Performance-Enhancing Substances in Sports: A Review of the Literature

Abstract

Performance-enhancing substances (PESs) have unfortunately become ubiquitous in numerous sports, often tarnishing the spirit of competition. Reported rates of PES use among athletes are variable and range from 5 to 31 %. More importantly, some of these substances pose a serious threat to the health and well-being of athletes. Common PESs include anabolic–androgenic steroids, human growth hormone, creatine, erythropoietin and blood doping, amphetamines and stimulants, and beta-hydroxy-beta-methylbutyrate. With recent advances in technology, gene doping is also becoming more conceivable. Sports medicine physicians are often unfamiliar with these substances and thus do not routinely broach the topic of PESs with their patients. However, to effect positive change in the sports community, physicians must educate themselves about the physiology, performance benefits, adverse effects, and testing methods. In turn, physicians can then educate athletes at all levels and prevent the use of potentially dangerous PESs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Botre F, Pavan A. Enhancement drugs and the athlete. Neurol Clin. 2008;26:149–67.

    PubMed  Google Scholar 

  2. 2.

    De Rose EH. Doping in athletes: an update. Clin Sports Med. 2008;27:107–30.

    PubMed  Google Scholar 

  3. 3.

    WADA. World anti-doping code (online). 2015. https://wada-main-prod.s3.amazonaws.com/resources/files/wada-2015-world-anti-doping-code.pdf. Accessed 11 Aug 2014.

  4. 4.

    Mitchell G. Report to the Commissioner of Baseball of an independent investigation into the illegal use of steroids and other performance enhancing substances by players in Major League Baseball (online). http://files.mlb.com/mitchrpt.pdf. Accessed 11 Aug 2014.

  5. 5.

    Nilsson S. Androgenic anabolic steroid use among male adolescents in Falkenberg. Eur J Clin Pharmacol. 1995;48:9–11.

    CAS  PubMed  Google Scholar 

  6. 6.

    Korkia P, Stinson GV. Indication of prevalence, practice and effects of anabolic steroid use in Great Britain. Int J Sports Med. 1997;18:557–62.

    CAS  PubMed  Google Scholar 

  7. 7.

    Simon P, Striegel H, Aust F, et al. Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction. 2006;101:1640–4.

    PubMed  Google Scholar 

  8. 8.

    Striegel H, Simon P, Frisch S, et al. Anabolic ergogenic substance users in fitness-sports: a distinct group supported by the health care system. Drug Alcohol Depend. 2006;81:11–9.

    PubMed  Google Scholar 

  9. 9.

    Kanayama G, Gruber AJ, Pope HG Jr, et al. Over-the-counter drug use in gymnasiums: an unrecognized substance abuse problem? Psychother Psychosom. 2001;70:137–40.

    CAS  PubMed  Google Scholar 

  10. 10.

    Buckman JF, Yusko DA, White HR, et al. Risk profile of male college athletes who use performance-enhancing substances. J Stud Alcohol Drugs. 2009;70:919–23.

    PubMed Central  PubMed  Google Scholar 

  11. 11.

    Dietz P, Ulrich R, Dalaker R, et al. Associations between physical and cognitive doping: a cross-sectional study in 2,997 triathletes. PLoS ONE. 2013;8:e78702.

    PubMed Central  PubMed  Google Scholar 

  12. 12.

    Striegel H, Ulrich R, Simon P. Randomized response estimates for doping and illicit drug use in elite athletes. Drug Alcohol Depend. 2010;106:230–2.

    PubMed  Google Scholar 

  13. 13.

    Rexroat M. NCAA national study of substance use habits of college student-athletes (online). http://www.ncaa.org/sites/default/files/Substance%20Use%20Final%20Report_FINAL.pdf. Accessed 11 Aug 2014.

  14. 14.

    Sagoe D, Molde H, Andreassen CS, et al. The global epidemiology of anabolic-androgenic steroid use: a meta analysis and meta-regression analysis. Ann Epidemiol. 2014;24:383–98.

    PubMed  Google Scholar 

  15. 15.

    Gregory AJ, Fitch RW. Sports medicine: performance-enhancing drugs. Pediatr Clin North Am. 2007;54:797–806.

    PubMed  Google Scholar 

  16. 16.

    Pereira HM, Padilha MC, Neto FR. Tetrahydrogestrinone analysis and designer steroids revisited. Bioanalysis. 2009;1:1475–89.

    CAS  PubMed  Google Scholar 

  17. 17.

    Teale P, Scarth J, Hudson S. Impact of the emergence of designer drugs upon sports doping testing. Bioanalysis. 2012;4:71–88.

    CAS  PubMed  Google Scholar 

  18. 18.

    Tokish JM, Kocher MS, Hawkins RJ. Ergogenic aids: a review of basic science, performance, side effects, and status in sports. Am J Sports Med. 2004;32:1543–53.

    PubMed  Google Scholar 

  19. 19.

    Evans N. Current concepts in anabolic-androgenic steroids. Am J Sports Med. 2004;32:534–42.

    PubMed  Google Scholar 

  20. 20.

    Bhasin S, Storer TW, Berman N, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335:1–7.

    CAS  PubMed  Google Scholar 

  21. 21.

    Forbes GB, Porta CR, Herr BE, et al. Sequence of changes in body composition induced by testosterone and reversal of changes after drug is stopped. JAMA. 1992;267:397–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Giorgi A, Weatherby RP, Murphy PW. Muscular strength, body composition and health responses to the use of testosterone enanthate: a double blind study. J Sci Med Sport. 1999;2:341–55.

    CAS  PubMed  Google Scholar 

  23. 23.

    Duntas LH, Popovic V. Hormones as doping in sports. Endocrine. 2013;43:303–13.

    CAS  PubMed  Google Scholar 

  24. 24.

    Broeder CE, Quindry J, Brittingham K, et al. The Andro Project: physiological and hormonal influences of androstenedione supplementation in men 35 to 65 years old participating in a high-intensity resistance training program. Arch Intern Med. 2000;160:3093–104.

    CAS  PubMed  Google Scholar 

  25. 25.

    King DS, Sharp RL, Vukovich MD, et al. Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men: a randomized controlled trial. JAMA. 1999;281:2020–8.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wallace MB, Lim J, Cutler A, et al. Effects of dehydroepiandrosterone vs androstenedione supplementation in men. Med Sci Sports Exerc. 1999;31:1788–92.

    CAS  PubMed  Google Scholar 

  27. 27.

    Liddle DG, Connor DJ. Nutritional supplements and ergogenic AIDS. Prim Care. 2013;40:487–505.

    PubMed  Google Scholar 

  28. 28.

    Bahrke MS, Yesalis CE. Abuse of anabolic steroids and related substances in sport and exercise. Curr Opin Pharmacol. 2004;4:614–20.

    CAS  PubMed  Google Scholar 

  29. 29.

    Kanayama G, Kean J, Hudson JJ, et al. Cognitive deficits in long-term anabolic-androgenic steroid users. Drug Alcohol Depend. 2013;130:208–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. 30.

    Geyer H, Schanzer W, Thevis M. Anabolic agents: recent strategies for their detection and protection from inadvertent doping. Br J Sports Med. 2014;48:820–6.

    PubMed Central  PubMed  Google Scholar 

  31. 31.

    Brudnak MA. Creatine: are the benefits worth the risk? Toxicol Lett. 2004;150:123–30.

    CAS  PubMed  Google Scholar 

  32. 32.

    Eichner ER. Ergogenic aids: what athletes are using and why. Phys Sportsmed. 1997;25:70–83.

    CAS  PubMed  Google Scholar 

  33. 33.

    Greydanus DE, Patel DR. Sports doping in the adolescent athlete the hope, hype, and hyperbole. Pediatr Clin North Am. 2002;49:829–55.

    PubMed  Google Scholar 

  34. 34.

    Balsom PD, Soderlund K, Sjodin B, et al. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand. 1995;154:303–10.

    CAS  PubMed  Google Scholar 

  35. 35.

    Birch R, Noble D, Greenhaff PL. The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. Eur J Appl Physiol Occup Physiol. 1994;69:268–76.

    CAS  PubMed  Google Scholar 

  36. 36.

    Dawson B, Cutler M, Moody A, et al. Effects of oral creatine loading on single and repeated maximal short sprints. Aust J Sci Med Sport. 1995;27:56–61.

    CAS  PubMed  Google Scholar 

  37. 37.

    Oliver JM, Joubert DP, Martin SE, et al. Oral creatine supplementation’s decrease of blood lactate during exhaustive, incremental cycling. Int J Sport Nutr Exerc Metab. 2013;23:252–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Earnest CP, Snell PG, Rodriguez R, et al. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand. 1995;153:207–9.

    PubMed  Google Scholar 

  39. 39.

    Stone MH, Sanborn K, Smith LL, et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int J Sport Nutr. 1999;9:146–65.

    CAS  PubMed  Google Scholar 

  40. 40.

    Aaserud R, Gramyik P, Olsen SR, et al. Creatine supplementation delays onset of fatigue during repeated bouts of sprint running. Scand J Med Sci Sports. 1998;8:247–51.

    CAS  PubMed  Google Scholar 

  41. 41.

    Mujika I, Chatard JC, Lacoste L, et al. Creatine supplementation does not improve sprint performance in competitive swimmers. Med Sci Sports Exerc. 1996;28:1435–41.

    CAS  PubMed  Google Scholar 

  42. 42.

    Balsom PD, Ekbolm B, Soderlund K, et al. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports. 1993;3:143–9.

    Google Scholar 

  43. 43.

    Balsom PD, Soderlund K, Ekblom B. Creatine in humans with special reference to creatine supplementation. Sports Med. 1994;18:268–80.

    CAS  PubMed  Google Scholar 

  44. 44.

    Claudino JG, Mezencio B, Amaral S, et al. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. J Int Soc Sports Nutr. 2014;11:e1–6.

    Google Scholar 

  45. 45.

    Lemon PW. Dietary creatine supplementation and exercise performance: why inconsistent results? Can J Appl Physiol. 2002;27:663–81.

    CAS  PubMed  Google Scholar 

  46. 46.

    Dawson B, Vladich T, Blanksby BA. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. J Strength Cond Res. 2002;16:485–90.

    PubMed  Google Scholar 

  47. 47.

    Bailes JE, Cantu RC, Day AL. The neurosurgeon in sport: awareness of the risks of heatstroke and dietary supplements. Neurosurgery. 2002;51:283–6.

    PubMed  Google Scholar 

  48. 48.

    Wen TC, Hae Tha M, Joo Ng H. Creatine supplementation and venous thrombotic events. Am J Med. 2014; 127;e7–e8.

  49. 49.

    Poortmans JR, Francaux M. Long term oral creatine supplementation does not impair renal function in healthy athletes. Med Sci Sports Exerc. 1999;31:1108–10.

    CAS  PubMed  Google Scholar 

  50. 50.

    NCAA Academic and Membership Affairs Staff. NCAA 2014-2014 division I manual (online). http://www.ncaapublications.com/productdownloads/D114.pdf. Accessed 11 Aug 2014.

  51. 51.

    Rickert VI, Pawlak-Morello C, Sheppard V, et al. Human growth hormone: a new substance of abuse among adolescents? Clin Pediatr. 1992;31:723–6.

    CAS  Google Scholar 

  52. 52.

    Liu H, Bravata DM, Olkin I, et al. Systematic review: the effects of growth hormone on athletic performance. Ann Intern Med. 2008;148:747–58.

    PubMed  Google Scholar 

  53. 53.

    Baumann GP. Growth hormone doping in sports: a critical review of use and detection strategies. Endocr Rev. 2012;33:155–86.

    CAS  PubMed  Google Scholar 

  54. 54.

    Deyssig R, Frisch H, Blum WF, et al. Effect of growth hormone treatment on hormonal parameters, body composition and strength in athletes. Acta Endocrinol. 1993;128:313–8.

    CAS  PubMed  Google Scholar 

  55. 55.

    Yarasheski KE, Campbell JA, Smith K, et al. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol. 1992;262:e261–7.

    CAS  PubMed  Google Scholar 

  56. 56.

    Rennie MJ. Claims for the anabolic effects of growth hormone: a case of the emperor’s new clothes? Br J Sports Med. 2003;37:100–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. 57.

    Saugy M, Robinson N, Saudan C, et al. Human growth hormone doping in sport. Br J Sports Med. 2006;40:i35–9.

    PubMed Central  PubMed  Google Scholar 

  58. 58.

    Hanley J, Saarela O, Stephens D, et al. hGH isoform differential immunoassays applied to blood samples from athletes: decision limits for anti-doping testing. Growth Horm IGF Res. 2014;24:205–15.

    CAS  PubMed  Google Scholar 

  59. 59.

    Veliz P, Boyd C, McCabe SE. Adolescent athletic participation and nonmedical Adderall use: an exploratory analysis of a performance-enhancing drug. J Stud Alcohol Drugs. 2013;74:714–9.

    PubMed Central  PubMed  Google Scholar 

  60. 60.

    Ebert MH, Kammen DP, Murphy DL. Plasma levels of amphetamine and behavioral response. In: Gottschalk LA, Merlis S, editors. Pharmacokinetics of psychoactive drugs: blood levels and clinical response. New York: Wiley; 1976. p. 157–69.

    Google Scholar 

  61. 61.

    Statland BE, Demas TJ. Serum caffeine half-lives: healthy subjects vs. patients having alcohol hepatic disease. Am J Clin Pathol. 1980;73:390–3.

    CAS  PubMed  Google Scholar 

  62. 62.

    Haller CA, Jacob P III, Benowitz N. Pharmacology of ephedra alkaloids and caffeine after single-dose dietary supplement use. Clin Pharmacol Ther. 2002;71:421–32.

    CAS  PubMed  Google Scholar 

  63. 63.

    Pentel P. Toxicity of over-the-counter stimulants. JAMA. 1984;252:1898–903.

    CAS  PubMed  Google Scholar 

  64. 64.

    Chandler JV, Blair SN. The effect of amphetamines on selected physiological components related to athletic success. Med Sci Sports Exerc. 1980;12:65–9.

    CAS  PubMed  Google Scholar 

  65. 65.

    Gill ND, Shield A, Blazevich AJ, et al. Muscular and cardiorespiratory effects of pseudoephedrine in human athletes. Br J Clin Pharmacol. 2000;50:205–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. 66.

    Bell DG, Jacobs I. Combined caffeine and ephedrine ingestion improves run times of Canadian Forces Warrior Test. Aviat Space Environ Med. 1999;70:325–9.

    CAS  PubMed  Google Scholar 

  67. 67.

    Bell DG, McLellan TM, Sabiston CM. Effect of ingesting caffeine and ephedrine on 10-km run performance. Med Sci Sports Exerc. 2002;34:344–9.

    CAS  PubMed  Google Scholar 

  68. 68.

    Santos VG, Santos VR, Felippe LJ, et al. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients. 2014;6:637–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. 69.

    Hodgson AB, Randell RK, Jeukendrup AE. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS One. 2013;8:e1–10.

    Google Scholar 

  70. 70.

    Stadheim HK, Kvamme B, Olsen R, et al. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sports Exerc. 2013;45:2175–83.

    CAS  PubMed  Google Scholar 

  71. 71.

    Lee CL, Cheng CF, Astorino TA, et al. Effects of carbohydrate combined with caffeine on repeated sprint cycling and agility performance in female athletes. J Int Soc Sports Nutr. 2014;11:e1–12.

    Google Scholar 

  72. 72.

    Reyner LA, Horne JA. Sleep restriction and serving accuracy in performance tennis players and effects of caffeine. Physiol Behav. 2013;120:93–6.

    CAS  PubMed  Google Scholar 

  73. 73.

    Lattavo A, Kopperud A, Rogers PD. Creatine and other supplements. Pediatr Clin North Am. 2007;54:735–60.

    PubMed  Google Scholar 

  74. 74.

    Shekelle PG, Hardy ML, Morton SC, et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta analysis. JAMA. 2003;289:1537–45.

    CAS  PubMed  Google Scholar 

  75. 75.

    McDuff DR, Baron D. Substance use in athletics: a sports psychiatry perspective. Clin Sports Med. 2005;24:885–97.

    PubMed  Google Scholar 

  76. 76.

    Greydanus DE, Patel DR. Sports doping in the adolescent: the Faustian conundrum of Hors de Combat. Pediatr Clin North Am. 2010;57:729–50.

    PubMed  Google Scholar 

  77. 77.

    Spriet LL, Graham TE. Caffeine and exercise performance (online). http://www.acsm.org/docs/current-comments/caffeineandexercise.pdf. Accessed 22 Nov 2014.

  78. 78.

    McLean BD, Gore CJ, Kemp J. Application of ‘live low-train high’ for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014;44:1275–87.

    PubMed  Google Scholar 

  79. 79.

    Morkeberg J. Blood manipulation: current challenges from an anti-doping perspective. Hematol Am Soc Hematol Educ Program. 2013;2013:627–31.

    Google Scholar 

  80. 80.

    Citartan M, Gopinath SC, Chen Y, et al. Monitoring recombinant human erythropoietin abuse among athletes. Biosens Bioelectron. 2014;63:86–98.

    PubMed  Google Scholar 

  81. 81.

    Robertson RJ, Gilcher R, Metz KF, et al. Effect of induced erythrocythemia on hypoxia tolerance during physical exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982;53:490–5.

    CAS  PubMed  Google Scholar 

  82. 82.

    Berglund B, Hemmingson P. Effect of reinfusion of autologous blood exercise performance in cross-country skiers. Int J Sports Med. 1987;8:231–3.

    CAS  PubMed  Google Scholar 

  83. 83.

    Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA. 1987;257:2761–5.

    CAS  PubMed  Google Scholar 

  84. 84.

    Birkeland KI, Stray-Gundersen J, Hemmerbach P, et al. Effect of rhEPO administration on serum levels of s TfR and cycling performance. Med Sci Sports Exerc. 2000;32:1238–43.

    CAS  PubMed  Google Scholar 

  85. 85.

    Berglund B, Ekblom B. Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men. J Intern Med. 1991;229:125–30.

    CAS  PubMed  Google Scholar 

  86. 86.

    Leigh-Smith S. Blood boosting. Br J Sports Med. 2004;38:99–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. 87.

    Morkeberg J. Detection of autologous blood transfusions in athletes: a historical perspective. Transfus Med Rev. 2012;26:199–208.

    PubMed  Google Scholar 

  88. 88.

    Palisin T, Stacy JJ. Beta-hydroxy-beta-methylbutyrate and its use in athletics. Curr Sports Med Rep. 2005;4:220–3.

    PubMed  Google Scholar 

  89. 89.

    Pimentel GD, Rosa JC, Lira FS, et al. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation stimulants skeletal muscle hypertrophy in rats via the mTOR pathway. Nutr Metab. 2011;8:e1–7.

    Google Scholar 

  90. 90.

    Smith HJ, Mukerji P, Tisdale MJ. Attenuation of proteasome-induced proteolysis in skeletal muscle by beta-hydroxy-beta-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005;65:277–83.

    CAS  PubMed  Google Scholar 

  91. 91.

    Wilson JM, Kim J, Lee SR, et al. Acute and time effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr Metab. 2009;6:e1–8.

    Google Scholar 

  92. 92.

    Knitter AE, Panton I, Rathmacher JA, et al. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000;89:1340–4.

    CAS  PubMed  Google Scholar 

  93. 93.

    Kraemer WJ, Hatfield DL, Volek JS, et al. Effects of amino acids supplement on physiological adaptations to resistance training. Med Sci Sports Exerc. 2009;41:1111–21.

    CAS  PubMed  Google Scholar 

  94. 94.

    Nissen SI, Sharp RL. Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J Appl Physiol. 2003;94:651–9.

    CAS  PubMed  Google Scholar 

  95. 95.

    Hoffman JR, Copper J, Wendell M, et al. Effects of beta-hydroxy-beta-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J Strength Cond Res. 2004;18:747–52.

    PubMed  Google Scholar 

  96. 96.

    Kreider RB, Ferreira M, Greenwood M, et al. Effects of calcium b-HMB supplementation during training on markers of body composition, strength, and spring performance. J Exerc Physiology-online. 2000;3:48–59.

    Google Scholar 

  97. 97.

    Wilson JM, Fitschen PJ, Campbell B, et al. International Society of Sports Nutrition position stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr. 2013;10:e1–14.

    Google Scholar 

  98. 98.

    Gallagher PM, Carrithers JA, Godard MP, et al. Beta-hydroxy-beta-methylbutyrate ingestion, part I: effects on strength and fat free mass. Med Sci Sports Exerc. 2000;32:2109–15.

    CAS  PubMed  Google Scholar 

  99. 99.

    Nissen S, Sharp RL, Panton L, et al. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J Nutr. 2000;130:1937–45.

    CAS  PubMed  Google Scholar 

  100. 100.

    Van der Gronde T, de Hon O, Haisma HJ, et al. Gene doping: an overview and current implications for athletes. Br J Sports Med. 2013;47:670–8.

    PubMed  Google Scholar 

  101. 101.

    Fischetto G, Bermon S. From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports? Sports Med. 2013;43:965–77.

    PubMed  Google Scholar 

  102. 102.

    Brill-Almon E, Stern B, Afik D, et al. Ex vivo transduction of human dermal tissue structures for autologous implantation production and delivery of therapeutic proteins. Mol Ther. 2005;12:274–82.

    CAS  PubMed  Google Scholar 

  103. 103.

    Wang W, Li W, Ma N, et al. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14:46–60.

    CAS  PubMed  Google Scholar 

  104. 104.

    Sinn PL, Sauter SL, McCray PB Jr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther. 2005;12:1089–98.

    CAS  PubMed  Google Scholar 

  105. 105.

    WADA. Therapeutic use exemptions (online). 2015. https://wada-main-prod.s3.amazonaws.com/resources/files/WADA-2015-ISTUE-Final-EN.pdf. Accessed 22 Nov 2014.

  106. 106.

    Vernec A. Therapeutic use exemptions: principles and practice (online). https://wada-main-prod.s3.amazonaws.com/resources/files/01-_vernec_alan_-_tue_symposium_paris_vernec_october_23_2014.pdf. Accessed 22 Nov 2014.

  107. 107.

    Little JC, Perry DR, Volpe SL. Effect of nutrition supplement education on nutrition supplement knowledge among high school students from a low-income community. J Community Health. 2002;27:433–50.

    PubMed  Google Scholar 

  108. 108.

    Whitaker L, Backhouse SH, Long J. Reporting doping in sport: national level athletes’ perceptions of their role in doping prevention. Scan J Med Sci Sports. 2014;24(6):e515–21.

    CAS  Google Scholar 

  109. 109.

    Harcourt PR, Unglik H, Cook JL. Strategy to reduce illicit drug use is effective in elite Australian football. Br J Sports Med. 2012;46:943–5.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Florence Lee, MD and Li-yuan Yu-Lee, PhD for their assistance with the preparation of figures for this manuscript. The authors have no potential conflicts of interest that are directly relevant to the content of this review. No sources of funding were used to assist in the preparation of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amit Momaya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Momaya, A., Fawal, M. & Estes, R. Performance-Enhancing Substances in Sports: A Review of the Literature. Sports Med 45, 517–531 (2015). https://doi.org/10.1007/s40279-015-0308-9

Download citation

Keywords

  • Amphetamine
  • Creatine Supplementation
  • National Collegiate Athletic Association
  • Major League Baseball
  • Sprint Performance