The Sympathetic Nervous System and Tendinopathy: A Systematic Review

Abstract

Background

Tendinopathy is a clinical diagnosis of localised tendon pain often confirmed by imaging findings. The pathophysiological cause of the pain is unknown and the sympathetic nervous system (SNS) may be implicated.

Objective

To review what is known regarding the role of the SNS in human tendinopathy.

Study selection

Published data describing sympathetic innervation or an index of sympathetic activity in human tendons were eligible for inclusion.

Data sources

Bibliographical databases (AMED, Biological Abstracts, CINAHL Plus, EMBASE, MEDLINE, Scopus, SPORTDiscus and Web of Science) were searched for relevant articles. Reference lists from included articles were screened for additional articles.

Study appraisal

Studies were scored with a quality assessment tool to identify potential sources of bias. Each question had an explicit decision rule to guide assessment.

Results

Nine case–control and four cross-sectional studies examined sympathetic innervation of tendons. There was evidence suggesting a lack of difference in sympathetic innervation of tendon proper between tendinopathy biopsies and healthy controls. In contrast, the paratendinous tissue showed evidence of increased sympathetic innervation in painful tendons. The most notable increase in SNS markers was seen in abnormal tenocytes from painful tendons. Data from two studies were suitable for meta-analysis. These heterogeneous studies revealed no difference in sympathetic innervation between painful and pain-free tendons. No studies recorded SNS activity in vivo.

Conclusion

Sympathetic innervation in painful tendons depends on tissue type. Abnormal tenocytes may have increased capacity for self-production of sympathetic neurotransmitters. Future insight may be gained by measuring global in vivo sympathetic drive in tendinopathy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Maffulli N, Wong J, Almekinders LC. Types and epidemiology of tendinopathy. Clin Sports Med. 2003;22(4):675–92.

    Article  PubMed  Google Scholar 

  2. 2.

    Rio E, Moseley L, Purdam C, et al. The pain of tendinopathy: physiological or pathophysiological? Sports Med. 2014;44(1):9–23.

    Article  PubMed  Google Scholar 

  3. 3.

    Andersson G, Danielson P, Alfredson H, et al. Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis. Knee Surg Sports Traumatol Arthrosc. 2007;15(10):1272–9.

    Article  PubMed  Google Scholar 

  4. 4.

    Bjur D, Alfredson H, Forsgren S. Presence of the neuropeptide Y1 receptor in tenocytes and blood vessel walls in the human Achilles tendon. Br J Sports Med. 2009;43(14):1136–42.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Bjur D, Danielson P, Alfredson H, et al. Immunohistochemical and in situ hybridization observations favor a local catecholamine production in the human Achilles tendon. Histol Histopathol. 2008;23(2):197–208.

    PubMed  Google Scholar 

  6. 6.

    Danielson P, Alfredson H, Forsgren S. Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man. Microsc Res Tech. 2007;70(4):310–24.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Danielson P, Alfredson H, Forsgren S. In situ hybridization studies confirming recent findings of the existence of a local nonneuronal catecholamine production in human patellar tendinosis. Microsc Res Tech. 2007;70(10):908–11.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Danielson P, Andersson G, Alfredson H, et al. Marked sympathetic component in the perivascular innervation of the dorsal paratendinous tissue of the patellar tendon in arthroscopically treated tendinosis patients. Knee Surg Sports Traumatol Arthrosc. 2008;16(6):621–6.

    Article  PubMed  Google Scholar 

  9. 9.

    Sasaki K, Ohki G, Iba K, et al. Innervation pattern at the undersurface of the extensor carpi radialis brevis tendon in recalcitrant tennis elbow. J Orthop Sci. 2013;18(4):528–35.

    Article  PubMed  Google Scholar 

  10. 10.

    Tosounidis T, Hadjileontis C, Triantafyllou C, et al. Evidence of sympathetic innervation and α1-adrenergic receptors of the long head of the biceps brachii tendon. J Orthop Sci. 2013;18(2):238–44.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Zeisig E, Ljung BO, Alfredson H, et al. Immunohistochemical evidence of local production of catecholamines in cells of the muscle origins at the lateral and medial humeral epicondyles: of importance for the development of tennis and golfer’s elbow? Br J Sports Med. 2009;43(4):269–75.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: W. B. Saunders; 2006.

    Google Scholar 

  13. 13.

    Masuo K, Mikami H, Ogihara T, et al. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Forsgren S. Neuropeptide Y-like immunoreactivity in relation to the distribution of sympathetic nerve fibers in the heart conduction system. J Mol Cell Cardiol. 1989;21(3):279–90.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Kaufman S. Tyrosine hydroxylase. Adv Enzymol Relat Areas Mol Biol. 1995;70:103–220.

    CAS  PubMed  Google Scholar 

  16. 16.

    Nagatsu T. Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem. 1995;30:15–35.

    CAS  PubMed  Google Scholar 

  17. 17.

    Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry: the red, brown, and blue technique. Vet Pathol. 2014;51(1):42–87.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Flaa A, Aksnes TA, Kjeldsen SE, et al. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolism. 2008;57(10):1422–7.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Schlereth T, Birklein F. The sympathetic nervous system and pain. Neuromolecular Med. 2008;10(3):141–7.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Alpantaki K, McLaughlin D, Karagogeos D, et al. Sympathetic and sensory neural elements in the tendon of the long head of the biceps. J Bone Joint Surg Am. 2005;87(7):1580–3.

    Article  PubMed  Google Scholar 

  21. 21.

    Khan KM, Cook JL, Taunton JE, et al. Overuse tendinosis, not tendinitis part 1: a new paradigm for a difficult clinical problem. Phys Sportsmed. 2000;28(5):38–48.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Lin TW, Cardenas L, Soslowsky LJ. Biomechanics of tendon injury and repair. J Biomech. 2004;37(6):865–77.

    Article  PubMed  Google Scholar 

  23. 23.

    Khan KM, Cook JL, Bonar F, et al. Histopathology of common tendinopathies: update and implications for clinical management. Sports Med. 1999;27(6):393–408.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy. 1998;14(8):840–3.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Cook JL, Feller JA, Bonar SF, et al. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J Orthop Res. 2004;22(2):334–8.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Alfredson H, Thorsen K, Lorentzon R. In situ microdialysis in tendon tissue: high levels of glutamate, but not prostaglandin E2 in chronic Achilles tendon pain. Knee Surg Sports Traumatol Arthrosc. 1999;7(6):378–81.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Khan KM, Bonar F, Desmond PM, et al. Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. Victorian Institute of Sport Tendon Study Group. Radiology. 1996;200(3):821–7.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Astrom M, Rausing A. Chronic Achilles tendinopathy: a survey of surgical and histopathologic findings. Clin Orthop Relat Res. 1995;316:151–64.

    PubMed  Google Scholar 

  29. 29.

    van Dijk CN, van Sterkenburg MN, Wiegerinck JI, et al. Terminology for Achilles tendon related disorders. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):835–41.

    Article  PubMed Central  PubMed  Google Scholar 

  30. 30.

    Forde MS, Punnett L, Wegman DH. Prevalence of musculoskeletal disorders in union ironworkers. J Occup Environ Hyg. 2005;2(4):203–12.

    Article  PubMed  Google Scholar 

  31. 31.

    Buchbinder R, Green SE, Youd JM, et al. Systematic review of the efficacy and safety of shock wave therapy for lateral elbow pain. J Rheumatol. 2006;33(7):1351–63.

    PubMed  Google Scholar 

  32. 32.

    Buchbinder R, Johnston RV, Barnsley L, et al. Surgery for lateral elbow pain. Cochrane Database Syst Rev. 2011;3:CD003525.

    PubMed  Google Scholar 

  33. 33.

    Cumpston M, Johnston RV, Wengier L, et al. Topical glyceryl trinitrate for rotator cuff disease. Cochrane Database Syst Rev. 2009;3:CD006355.

    PubMed  Google Scholar 

  34. 34.

    Kingma JJ, de Knikker R, Wittink HM, et al. Eccentric overload training in patients with chronic Achilles tendinopathy: a systematic review. Br J Sports Med. 2007;41(6):e3.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Benazzo F, Stennardo G, Valli M. Achilles and patellar tendinopathies in athletes: pathogenesis and surgical treatment. Bull Hosp Jt Dis. 1996;54(4):236–40.

    CAS  PubMed  Google Scholar 

  36. 36.

    Kujala UM, Sarna S, Kaprio J. Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med. 2005;15(3):133–5.

    Article  PubMed  Google Scholar 

  37. 37.

    Kvist M. Achilles tendon overuse injuries: a clinical and pathophysiological study in athletes [dissertation]. Finland: Turki University; 1991.

    Google Scholar 

  38. 38.

    van Sterkenburg MN, van Dijk CN. Mid-portion Achilles tendinopathy: why painful? An evidence-based philosophy. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1367–75.

    Article  PubMed Central  PubMed  Google Scholar 

  39. 39.

    Rees JD, Maffulli N, Cook J. Management of tendinopathy. Am J Sports Med. 2009;37(9):1855–67.

    Article  PubMed  Google Scholar 

  40. 40.

    Malliaras P, Cook J. Patellar tendons with normal imaging and pain: change in imaging and pain status over a volleyball season. Clin J Sport Med. 2006;16(5):388–91.

    Article  PubMed  Google Scholar 

  41. 41.

    De Jonge S, Warnaars JL, De Vos RJ, et al. Relationship between neovascularization and clinical severity in Achilles tendinopathy in 556 paired measurements. Scand J Med Sci Sports. 2014;24(5):773–8.

    Article  PubMed  Google Scholar 

  42. 42.

    Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol. 2005;208(Pt 24):4715–25.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Rolf C, Movin T. Etiology, histopathology, and outcome of surgery in achillodynia. Foot Ankle Int. 1997;18(9):565–9.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Gaida JE, Alfredson L, Kiss ZS, et al. Dyslipidemia in Achilles tendinopathy is characteristic of insulin resistance. Med Sci Sports Exerc. 2009;41(6):1194–7.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Cronin NJ, Peltonen J, Ishikawa M, et al. Achilles tendon length changes during walking in long-term diabetes patients. Clin Biomech (Bristol, Avon). 2010;25(5):476–82.

    Article  PubMed  Google Scholar 

  47. 47.

    Giacomozzi C, D’Ambrogi E, Uccioli L, et al. Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin Biomech (Bristol, Avon). 2005;20(5):532–9.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Batista F, Nery C, Pinzur M, et al. Achilles tendinopathy in diabetes mellitus. Foot Ankle Int. 2008;29(5):498–501.

    Article  PubMed  Google Scholar 

  49. 49.

    Ardic F, Soyupek F, Kahraman Y, et al. The musculoskeletal complications seen in type II diabetics: predominance of hand involvement. Clin Rheumatol. 2003;22(3):229–33.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Aydeniz A, Gursoy S, Guney E. Which musculoskeletal complications are most frequently seen in type 2 diabetes mellitus? J Int Med Res. 2008;36(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Chammas M, Bousquet P, Renard E, et al. Dupuytren’s disease, carpal tunnel syndrome, trigger finger, and diabetes mellitus. J Hand Surg Am. 1995;20(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Renard E, Jacques D, Chammas M, et al. Increased prevalence of soft tissue hand lesions in type 1 and type 2 diabetes mellitus: various entities and associated significance. Diabetes Metab. 1994;20(6):513–21.

    CAS  Google Scholar 

  53. 53.

    Yosipovitch G, Yosipovitch Z, Karp M, et al. Trigger finger in young patients with insulin dependent diabetes. J Rheumatol. 1990;17(7):951–2.

    CAS  PubMed  Google Scholar 

  54. 54.

    Baron R. Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain. 2000;16(2 Suppl):S12–20.

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Wong HY. Neural mechanisms of joint pain. Ann Acad Med Singapore. 1993;22(4):646–50.

    CAS  PubMed  Google Scholar 

  56. 56.

    Chabal C, Jacobson L, Russell LC, et al. Pain response to perineuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain. 1992;49(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Torebjork E, Wahren L, Wallin G, et al. Noradrenaline-evoked pain in neuralgia. Pain. 1995;63(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Green PG, Luo J, Heller PH, et al. Further substantiation of a significant role for the sympathetic nervous system in inflammation. Neuroscience. 1993;55(4):1037–43.

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Donnerer J, Amann R, Lembeck F. Neurogenic and non-neurogenic inflammation in the rat paw following chemical sympathectomy. Neuroscience. 1991;45(3):761–5.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Helme RD, Andrews PV. The effect of nerve lesions on the inflammatory response to injury. J Neurosci Res. 1985;13(3):453–9.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Khalil Z, Helme RD. Sympathetic neurons modulate plasma extravasation in the rat through a non-adrenergic mechanism. Clin Exp Neurol. 1989;26:45–50.

    CAS  PubMed  Google Scholar 

  62. 62.

    Lam FY, Ferrell WR. Neurogenic component of different models of acute inflammation in the rat knee joint. Ann Rheum Dis. 1991;50(11):747–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. 63.

    Hansen J, Thomas GD, Jacobsen TN, et al. Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am J Physiol. 1994;266(6 Pt 2):H2508–14.

    CAS  PubMed  Google Scholar 

  64. 64.

    Wallin BG, Victor RG, Mark AL. Sympathetic outflow to resting muscles during static handgrip and postcontraction muscle ischemia. Am J Physiol. 1989;256(1 Pt 2):H105–10.

    CAS  PubMed  Google Scholar 

  65. 65.

    Anderson EA, Sinkey CA, Lawton WJ, et al. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from direct intraneural recordings. Hypertension. 1989;14(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Paavola M, Kannus P, Paakkala T, et al. Long-term prognosis of patients with achilles tendinopathy: an observational 8-year follow-up study. Am J Sports Med. 2000;28(5):634–42.

    CAS  PubMed  Google Scholar 

  67. 67.

    Anesini C, Borda E. Modulatory effect of the adrenergic system upon fibroblast proliferation: participation of beta 3-adrenoceptors. Auton Autacoid Pharmacol. 2002;22(3):177–86.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Burniston JG, Tan LB, Goldspink DF. beta2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. J Appl Physiol (1985). 2005;98(4):1379–86.

    Article  CAS  Google Scholar 

  69. 69.

    Kryger GS, Chong AK, Costa M, et al. A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. J Hand Surg Am. 2007;32(5):597–605.

    Article  PubMed  Google Scholar 

  70. 70.

    Mano T, Iwase S, Toma S. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans. Clin Neurophysiol. 2006;117(11):2357–84.

    Article  PubMed  Google Scholar 

  71. 71.

    Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007;36(5):595–614.

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Esler M, Jennings G, Korner P, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Kopin IJ. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev. 1985;37(4):333–64.

    CAS  PubMed  Google Scholar 

  74. 74.

    Grassi G, Bolla G, Seravalle G, et al. Comparison between reproducibility and sensitivity of muscle sympathetic nerve traffic and plasma noradrenaline in man. Clin Sci (Lond). 1997;92(3):285–9.

    CAS  PubMed  Google Scholar 

  75. 75.

    Esler M, Jennings G, Lambert G, et al. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev. 1990;70(4):963–85.

    CAS  PubMed  Google Scholar 

  76. 76.

    Parati G, Pomidossi G, Ramirez A, et al. Variability of the haemodynamic responses to laboratory tests employed in assessment of neural cardiovascular regulation in man. Clin Sci (Lond). 1985;69(5):533–40.

    CAS  PubMed  Google Scholar 

  77. 77.

    Parati G, Pomidossi G, Casadei R, et al. Comparison of the cardiovascular effects of different laboratory stressors and their relationship with blood pressure variability. J Hypertens. 1988;6(6):481–8.

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Grassi G, Vailati S, Bertinieri G, et al. Heart rate as marker of sympathetic activity. J Hypertens. 1998;16(11):1635–9.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Rittner HL, Machelska H, Stein C. Leukocytes in the regulation of pain and analgesia. J Leukoc Biol. 2005;78(6):1215–22.

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;10(3):25.

    Article  Google Scholar 

  81. 81.

    von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9.

    Article  Google Scholar 

  82. 82.

    Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. 83.

    Lievense AM, Bierma-Zeinstra SM, Verhagen AP, et al. Influence of obesity on the development of osteoarthritis of the hip: a systematic review. Rheumatology. 2002;41(10):1155–62.

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Lian O, Dahl J, Ackermann PW, et al. Pronociceptive and antinociceptive neuromediators in patellar tendinopathy. Am J Sports Med. 2006;34(11):1801–8.

    Article  PubMed  Google Scholar 

  85. 85.

    Ljung BO, Forsgren S, Friden J. Sympathetic and sensory innervations are heterogeneously distributed in relation to the blood vessels at the extensor carpi radialis brevis muscle origin of man. Cells Tissues Organs. 1999;165(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Schubert TEO, Weidler C, Lerch K, et al. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis. 2005;64(7):1083–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. 87.

    Vallbo AB, Hagbarth KE, Torebjork HE, et al. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59(4):919–57.

    CAS  PubMed  Google Scholar 

  88. 88.

    Kalawy H, Stålnacke BM, Fahlström M, et al. New objective findings after whiplash injuries: high blood flow in painful cervical soft tissue: an ultrasound pilot study. Scand J Pain. 2013;4(4):173–9.

    Article  Google Scholar 

  89. 89.

    Bjur D, Danielson P, Alfredson H, et al. Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy). Cell Tissue Res. 2008;331(2):385–400.

    Article  PubMed  Google Scholar 

  90. 90.

    Danielson P, Alfredson H, Forsgren S. Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc Res Tech. 2006;69(10):808–19.

    Article  CAS  PubMed  Google Scholar 

  91. 91.

    Dean BJF, Franklin SL, Carr AJ. The peripheral neuronal phenotype is important in the pathogenesis of painful human tendinopathy: a systematic review. Clin Orthop Relat Res. 2013;471(9):3036–46.

    Article  PubMed Central  PubMed  Google Scholar 

  92. 92.

    Inoue M, Katayama K, Hojo T, et al. The effects of electrical acupuncture to patellar tendon and electrical stimulation to femoral nerve on the blood flow of the patellar tendon in rat. Tairyoku Kagaku. 2001;50(1):119–28.

    Google Scholar 

  93. 93.

    Ackermann PW, Ahmed M, Kreicbergs A. Early nerve regeneration after Achilles tendon rupture: a prerequisite for healing? A study in the rat. J Orthop Res. 2002;20(4):849–56.

    Article  PubMed  Google Scholar 

  94. 94.

    Ackermann PW, Li J, Finn A, et al. Autonomic innervation of tendons, ligaments and joint capsules: a morphologic and quantitative study in the rat. J Orthop Res. 2001;19(3):372–8.

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Wall ME, Faber JE, Yang X, et al. Norepinephrine-induced calcium signaling and expression of adrenoceptors in avian tendon cells. Am J Physiol Cell Physiol. 2004;287(4):C912–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors had no potential conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Jewson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jewson, J.L., Lambert, G.W., Storr, M. et al. The Sympathetic Nervous System and Tendinopathy: A Systematic Review. Sports Med 45, 727–743 (2015). https://doi.org/10.1007/s40279-014-0300-9

Download citation

Keywords

  • Tyrosine Hydroxylase
  • Sympathetic Nervous System
  • Sympathetic Activity
  • Electronic Supplementary Material Table
  • Muscle Sympathetic Nerve Activity