. 84.

    Luoma K, Vehmas T, Riihimäki H, et al. Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine. 2001;26:680–6.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta. 2014;1840:3181–9. doi:10.1016/j.bbagen.2014.07.013.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med. 2002;36:250–7 (discussion 257).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Ledsome JR, Lessoway V, Susak LE, et al. Diurnal changes in lumbar intervertebral distance, measured using ultrasound. Spine. 1996;21:1671–5.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Wang Y-XJ, Griffith JF, Leung JCS, et al. Age related reduction of T1rho and T2 magnetic resonance relaxation times of lumbar intervertebral disc. Quant Imaging Med Surg. 2014;4:259–64. doi:10.3978/j.issn.2223-4292.2014.07.14.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    VanTulder MW, Assendelft WJ, Koes BW, et al. Spinal radiographic findings and nonspecific low back pain. A systematic review of observational studies. Spine. 1997;22:427–34.

    CAS  Article  Google Scholar 

  90. 90.

    Boden SD, McCowin PR, Davis DO, et al. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:1178–84.

    CAS  PubMed  Google Scholar 

  91. 91.

    Boden SD, Davis DO, Dina TS, et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:403–8.

    CAS  PubMed  Google Scholar 

  92. 92.

    Vernon-Roberts B, Pirie CJ. Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol Rehabil. 1977;16:13–21.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–8.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Belavý DL, Armbrecht G, Gast U, et al. Countermeasures against lumbar spine deconditioning in prolonged bed-rest: resistive exercise with and without whole-body vibration. J Appl Physiol. 2010;109:1801–11.

    PubMed  Article  Google Scholar 

  95. 95.

    An HS, Anderson PA, Haughton VM, et al. Introduction: disc degeneration: summary. Spine. 2004;29:2677–8.

    PubMed  Article  Google Scholar 

  96. 96.

    Marinelli NL, Haughton VM, Munoz A, et al. T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine. 2009;34:520–4.

    PubMed  Article  Google Scholar 

  97. 97.

    Weidenbaum M, Foster RJ, Best BA, et al. Correlating magnetic resonance imaging with the biochemical content of the normal human intervertebral disc. J Orthop Res. 1992;10:552–61. doi:10.1002/jor.1100100410.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Antoniou J, Pike GB, Steffen T, et al. Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med. 1998;40:900–7.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Kealey SM, Aho T, Delong D, et al. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology. 2005;235:569–74. doi:10.1148/radiol.2352040437.

    PubMed  Article  Google Scholar 

  100. 100.

    Antoniou J, Demers CN, Beaudoin G, et al. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn Reson Imaging. 2004;22:963–72. doi:10.1016/j.mri.2004.02.011.

    PubMed  Article  Google Scholar 

  101. 101.

    Wu N, Liu H, Chen J, et al. Comparison of apparent diffusion coefficient and T2 relaxation time variation patterns in assessment of age and disc level related intervertebral disc changes. PLoS One. 2013;8:e69052. doi:10.1371/journal.pone.0069052.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Johannessen W, Auerbach JD, Wheaton AJ, et al. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine. 2006;31:1253–7. doi:10.1097/01.brs.0000217708.54880.51.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine. 2004;29:2654–67.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Nguyen-minh C, Haughton VM, Papke RA, et al. Measuring diffusion of solutes into intervertebral disks with MR imaging and paramagnetic contrast medium. AJNR Am J Neuroradiol. 1998;19:1781–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Belavý.

Ethics declarations

Funding

No financial support was received for the conduct of this review.

Conflict of interest

Daniel Belavý, Kirsten Albracht, Gert-Peter Bruggemann, Pieter-Paul Vergroesen and Jaap van Dieën declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belavý, D.L., Albracht, K., Bruggemann, GP. et al. Can Exercise Positively Influence the Intervertebral Disc?. Sports Med 46, 473–485 (2016). https://doi.org/10.1007/s40279-015-0444-2

Download citation

Keywords

  • Intervertebral Disc
  • Nucleus Pulposus
  • Disc Degeneration
  • Annulus Fibrosus
  • Intradiscal Pressure