Development of Aerobic Fitness in Young Team Sport Athletes

Abstract

The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Helgerud J, Engen LC, Wisloff U, Hoff J. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33:1925–31.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hoff J, Wisloff U, Engen LC, Kemi OJ, Helgerud J. Soccer specific aerobic endurance training. Br J Sports Med. 2002;36(3):218–21.

    PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    Loftin M, Anderson P, Lytton L, Pittman P, Warren B. Heart rate response during handball singles match-play and selected physical fitness components of experienced male handball players. J Sports Med Phys Fit. 1996;36:95–9.

    CAS  Google Scholar 

  4. 4.

    Tomlin DL, Wenger HL. The relationship between aerobic fitness and recovery from high intensity exercise. Sports Med. 2001;31(1):1–11.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Strøyer J, Hansen L, Klausen K. Physiological profile and activity pattern of young soccer players during match play. Med Sci Sports Exerc. 2004;36(1):168–74.

    PubMed  Article  Google Scholar 

  6. 6.

    Chamari K, Hachana Y, Kaouech F, Jeddi R, Moussa-Chamari I, Wisloff U. Endurance training and testing with the ball in young elite soccer players. Br J Sports Med. 2005;39(1):24–8.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Naughton G, Farpour-Lambert N, Carlson JS, Bradney M, Van Praagh E. Physiological issues surrounding the performance of adolescent athletes. Sports Med. 2000;30:309–25.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Viru A, Loko J, Harro M, Volver A, Laaneots L, Viru M. Critical periods in the development of performance capacity during childhood and adolescence. Eur J Appl Physiol. 1999;4:75–119.

    Google Scholar 

  9. 9.

    Balyi I, Hamilton A. Long-term athlete development: trainability in childhood and adolescence. Windows of opportunity, optimal trainability. Victoria: National Coaching Institute British Columbia & Advanced Training and Performance Ltd; 2004.

  10. 10.

    Ford P, De Ste Croix M, Lloyd R, Meyers R, Moosavi M, Oliver J, et al. The long-term athlete development model: physiological evidence and application. J Sports Sci. 2010;29(4):389–402.

    Article  Google Scholar 

  11. 11.

    Baquet G, Van Praagh E, Berthoin S. Endurance training and aerobic fitness in young people. Sports Med. 2003;33(15):1127–43.

    PubMed  Article  Google Scholar 

  12. 12.

    Lloyd RS, Oliver JL. The youth physical development model: a new approach to long-term athletic development. Strength Cond J. 2012;34(3):61–72.

    Article  Google Scholar 

  13. 13.

    Bloom BS. Developing talent in young people. New York: Ballantine; 1985.

    Google Scholar 

  14. 14.

    Côté J, Baker J, Abernethy B. Practice and play in the development of sport expertise. In: Eklund R, Tenenbaum G, editors. Handbook of sport psychology. 3rd ed. Hoboken: Wiley; 2007. p. 184–202.

    Google Scholar 

  15. 15.

    Baker J. Early specialization in youth sport: a requirement for adult expertise? High Abil Stud. 2003;14(1):85–94.

    Article  Google Scholar 

  16. 16.

    Baker J, Cote J, Abernethy B. Learning from the experts: practice activities of expert decision makers in sport. Res Q Exerc Sport. 2003;74(3):342–7.

    PubMed  Article  Google Scholar 

  17. 17.

    Baker J, Cote J, Abernethy B. Sport-specific practice and the development of expert decision-making in team ball sports. J Appl Sport Psychol. 2003;15(1):12–25.

    Article  Google Scholar 

  18. 18.

    Côté J. The influence of the family in the development of talent in sport. Sport Psychol. 1999;13(4):395–417.

    Google Scholar 

  19. 19.

    Ford P, Carling C, Garces M, Marques M, Miguel C, Farrant A, et al. The developmental activities of elite soccer players aged under 16 years from Brazil, England, France, Ghana, Mexico, Portugal and Sweden. J Sports Sci. 2012;30(15):1653–63.

    PubMed  Article  Google Scholar 

  20. 20.

    Gulbin J, Weissensteiner J, Oldenziel K, Gagne F. Patterns of performance development in elite athletes. Eur J Sport Sci. 2013;13(6):605–14.

  21. 21.

    Geithner C, Thomas M, Vanden Eynde B, Maes H, Loos R, Peeters M, et al. Growth in peak aerobic power during adolescence. Med Sci Sports Exerc. 2004;36(9):1616–24.

    PubMed  Article  Google Scholar 

  22. 22.

    Philippaerts RM, Vaeyens R, Janssens M, Van Renterghem B, Matthys D, Craen R, et al. The relationship between peak height velocity and physical performance in youth soccer players. J Sports Sci. 2006;24(3):221–30.

    PubMed  Article  Google Scholar 

  23. 23.

    Iuliano-Burns S, Mirwald RL, Bailey DA. Timing and magnitude of peak-height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am J Hum Biol. 2001;13:1–8.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Krivolapchuk IA. Energy supply for muscle activity in 13- to 14-year-old boys depending on the rate of puberty. Hum Physiol. 2011;37(1):75–84.

    Article  Google Scholar 

  25. 25.

    Marshall SW, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.

    PubMed  Article  Google Scholar 

  27. 27.

    Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign: Human Kinetics; 2004.

    Google Scholar 

  28. 28.

    Carling C, le Gall F, Reilly T, Williams AM. Do anthropometric and fitness characteristics vary according to birth date distribution in elite youth academy soccer players? Scand J Med Sci Sport. 2009;19(1):3–9.

    CAS  Article  Google Scholar 

  29. 29.

    Malina RM, Pena Reyes ME, Eisenmann JC, Horta L, Rodrigues J, Miller R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11–16 years. J Sports Sci. 2000;18(9):685–93.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Johnson A, Doherty P, Freemont A. Chronological versus skeletal bone age in schoolboy footballers. In: Reilly T, Korkusuz F, editors. Science and football VI. Oxon: Routledge; 2009. pp. 132–7.

  31. 31.

    Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51:170–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. 32.

    Buchheit M, Laursen PB, Kuhnle J, Ruth D, Renaud C, Ahmaidi S. Game-based training in young elite handball players. Int J Sports Med. 2009;30(4):251–8.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Leone M, Comtois AS. Validity and reliability of self-assessment of sexual maturity in elite adolescent athletes. J Sports Med Phys Fit. 2007;47:361–5.

    CAS  Google Scholar 

  34. 34.

    Sherar LB, Mirwald RL, Baxter-Jones ADG, Thomis M. Prediction of adult height using maturity-based cumulative height velocity curves. J Pediatr. 2005;147(4):508–14.

    PubMed  Article  Google Scholar 

  35. 35.

    Tønnessen E, Shalfawi SAI, Haugen T, Enoksen E. The effect of 40-m repeated sprint training on maximum sprinting speed, repeated sprint speed endurance, vertical jump, and aerobic capacity in young elite male soccer players. J Strength Cond Res. 2011;25(9):2364–70.

    PubMed  Article  Google Scholar 

  36. 36.

    Yague P, De la Fruente J. Changes in height and motor performance relative to peak height velocity: a mixed-longitudinal study of Spanish boys and girls. Am J Hum Biol. 1998;10:647–60.

    Article  Google Scholar 

  37. 37.

    Malina RM, Coelho E, Silva MJ, Figueiredo AJ, Carling C, Beunen GP. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players. J Sports Sci. 2012;30(15):1705–17.

    PubMed  Article  Google Scholar 

  38. 38.

    Whipp BJ, Mahler M. Dynamics of pulmonary gas exchange during exercise. In: West JB, editor. pulmonary gas exchange. New York: Academic Press; 1980. p. 33–96.

    Google Scholar 

  39. 39.

    Krahenbuhl GS, Skinner JS, Kohrt WM. Developmental aspects of maximal aerobic power in children. Exerc Sport Sci R. 1985;13:503–38.

    CAS  Google Scholar 

  40. 40.

    Washington RL, Vangundy JC, Cohen C, Sognheiner HM, Wolfe RR. Normal aerobic and anaerobic exercise data for North American school-age children. J Pediatr. 1988;112:223–33.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Binkhorst RA, De Jong-Van De Kar MC, Vissers QCQ. Growth and aerobic power of boys aged 11–19 years. In: Ilmarinen J, Valimaki I, editors. Children and sport: paediatric work physiology. New York: Springer; 1984. pp. 99–105.

  42. 42.

    McMurray RG, Harrell JS, Bradley CB, Deng S, Bangdiwala SI. Predicted maximal aerobic power in youth is related to age, gender, and ethnicity. Phys Fit Perform. 2002;34(1):145–51.

    Google Scholar 

  43. 43.

    Rutenfranz J, Anderson KL, Seliger V, Klimmer F, Berndt I, Ruppel M. Maximum aerobic power and body composition during the puberty growth period: similarities and differences between children of two European countries. Eur J Pediatr. 1981;136:123–33.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Sprynarova S, Parizkova J, Bunc V. Relationships between body dimensions and resting and working oxygen consumption in boys aged 11 to 18 years. Eur J Appl Physiol. 1987;56:725–36.

    CAS  Article  Google Scholar 

  45. 45.

    Vanden Eynde B, Vienne D, Vuylsteke-Wauters M, Van Gerven D. Aerobic power and pubertal peak height velocity in Belgian boys. Eur J Appl Physiol. 1988;57:430–4.

  46. 46.

    Rowland TW. The “trigger hypothesis” for aerobic trainability: a 14-year follow-up. Pediatr Exerc Sci. 1997;9(1):1–9.

    Google Scholar 

  47. 47.

    Mirwald RL, Bailey DA. Maximal aerobic power. London: Sports Dynamics Publishers; 1986.

    Google Scholar 

  48. 48.

    Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol. 1973;87(4):485–97.

    CAS  Article  Google Scholar 

  49. 49.

    Kobayashi K, Kitamura K, Miura M. Aerobic power as related to body growth and training in Japanese boys: a longitudinal study. J Appl Physiol. 1978;44:666–72.

    CAS  PubMed  Google Scholar 

  50. 50.

    Mirwald RL, Bailey DA, Cameron N. Longitudinal comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. Ann Hum Biol. 1981;8:405–14.

  51. 51.

    Hamilton P, Andrew GM. Influence of growth and athletic training on heart and lung functions. Eur J Appl Physiol. 1976;36:27–38.

    CAS  Article  Google Scholar 

  52. 52.

    Baquet G, Berthoin S, Van Praagh E. Are intensified physical education sessions able to elicit heart rate at a sufficient level to promote aerobic fitness in adolescents? Res Q Exerc Sport. 2002;73(3):282–8.

    PubMed  Article  Google Scholar 

  53. 53.

    Baquet G, Gamelin F, Mucci P, Thévenet D, Van Praagh E, Berthoin S. Continuous vs. interval aerobic training in 8- to 11-year-old children. J Strength Cond Res. 2010;24(5):1381–8.

    PubMed  Article  Google Scholar 

  54. 54.

    Rowland TW. Aerobic response to endurance training in prepubescent children: a critical analysis. Med Sci Sports Exerc. 1985;17:493–7.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Mahon AD, Vaccaro P. Ventilatory threshold and VO2max changes in children following endurance training. Med Sci Sports Exerc. 1989;21:425–31.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Rowland TW, Varzeas MR, Walsh CA. Aerobic responses to walking training in sedentary adolescents. J Adolesc Health Care. 1991;12:30–4.

    CAS  Article  Google Scholar 

  57. 57.

    Shephard RJ. Effectiveness of training programmes for pubescent children. Sports Med. 2002;13:194–213.

    Article  Google Scholar 

  58. 58.

    Rumpf MC, Cronin JB, Pinder SD, Oliver J, Hughes M. Effect of different training methods on running sprint times in male youth. Pediatr Exerc Sci. 2012;24(2):170–86.

    PubMed  Google Scholar 

  59. 59.

    Hopkins WG, Marshall SW, Betterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.

    PubMed  Article  Google Scholar 

  60. 60.

    Vamvakoudis E, Vrabas IS, Galazoulas C, Stefanidis P. Effects of basketball training on maximal oxygen uptake, muscle strength, and joint mobility in young basketball players. J Strength Cond Res. 2007;21(3):930–6.

    PubMed  Google Scholar 

  61. 61.

    Gabbett T. Performance changes following a field conditioning program in junior and senior rugby league players. J Strength Cond Res. 2006;20(1):215–21.

    PubMed  Google Scholar 

  62. 62.

    Hill-Haas S, Coutts A, Rowsell J, Dawson B. Generic versus small-sided game training in soccer. Int J Sports Med. 2009;30:636–42.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Manna I, Khanna GL, Dhara PC. Effects of training on body composition, aerobic capacity, anaerobic power and strength of field hockey players of selected age groups. Int J Appl Sport Sci. 2011;23(1):198–211.

    Google Scholar 

  64. 64.

    Safania AM, Alizadeh R, Nourshahi M. A comparison of small-side games and interval training on same selected physical fitness factors in amateur soccer players. J Soc Sci. 2011;7(3):349–53.

    Google Scholar 

  65. 65.

    Sperlich B, De Marées M, Koehler K, Linville J, Holmberg H-C, Mester J. Effects of 5 weeks of high-intensity interval training vs. volume training in 14-year-old soccer players. J Strength Cond Res. 2011;25(5):1271–8.

    PubMed  Article  Google Scholar 

  66. 66.

    Bogdanis GC, Ziagos V, Anastasiadis M, Maridaki M. Effects of two different short-term training programs on the physical and technical abilities of adolescent basketball players. J Sci Med Sport. 2007;10(2):79–88.

    PubMed  Article  Google Scholar 

  67. 67.

    Ferrari-Bravo D, Impellizzeri FM, Rampinini E, Castagna C, Bishop D, Wisloff U. Sprint vs. interval training in football. Int J Sports Med. 2008;29(8):668–74.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Gabbett T. Skill-based conditioning games as an alternative to traditional conditioning for rugby league players. J Strength Cond Res. 2006;20(2):309–15.

    PubMed  Article  Google Scholar 

  69. 69.

    Impellizzeri F, Marcora SM, Castagna C, Reilly T, Sassi A, Iaia FM, et al. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med. 2006;27(6):483–92.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Impellizzeri F, Rampinini E, Maffiuletti NA, Castagna C, Bizzini M, Wisløff U. Effects of aerobic training on the exercise-induced decline in short-passing ability in junior soccer players. Appl Physiol Nutr Metab. 2008;33(6):1192–8.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Gabbett T, Johns J, Riemann M. Performance changes following training in junior rugby league players. J Strength Cond Res. 2008;22(3):910–7.

    PubMed  Article  Google Scholar 

  72. 72.

    McMillan K, Helgerud J, Macdonald R, Hoff J. Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med. 2005;39(5):273–7.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  73. 73.

    Rannou F, Prioux J, Zouhal H, Gratas-Delamarche A, Delamarche P. Physiological profile of handball players. J Sports Med Phys Fit. 2001;41(3):349–53.

    CAS  Google Scholar 

  74. 74.

    Buchheit M, Lepretre PM, Behaegel AL, Millet GP, Cuvelier G, Ahmaidi S. Cardiorespiratory responses during running and sport-specific exercises in handball players. J Sci Med Sport. 2009;12(3):399–405.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Hill-Haas S, Dawson B, Impellizzeri F, Coutts A. Physiology of small-sided games training in football. Sports Med. 2011;41(3):199–220.

    PubMed  Article  Google Scholar 

  76. 76.

    Ford P, Ward P, Hodges N, Williams A. The role of deliberate practice and play in career progression in sport: the early engagement hypothesis. High Abil Stud. 2009;20(1):65–75.

    Article  Google Scholar 

  77. 77.

    Ferrete C, Requena B, Suarez-Arrones L, De Villarreal ES. Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. J Strength Cond Res. 2014;28(2):413–22.

    PubMed  Article  Google Scholar 

  78. 78.

    Buchheit M. The 30-15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22(2):365–74.

    PubMed  Article  Google Scholar 

  79. 79.

    Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):665–71.

    PubMed  Article  Google Scholar 

  80. 80.

    Ericsson KA, Krampe RTH, Tesch-Romer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100:363–406.

    Article  Google Scholar 

  81. 81.

    Hill-Haas S, Dawson B, Coutts A, Rowsell G. Physiological responses and time-motion characteristics of various small-sided soccer games in youth players. J Sports Sci. 2009;27(1):1–8.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest that are relevant to the content of this manuscript. No sources of funding were used to assist in the preparation of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig B. Harrison.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrison, C.B., Gill, N.D., Kinugasa, T. et al. Development of Aerobic Fitness in Young Team Sport Athletes. Sports Med 45, 969–983 (2015). https://doi.org/10.1007/s40279-015-0330-y

Download citation

Keywords

  • Team Sport
  • Aerobic Fitness
  • Young Athlete
  • Passive Recovery
  • Peak Height Velocity