Abstract
Background
Vitamin D is essential for maintaining optimal bone health. The prevalence of vitamin D inadequacy in athletes is currently unclear.
Objective
The objective of this study is to determine the prevalence of vitamin D inadequacy in athletes.
Methods
We conducted a systematic review and meta-analysis. Multiple databases were searched and studies assessing serum 25-hydroxyvitamin D [25(OH)D] status in athletes were identified. Serum 25(OH)D is measured to clinically determine vitamin D status. Reviewers independently selected the eligible articles, assessed the methodological quality, and extracted data. Disagreements were resolved by consensus. Weighted proportions of vitamin D inadequacy [serum 25(OH)D <32 ng/mL] were calculated (DerSimonian–Laird random-effects model) and compared using Chi-squared (χ 2) test. Subgroup analyses were conducted and risk ratios (RRs) with 95 % confidence intervals (CIs) were reported.
Results
Twenty-three studies with 2,313 athletes [mean (standard deviation) age 22.5 (5.0) years, 76 % male] were included. Of 2,313 athletes, 56 % (44–67 %) had vitamin D inadequacy that significantly varied by geographical location (p < 0.001). It was significantly higher in the UK and in the Middle East. The risk significantly increased for winter and spring seasons (RR 1.85; 95 % CI 1.27–2.70), indoor sport activities (RR 1.19; 95 % CI 1.09–1.30), and mixed sport activities (RR 2.54; 95 % CI 1.03–6.26). The risk was slightly higher for >40°N latitude [RR 1.14 (95 % CI 0.91–1.44)] but it increased significantly [RR 1.85 (1.35–2.53)] after excluding the Middle East as an outlier. Seven studies with 359 athletes reported injuries. The prevalence of injuries in athletes was 43 % (95 % CI 20–68) [bone related = 19 % (95 % CI 7–36); muscle and soft-tissue = 37.5 % (95 % CI 11.5–68.5)].
Conclusion
Despite the limitations of the current evidence, the prevalence of vitamin D inadequacy in athletes is prominent. The risk significantly increases in higher latitudes, in winter and early spring seasons, and for indoor sport activities. Regular investigation of vitamin D status using reliable assays and supplementation is essential to ensure healthy athletes. The prevalence of injuries in athletes is notable but its association with vitamin D status is unclear. A well-designed longitudinal study is needed to answer this possible association.
Similar content being viewed by others
References
Angeline ME, Gee AO, Shindle M, et al. The effects of vitamin D deficiency in athletes. Am J Sports Med. 2013;41(2):461–4.
Ogan D, Pritchett K. Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients. 2013;5(6):1856–68.
Allison RJ, Close GL, Farooq A, et al. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur J Prev Cardiol. Epub 2014 Jan 7.
DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96S.
Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19(2):73–8.
Heaney RP. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr. 2004;80(6 Suppl):1706S–9S.
Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80(6 Suppl):1710S–6S.
Whiting SJ, Langlois KA, Tanparast H, et al. The vitamin D status of Canadians relative to the 2011 dietary reference intakes: an examination in children and adults with and without supplement use. Am J Clin Nutr. 2011;94(1):128–35.
Holick MF. The vitamin D epidemic and its health consequences. J Nutr. 2005;135(11):2739S–48S.
Holick MF. The D-lightful vitamin D for child health. JPEN J Parenter Enteral Nutr. 2012;36(1 Suppl):9S–19S.
Holick MF. Vitamin D: a d-lightful solution for health. J Investig Med. 2011;59(6):872–80.
Shuler FD, Wingate MK, Moore GH, et al. Sports health benefits of vitamin D. Sports Health. 2012;4(6):496–501.
Redzic M, Lewis RM, Thomas DT. Relationship between 25-hydoxyvitamin D, muscle strength, and incidence of injury in healthy adults: a systematic review. Nutr Res. 2013;33(4):251–8.
Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–6.
Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.
Marcus R, Feldman D, Nelson D, et al. Fundamentals of osteoporosis. 4th ed. London: Academic Press; 2010.
Viera AJ. Odds ratios and risk ratios: what’s the difference and why does it matter? South Med J. 2008;101(7):730–4.
Badawi A, Arora P, Sadoun E, et al. Prevalence of vitamin D insufficiency in Qatar: a systematic review. J Public Health Res. 2012;1(3):229–35.
Racinais S, Hamilton B, Li CK, et al. Vitamin D and physical fitness in Qatari girls. Arch Dis Child. 2010;95(10):854–5.
Bescos Garcia R, Rodriguez Guisado FA. Low levels of vitamin D in professional basketball players after wintertime: relationship with dietary intake of vitamin D and calcium. Nutr Hosp. 2011;26(5):945–51.
Close GL, Leckey J, Patterson M, et al. The effects of vitamin D(3) supplementation on serum total 25(OH)D concentration and physical performance: a randomised dose-response study. Br J Sports Med. 2013;47(11):692–6.
Close GL, Russell J, Cobley JN, et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci. 2013;31(4):344–53.
Constantini NW, Arieli R, Chodick G, et al. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20(5):368–71.
Ducher G, Kukuljan S, Hill B, et al. Vitamin D status and musculoskeletal health in adolescent male ballet dancers a pilot study. J Dance Med Sci. 2011;15(3):99–107.
Galan F, Ribas J, Sanchez-Martinez PM, et al. Serum 25-hydroxyvitamin D in early autumn to ensure vitamin D sufficiency in mid-winter in professional football players. Clin Nutr. 2012;31(1):132–6.
Guillaume G, Chappard D, Audran M. Evaluation of the bone status in high-level cyclists. J Clin Densitom. 2012;15(1):103–7.
Halliday TM, Peterson NJ, Thomas JJ, et al. Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med Sci Sports Exerc. 2011;43(2):335–43.
Hamilton B, Grantham J, Racinais S, et al. Vitamin D deficiency is endemic in Middle Eastern sportsmen. Public Health Nutr. 2010;13(10):1528–34.
Hamilton B, Whiteley R, Farooq A, et al. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport. 2014;17(1):139–43.
He CS, Handzlik M, Fraser WD, et al. Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes. Exerc Immunol Rev. 2013;19:86–101.
Lewis RM, Redzic M, Thomas DT. The effects of season-long vitamin d supplementation on collegiate swimmers and divers. Int J Sport Nutr Exerc Metab. 2013;23(5):431–40.
Lovell G. Vitamin D status of females in an elite gymnastics program. Clin J Sport Med. 2008;18(2):159–61.
Magee PJ, Pourshahidi LK, Wallace JM, et al. Vitamin D status and supplementation in elite irish athletes. Int J Sport Nutr Exerc Metab. 2013;23(5):441–8.
Peeling P, Fulton SK, Binnie M, et al. Training environment and Vitamin D status in athletes. Int J Sports Med. 2013;34(3):248–52.
Pollock N, Dijkstra P, Chakraverty R, et al. Low 25(OH) vitamin D concentrations in international UK track and field athletes. S Afr J Sports Med. 2012;24(2):55–9.
Shanely RA, Nieman DC, Knab AM, et al. Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. J Sports Sci. 2013;32(7):676–9.
Shindle MK, Voos J, Gulotta L, et al. Vitamin D status in a professional American Football team [abstract no. 46-9849]. AOSSM Annual Meeting; 7–10 Jul 2011; San Diego.
Storlie DM, Pritchett K, Pritchett R, et al. 12-Week vitamin D supplementation trial does not significantly influence seasonal 25(OH)D status in male collegiate athletes. Int J Health Nutr. 2011;2(2):8–13.
Willis KS, Smith DT, Broughton KS, et al. Vitamin D status and biomarkers of inflammation in runners. Open Access J Sports Med. 2012;3:35–42.
Wilson G, Fraser WD, Sharma A, et al. Markers of bone health, renal function, liver function, anthropometry and perception of mood: a comparison between flat and national hunt jockeys. Int J Sports Med. 2013;34(5):453–9.
Wolman R, Wyon MA, Koutedakis Y, et al. Vitamin D status in professional ballet dancers: winter vs. summer. J Sci Med Sport. 2013;16(5):388–91.
Wahl DA, Cooper C, Ebeling PR, et al. A global representation of vitamin D status in healthy populations. Arch Osteoporos. 2012;7(1–2):155–72.
Ceroni D, Anderson de la Llana R, Martin X, et al. Prevalence of vitamin D insufficiency in Swiss teenagers with appendicular fractures: a prospective study of 100 cases. J Child Orthop. 2012;6(6):497–503.
Zhang W, Stoecklin E, Eggersdorfer M. A glimpse of vitamin D status in Mainland China. Nutrition. 2013;29(7–8):953–7.
Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 2014;144PA:138–45.
Brito A, Cori H, Olivares M, et al. Less than adequate vitamin D status and intake in Latin America and the Caribbean: a problem of unknown magnitude. Food Nutr Bull. 2013;34(1):52–64.
Lee YA, Kim HY, Hong H, et al. Risk factors for low vitamin D status in Korean adolescents: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2009. Public Health Nutr. 2014;17(4):764–71.
Hirschler V, Maccallini G, Molinari C, et al. Low vitamin D concentrations among indigenous Argentinean children living at high altitudes. Pediatr Diabetes. 2013;14(3):203–10.
Lanteri P, Lombardi G, Colombini A, et al. Vitamin D in exercise: physiologic and analytical concerns. Clin Chim Acta. 2013;415:45–53.
Kumar J, Muntner P, Kaskel FJ, et al. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics. 2009;124(3):e362–70.
Turer CB, Lin H, Flores G. Prevalence of vitamin D deficiency among overweight and obese US children. Pediatrics. 2013;131(1):e152–61.
Lehtonen-Veromaa M, Mottonen T, Irjala K, et al. Vitamin D intake is low and hypovitaminosis D common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr. 1999;53(9):746–51.
Korchia G, Amitai Y, Moshe G, et al. Vitamin D deficiency in children in Jerusalem: the need for updating the recommendation for supplementation. Isr Med Assoc J. 2013;15(7):333–8.
Hamilton B. Vitamin D and athletic performance: the potential role of muscle. Asian J Sports Med. 2011;2(4):211–9.
Holick MF. Vitamin D: a D-lightful health perspective. Nutr Rev. 2008;66(10 Suppl 2):S182–94.
Prentice A. Vitamin D deficiency: a global perspective. Nutr Rev. 2008;66(10 Suppl 2):S153–64.
Godar DE. Worldwide increasing incidences of cutaneous malignant melanoma. J Skin Cancer. 2011;2011:858425.
Burgi AA, Gorham ED, Garland CF, et al. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J Bone Miner Res. 2011;26(10):2371–7.
Ruohola JP, Laaksi I, Ylikomi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.
Ju SY, Lee YJ, Jeong SN. Serum 25-hydroxyvitamin D levels and the risk of depression: a systematic review and meta-analysis. J Nutr Health Aging. 2013;17(5):447–55.
Acknowledgments
No sources of funding were used to assist in the preparation of this review. The authors have no potential conflicts of interest that are directly relevant to the content of this review. The authors would like to thank Nadia Latifi for assisting with resolving discrepancies during the study selection process.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Farrokhyar, F., Tabasinejad, R., Dao, D. et al. Prevalence of Vitamin D Inadequacy in Athletes: A Systematic-Review and Meta-Analysis. Sports Med 45, 365–378 (2015). https://doi.org/10.1007/s40279-014-0267-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40279-014-0267-6