Skip to main content

A Review of Resistance Training-Induced Changes in Skeletal Muscle Protein Synthesis and Their Contribution to Hypertrophy

Abstract

Muscle protein synthesis (MPS) is stimulated by resistance exercise (RE) and is further stimulated by protein ingestion. The summation of periods of RE-induced increases in MPS can induce hypertrophy chronically. As such, studying the response of MPS with resistance training (RT) is informative, as adaptations in this process can modulate muscle mass gain. Previous studies have shown that the amplitude and duration of increases in MPS after an acute bout of RE are modulated by an individual’s training status. Nevertheless, it has been shown that the initial responses of MPS to RE and nutrition are not correlated with subsequent hypertrophy. Thus, early acute responses of MPS in the hours after RE, in an untrained state, do not capture how MPS can affect RE-induced muscle hypertrophy. The purpose of this review is provide an in-depth understanding of the dynamic process of muscle hypertrophy throughout RT by examining all of the available data on MPS after RE and in different phases of an RT programme. Analysis of the time course and the overall response of MPS is critical to determine the potential protein accretion after an RE bout. Exercise-induced increases in MPS are shorter lived and peak earlier in the trained state than in the untrained state, resulting in a smaller overall muscle protein synthetic response in the trained state. Thus, RT induces a dampening of the MPS response, potentially limiting protein accretion, but when this occurs remains unknown.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Wilkinson SB, Phillips SM, Atherton PJ, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(Pt 15):3701–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Biolo G, Maggi SP, Williams BD, et al. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268(3 Pt 1):E514–20.

    CAS  PubMed  Google Scholar 

  3. 3.

    Yarasheski KE, Zachwieja JJ, Bier DM. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol. 1993;265(2 Pt 1):E210–4.

    CAS  PubMed  Google Scholar 

  4. 4.

    Tang JE, Perco JG, Moore DR, et al. Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R172–8.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Chesley A, MacDougall JD, Tarnopolsky MA, et al. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol. 1992;73(4):1383–8.

    CAS  PubMed  Google Scholar 

  6. 6.

    MacDougall JD, Tarnopolsky MA, Chesley A, et al. Changes in muscle protein synthesis following heavy resistance exercise in humans: a pilot study. Acta Physiol Scand. 1992;146(3):403–4.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    MacDougall JD, Gibala MJ, Tarnopolsky MA, et al. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol. 1995;20(4):480–6.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99–107.

    CAS  PubMed  Google Scholar 

  9. 9.

    Burd NA, Tang JE, Moore DR, et al. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 2009;106(5):1692–701.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Kumar V, Atherton P, Smith K, et al. Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol. 2009;106(6):2026–39.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Glynn EL, Fry CS, Drummond MJ, et al. Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R533–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. 12.

    Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(Pt 5):1049–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. 13.

    Phillips BE, Hill DS, Atherton PJ. Regulation of muscle protein synthesis in humans. Curr Opin Clin Nutr Metab Care. 2012;15(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    West DW, Kujbida GW, Moore DR, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15.

    Wilkinson SB, Tarnopolsky MA, Macdonald MJ, et al. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031–40.

    CAS  PubMed  Google Scholar 

  16. 16.

    Tang JE, Moore DR, Kujbida GW, et al. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987–92.

    Article  CAS  Google Scholar 

  17. 17.

    Burd NA, West DW, Staples AW, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One. 2010;5(8):e12033.

    Article  PubMed Central  PubMed  Google Scholar 

  18. 18.

    West DW, Burd NA, Tang JE, et al. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol. 2010;108(1):60–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. 19.

    Hartman JW, Tang JE, Wilkinson SB, et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr. 2007;86(2):373–81.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cribb PJ, Williams AD, Carey MF, et al. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006;16(5):494–509.

    CAS  PubMed  Google Scholar 

  21. 21.

    Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985). 2012;113(1):71–7.

    Article  PubMed Central  CAS  Google Scholar 

  22. 22.

    Mitchell CJ, Churchward-Venne TA, Parise G, et al. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One. 2014;9(2):e89431.

    Article  PubMed Central  PubMed  Google Scholar 

  23. 23.

    Mayhew DL, Kim JS, Cross JM, et al. Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol. 2009;107(5):1655–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. 24.

    Mitchell C, Churchward-Venne TA, Cameron-Smith D, et al. What is the relationship between acute of muscle protein synthesis response and changes in muscle mass? J Appl Physiol. In press.

  25. 25.

    Miller BF, Olesen JL, Hansen M, et al. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 2005;567(Pt 3):1021–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. 26.

    Phillips SM, Parise G, Roy BD, et al. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80(11):1045–53.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Phillips SM, Tipton KD, Ferrando AA, et al. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276(1 Pt 1):E118–24.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol. 2005;568(Pt 1):283–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. 29.

    Yarasheski KE, Campbell JA, Smith K, et al. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol. 1992;262(3 Pt 1):E261–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Smith K, Rennie MJ. Protein turnover and amino acid metabolism in human skeletal muscle. Baillieres Clin Endocrinol Metab. 1990;4(3):461–98.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Burd NA, Andrews RJ, West DW, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    Burd NA, West DW, Moore DR, et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568–73.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Alway SE, Grumbt WH, Stray-Gundersen J, et al. Effects of resistance training on elbow flexors of highly competitive bodybuilders. J Appl Physiol (1985). 1992;72(4):1512–21.

    CAS  Google Scholar 

  35. 35.

    Short KR, Vittone JL, Bigelow ML, et al. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. 2004;286(1):E92–101.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Pikosky MA, Gaine PC, Martin WF, et al. Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. J Nutr. 2006;136(2):379–83.

    CAS  PubMed  Google Scholar 

  37. 37.

    Witard OC, Jackman SR, Breen L, et al. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Roy BD, Tarnopolsky MA, MacDougall JD, et al. Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol (1985). 1997;82(6):1882–8.

    CAS  Google Scholar 

  39. 39.

    Ahtiainen JP, Pakarinen A, Kraemer WJ, et al. Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med. 2003;24(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Staples AW, Burd NA, West DW, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–61.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Beelen M, Tieland M, Gijsen AP, et al. Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. J Nutr. 2008;138(11):2198–204.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Breen L, Stokes KA, Churchward-Venne TA, et al. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013;98(6):2604–12.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Koopman R, Verdijk L, Manders RJ, et al. Co-ingestion of protein and leucine stimulates muscle protein synthesis rates to the same extent in young and elderly lean men. Am J Clin Nutr. 2006;84(3):623–32.

    CAS  PubMed  Google Scholar 

  44. 44.

    Pescatello LS, Kostek MA, Gordish-Dressman H, et al. ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc. 2006;38(6):1074–81.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Clarkson PM, Devaney JM, Gordish-Dressman H, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol (1985). 2005;99(1):154–63.

    Article  CAS  Google Scholar 

  46. 46.

    Riechman SE, Balasekaran G, Roth SM, et al. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol. 2004;97(6):2214–9.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Wilkinson DJ, Franchi MV, Brook MS, et al. A validation of the application of D(2)O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans. Am J Physiol Endocrinol Metab. 2014;306(5):E571–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. 48.

    Gasier HG, Fluckey JD, Previs SF. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr Metab (Lond). 2010;7:31.

    Article  PubMed Central  PubMed  Google Scholar 

  49. 49.

    Gasier HG, Fluckey JD, Previs SF, et al. Acute resistance exercise augments integrative myofibrillar protein synthesis. Metabolism. 2012;61(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    MacDonald AJ, Small AC, Greig CA, et al. A novel oral tracer procedure for measurement of habitual myofibrillar protein synthesis. Rapid Commun Mass Spectrom. 2013;27(15):1769–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge São Paulo Research Foundation (FAPESP) Grant #2012/24499-1, and the Brazilian National Council for Scientific and Technological Development (CNPq), for funding received. The authors have no conflicts of interest, financial or otherwise, to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felipe Damas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damas, F., Phillips, S., Vechin, F.C. et al. A Review of Resistance Training-Induced Changes in Skeletal Muscle Protein Synthesis and Their Contribution to Hypertrophy. Sports Med 45, 801–807 (2015). https://doi.org/10.1007/s40279-015-0320-0

Download citation

Keywords

  • Resistance Training
  • Resistance Exercise
  • Training State
  • Muscle Hypertrophy
  • Muscle Protein Synthesis