Vitamin D: Recent Advances and Implications for Athletes

Abstract

Athletes may be predisposed to low vitamin D concentrations, with studies reporting a high prevalence of athletes with a vitamin D concentration below 50 nmol/L across a range of sports and geographical locations, particularly over the winter months. It is well documented that vitamin D is important for osseous health by enhancing calcium absorption at the small intestine; however, emerging research suggests that vitamin D may also benefit a plethora of extra-skeletal target tissues and systems. There is strong evidence that vitamin D is capable of regulating both innate and adaptive immune processes via binding of active vitamin D to its complementary receptor. Supplementation with vitamin D may also enhance skeletal muscle function through morphological adaptations and enhanced calcium availability during cross-bridge cycling; however, an exact mechanism of action is yet to be elucidated. Such findings have prompted research into the importance of maintaining vitamin D concentrations over wintertime and the possible physiological and immunological benefits of vitamin D supplementation in athletes. The following review critically evaluates existing literature and presents novel perspectives on how vitamin D may enhance athletic performance.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Webb AR. Who, what, where and when-influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol. 2006;92(1):17–25.

    CAS  PubMed  Google Scholar 

  2. 2.

    Ovesen L, Andersen R, Jakobsen J. Geographical differences in vitamin D status, with particular reference to European countries. Proc Nutr Soc. 2003;62(4):813–21.

    CAS  PubMed  Google Scholar 

  3. 3.

    Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80(6 Suppl):1710S–6S.

    CAS  PubMed  Google Scholar 

  4. 4.

    Heaney RP, Armas LA, Shary JR, et al. 25-hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am J Clin Nutr. 2008;87(6):1738–42.

    CAS  PubMed  Google Scholar 

  5. 5.

    Gallagher JC, Sai AJ. Vitamin D insufficiency, deficiency, and bone health. J Clin Endocrinol Metab. 2010;95(6):2630–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. 6.

    Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–33.

    CAS  PubMed  Google Scholar 

  7. 7.

    Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4–8.

    CAS  PubMed  Google Scholar 

  8. 8.

    Zhang R, Naughton DP. Vitamin D in health and disease: current perspectives. Nutr J. 2010;9:65.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. 9.

    European Food Safety Authority (EFSA). Scientific opinion on the tolerable upper intake level of vitamin D. EFSA J. 2012;10(7):2813.

  10. 10.

    Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69(5):842–56.

    CAS  PubMed  Google Scholar 

  11. 11.

    Ozkan B, Hatun S, Bereket A. Vitamin D intoxication. Turk J Pediatr. 2012;54(2):93–8.

    PubMed  Google Scholar 

  12. 12.

    Ahmed MS, Shoker A. Vitamin D metabolites; protective versus toxic properties: molecular and cellular perspectives. Nephrol Rev. 2010;2(1):19–26.

    CAS  Google Scholar 

  13. 13.

    Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–6S.

    CAS  PubMed  Google Scholar 

  14. 14.

    Prentice A, Goldberg GR, Schoenmakers I. Vitamin D across the lifecycle: physiology and biomarkers. Am J Clin Nutr. 2008;88(2):500S–6S.

    CAS  PubMed  Google Scholar 

  15. 15.

    Institute of Medicine (IOM). Dietary reference intakes for calcium and vitamin D. Washington DC: The National Academies Press; 2011.

  16. 16.

    Shoenfeld N, Amital H, Shoenfeld Y. The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat Clin Pract Rheumatol. 2009;5(2):99–105.

    CAS  PubMed  Google Scholar 

  17. 17.

    Mithal A, Wahl DA, Bonjour J, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20.

    CAS  PubMed  Google Scholar 

  18. 18.

    Gannage-Yared MH, Maalouf G, Khalife S, et al. Prevalence and predictors of vitamin D inadequacy amongst Lebanese osteoporotic women. Br J Nutr. 2009;101(4):487–91.

    CAS  PubMed  Google Scholar 

  19. 19.

    Diamond TH, Levy S, Smith A, et al. High bone turnover in Muslim women with vitamin D deficiency. Med J Aust. 2002;177(3):139–41.

    PubMed  Google Scholar 

  20. 20.

    Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    CAS  PubMed  Google Scholar 

  21. 21.

    Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6S):1678S–8S.

  22. 22.

    Marks R. Sunlight and health. BMJ. 1999;319(7216):1066.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. 23.

    Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64(6):1165–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Norval M, Wulf HC. Does chronic sunscreen use reduce vitamin D production to insufficient levels? Br J Dermatol. 2009;161(4):732–6.

    CAS  PubMed  Google Scholar 

  25. 25.

    Burnett ME, Wang SQ. Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed. 2011;27(2):58–67.

    CAS  PubMed  Google Scholar 

  26. 26.

    Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373–8.

    CAS  PubMed  Google Scholar 

  27. 27.

    Huotari A, Herzig KH. Vitamin D and living in northern latitudes—an endemic risk area for vitamin D deficiency. Int J Circumpolar Health. 2008;67(2–3):164–78.

    PubMed  Google Scholar 

  28. 28.

    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Vieth R, Ladak Y, Walfish PG. Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D. J Clin Endocrinol Metab. 2003;88(1):185–91.

    CAS  PubMed  Google Scholar 

  30. 30.

    Engelman CD. Vitamin D recommendations: the saga continues. J Clin Endocrinol Metab. 2011;96(10):3065–6.

    CAS  PubMed  Google Scholar 

  31. 31.

    Pramyothin P, Holick MF. Vitamin D supplementation: guidelines and evidence for subclinical deficiency. Curr Opin Gastroenterol. 2012;28(2):139–50.

    CAS  PubMed  Google Scholar 

  32. 32.

    Pearce SH, Cheetham TD. Diagnosis and management of vitamin D deficiency. BMJ. 2010;11(340):b5664.

    Google Scholar 

  33. 33.

    Heaney RP. Assessing vitamin D status. Curr Opin Clin Nutr Metab Care. 2011;14(5):440–4.

    CAS  PubMed  Google Scholar 

  34. 34.

    Close GL, Fraser WD. Vitamin D supplementation for athletes: too much of a good thing? Sport Exercise Scientist. 2012;33:24–5.

    Google Scholar 

  35. 35.

    Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. 36.

    Hill KM, Jonnalagadda SS, Albertson AM, et al. Top food sources contributing to vitamin D intake and the association of ready-to-eat cereal and breakfast consumption habits to vitamin D intake in Canadians and United States Americans. J Food Sci. 2012;77(8):170–5.

    Google Scholar 

  37. 37.

    Ogan D, Pritchett K. Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients. 2013;5(6):1856–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. 38.

    Lovell G. Vitamin D status of females in an elite gymnastics program. Clin J Sport Med. 2008;18(2):159–61.

    PubMed  Google Scholar 

  39. 39.

    Close GL, Russell J, Cobley JN, et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci. 2013;31(4):344–53.

    CAS  PubMed  Google Scholar 

  40. 40.

    Kopec A, Solarz K, Majda F, et al. An evaluation of the levels of vitamin D and bone turnover markers after the summer and winter periods in Polish professional soccer players. J Hum Kinet. 2013;8(38):135–40.

    Google Scholar 

  41. 41.

    Lanteri P, Lombardi G, Colombini A, et al. Vitamin D in exercise: physiologic and analytical concerns. Clin Chim Acta. 2013;415:45–53.

    CAS  PubMed  Google Scholar 

  42. 42.

    Constantini NW, Arieli R, Chodick G, et al. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20(5):368–71.

    PubMed  Google Scholar 

  43. 43.

    Hamilton B, Grantham J, Racinais S, et al. Vitamin D deficiency is endemic in Middle Eastern sportsmen. Public Health Nutr. 2010;13(10):1528–34.

    PubMed  Google Scholar 

  44. 44.

    Naeem Z. Vitamin D deficiency—an ignored epidemic. Int J Health Sci. 2010;4(1):V-VI.

  45. 45.

    Lai JK, Lucas RM, Banks E, et al. Variability in vitamin D assays impairs clinical assessment of vitamin D status. Intern Med J. 2012;42(41):43–50.

    CAS  PubMed  Google Scholar 

  46. 46.

    Shah I, James R, Barker J, et al. Misleading measures in vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars. Nutr J. 2011;10:46.

  47. 47.

    Wallace AM, Gibson S, de la Hunty A, et al. Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids. 2010;75(7):477–88.

    CAS  PubMed  Google Scholar 

  48. 48.

    Lai JK, Lucas RM, Clements MS, et al. Assessing vitamin D status: pitfalls for the unwary. Mol Nutr Food Res. 2010;54(8):1062–71.

    CAS  PubMed  Google Scholar 

  49. 49.

    Snellman G, Melhus H, Gedeborg R, et al. Determining vitamin D status: a comparison between commercially available assays. PLoS One. 2010;5(7):e11555.

    PubMed Central  PubMed  Google Scholar 

  50. 50.

    Bolek-Berquist J, Elliott ME, Gangnon RE, et al. Use of a questionnaire to assess vitamin D status in young adults. Public Health Nutr. 2009;12(2):236–43.

    PubMed Central  PubMed  Google Scholar 

  51. 51.

    Carter GD. 25-hydroxyvitamin D assays: the quest for accuracy. Clin Chem. 2009;55(7):1300–2.

    CAS  PubMed  Google Scholar 

  52. 52.

    Taylor C, Lamparello B, Kruczek K, et al. Validation of a food frequency questionnaire for determining calcium and vitamin D intake by adolescent girls with anorexia nervosa. J Am Diet Assoc. 2009;109(3):479–85.

    PubMed Central  PubMed  Google Scholar 

  53. 53.

    Hebden L, Kostan E, O’Leary F, et al. Validity and reproducibility of a food frequency questionnaire as a measure of recent dietary intake in young adults. PloS one. 2013;e75156.

  54. 54.

    Chen TC, Shao Q, Heath H, et al. An update on the vitamin D content of fortified milk from the United States and Canada. N Engl J Med. 1993;329(20):1507.

    CAS  PubMed  Google Scholar 

  55. 55.

    Chen TC, Chimeh F, Lu Z, et al. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys. 2007;460(2):213–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. 56.

    Cashman KD, Hill TR, Lucey AJ, et al. Estimation of the dietary requirement for vitamin D in healthy adults. Am J Clin Nutr. 2008;88(6):1535–42.

    CAS  PubMed  Google Scholar 

  57. 57.

    Kulie T, Groff A, Redmer J, et al. Vitamin D: an evidence-based review. J Am Board Fam Med. 2009;22(6):698–706.

    PubMed  Google Scholar 

  58. 58.

    Christodoulou S, Goula T, Ververidis A, et al. Vitamin D and bone disease. BioMed Res Int. 2013; 396541.

  59. 59.

    Wood RJ, Tchack L, Taparia S. 1,25-dihydroxyvitamin D3 increases the expression of the CaT1 epithelial calcium channel in the caco-2 human intestinal cell line. BMC Physiol. 2001;1:11.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. 60.

    Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004;134(11):3137–9.

    CAS  PubMed  Google Scholar 

  61. 61.

    Christakos S. Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption. Arch Biochem Biophys. 2012;523(1):73–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. 62.

    Christakos S, Dhawan P, Porta A, et al. Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol. 2011;347(1–2):25–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. 63.

    Wacker M, Holick MF. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. 64.

    Pasco JA, Henry MJ, Kotowicz MA, et al. Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong osteoporosis study. J Bone Miner Res. 2004;19(5):752–8.

    CAS  PubMed  Google Scholar 

  65. 65.

    Villareal DT, Civitelli R, Chines A, et al. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab. 1991;72(3):628–34.

    CAS  PubMed  Google Scholar 

  66. 66.

    Holick MF. The role of vitamin D for bone health and fracture prevention. Curr Osteoporos Rep. 2006;4(3):96–102.

    PubMed  Google Scholar 

  67. 67.

    Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–52.

    PubMed  Google Scholar 

  68. 68.

    Shaw NJ, Mughal MZ. Vitamin D and child health part 1 (skeletal aspects). Arch Dis Child. 2013;98(5):363–7.

    PubMed  Google Scholar 

  69. 69.

    Kremer R, Campbell PP, Reinhardt T, et al. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94(1):67–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. 70.

    Pekkinen M, Viljakainen H, Saarnio E, et al. Vitamin D is a major determinant of bone mineral density at school age. PLoS One. 2012;e40090.

  71. 71.

    Jones BH, Thacker SB, Gilchrist J, et al. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol Rev. 2002;24(2):228–47.

    PubMed  Google Scholar 

  72. 72.

    Iwamoto J, Sato Y, Takeda T, et al. Analysis of stress fractures in athletes based on our clinical experience. World J Orthop. 2011;2(1):7–12.

    PubMed Central  PubMed  Google Scholar 

  73. 73.

    Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(6):810–8.

    CAS  PubMed  Google Scholar 

  74. 74.

    Haydari M, Rahnama N, Khayambashi K, et al. Association between bone mass and injuries in professional jumpers. Br J Sports Med. 2010;44:i5.

    Google Scholar 

  75. 75.

    Pope CG, Pope HG, Menard W, et al. Clinical features of muscle dysmorphia among males with body dysmorphic disorder. Body Image. 2005;2(4):395–400.

    PubMed Central  PubMed  Google Scholar 

  76. 76.

    Baum A. Eating disorders in the male athlete. Sports Med. 2006;36(1):1–6.

    PubMed  Google Scholar 

  77. 77.

    Chen YT, Tenforde AS, Fredericson M. Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med. 2013;6(2):173–81.

    PubMed Central  PubMed  Google Scholar 

  78. 78.

    Marquez S, Molinero O. Energy availability, menstrual dysfunction and bone health in sports; an overview of the female athlete triad. Nutr Hosp. 2013;28(4):1010–7.

    PubMed  Google Scholar 

  79. 79.

    Nieves JW, Melsop K, Curtis M, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R. 2010;2(8):740–50.

    PubMed  Google Scholar 

  80. 80.

    Lewis RM, Redzic M, Thomas DT. The effects of season-long vitamin D supplementation on collegiate swimmers and divers. Int J Sport Nutr Exerc Metab. 2013;23(5):431–40.

    CAS  Google Scholar 

  81. 81.

    Bellows M, Tanguay J, Crouse SF, et al. In: Vitamin D deficiency in TAMU female basketball players and supplement effectiveness. Int J Exerc Sci: Conference proceedings; 2013.

  82. 82.

    Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ. 2003;326(7387):469.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. 83.

    Winzenberg T, Powell S, Shaw KA, et al. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342:c7254.

    PubMed Central  PubMed  Google Scholar 

  84. 84.

    Wesner ML. Nutrient effects on stress reaction to bone. Can Fam Physician. 2012;58(11):1226–30.

    PubMed Central  PubMed  Google Scholar 

  85. 85.

    Looker AC, Mussolino ME. Serum 25-hydroxyvitamin D and hip fracture risk in older U.S. white adults. J Bone Miner Res. 2008;23(1):143–50.

    CAS  PubMed  Google Scholar 

  86. 86.

    Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. 87.

    Lappe J, Cullen D, Haynatzki G, et al. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    CAS  PubMed  Google Scholar 

  88. 88.

    von Domarus C, Brown J, Barvencik F, et al. How much vitamin D do we need for skeletal health? Clin Orthop Relat Res. 2011;469(11):3127–33.

    Google Scholar 

  89. 89.

    Shuler FD, Wingate MK, Moore GH, et al. Sports health benefits of vitamin D. Sports Health. 2012;4(6):496–501.

    PubMed Central  PubMed  Google Scholar 

  90. 90.

    Girgis CM, Clifton-Bligh RJ, Hamrick MW, et al. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. 2013;34(1):33–83.

    CAS  PubMed  Google Scholar 

  91. 91.

    Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13(3):187–94.

    CAS  PubMed  Google Scholar 

  92. 92.

    Willis KS, Peterson NJ, Larson-Meyer DE. Should we be concerned about the vitamin D status of athletes? Int J Sport Nutr Exerc Metab. 2008;18(2):204–24.

    CAS  PubMed  Google Scholar 

  93. 93.

    Rejnmark L. Effects of vitamin D on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2011;2(1):25–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. 94.

    Girgis CM, Clifton-Bligh RJ, Turner N, et al. Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin Endocrinol (Oxf). 2013;80(2):169–81.

    Google Scholar 

  95. 95.

    Ward KA, Das G, Berry JL, et al. Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab. 2009;94(2):559–63.

    CAS  PubMed  Google Scholar 

  96. 96.

    Marantes I, Achenbach SJ, Atkinson EJ, et al. Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res. 2011;26(12):2860–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. 97.

    Barker T, Henriksen VT, Martins TB, et al. Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients. 2013;5(4):1253–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. 98.

    Barker T, Martins TB, Hill HR, et al. Circulating pro-inflammatory cytokines are elevated and peak power output correlates with 25-hydroxyvitamin D in vitamin D insufficient adults. Eur J Appl Physiol. 2013;113(6):1523–34.

    CAS  PubMed  Google Scholar 

  99. 99.

    Close GL, Leckey J, Patterson M, et al. The effects of vitamin D(3) supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose-response study. Br J Sports Med. 2013;47(11):692–6.

    PubMed  Google Scholar 

  100. 100.

    Barker T, Martins TB, Hill HR, et al. Vitamin D sufficiency associates with an increase in anti-inflammatory cytokines after intense exercise in humans. Cytokine. 2014;65(2):134–7.

    CAS  PubMed  Google Scholar 

  101. 101.

    Hamilton B, Whiteley R, Farooq A, et al. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport. 2014;17(1):139–43.

    PubMed  Google Scholar 

  102. 102.

    Wyon MA, Koutedakis Y, Wolman R, et al. The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: a controlled study. J Sci Med Sport. 2014;17(1):8–12.

    PubMed  Google Scholar 

  103. 103.

    Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med. 2008;29(6):407–14.

    CAS  PubMed  Google Scholar 

  104. 104.

    Haussler MR, Jurutka PW, Mizwicki M, et al. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25(4):543–59.

    CAS  PubMed  Google Scholar 

  105. 105.

    Boland R, Norman A, Ritz E, et al. Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun. 1985;128(1):305–11.

    CAS  PubMed  Google Scholar 

  106. 106.

    Simpson RU, Thomas GA, Arnold AJ. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem. 1985;260(15):8882–91.

    CAS  PubMed  Google Scholar 

  107. 107.

    Costa EM, Blau HM, Feldman D. 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology. 1986;119(5):2214–20.

    CAS  PubMed  Google Scholar 

  108. 108.

    Bischoff HA, Borchers M, Gudat F, et al. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J. 2001;33(1):19–24.

    CAS  PubMed  Google Scholar 

  109. 109.

    Bischoff-Ferrari HA, Borchers M, Gudat F, et al. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19(2):265–9.

    CAS  PubMed  Google Scholar 

  110. 110.

    Wang Y, Deluca HF. Is the vitamin D receptor found in muscle? Endocrinology. 2011;152(2):354–63.

    CAS  PubMed  Google Scholar 

  111. 111.

    Girgis CM, Mokbel N, Minn Cha K, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014; Epub ahead of print.

  112. 112.

    de Boland AR, Boland RL. Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxyvitamin D3 are suppressed by calcium channel blockers. Endocrinology. 1987;120(5):1858–64.

    PubMed  Google Scholar 

  113. 113.

    Selles J, Boland R. Rapid stimulation of calcium uptake and protein phosphorylation in isolated cardiac muscle by 1,25-dihydroxyvitamin D3. Mol Cell Endocrinol. 1991;77(1–3):67–73.

    CAS  PubMed  Google Scholar 

  114. 114.

    Sato Y, Iwamoto J, Kanoko T, et al. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187–92.

    CAS  PubMed  Google Scholar 

  115. 115.

    Girgis CM, Clifton-Bligh RJ, Mokbel N, et al. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014;155(2):347–57.

    PubMed  Google Scholar 

  116. 116.

    Bhat M, Kalam R, Qadri SS, et al. Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology. 2013;154(11):4018–29.

    CAS  PubMed  Google Scholar 

  117. 117.

    Kottler ML. Is vitamin D a key factor in muscle health? Endocrinology. 2013;154(11):3963–4.

    CAS  PubMed  Google Scholar 

  118. 118.

    Foo LH, Zhang Q, Zhu K, et al. Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in chinese adolescent girls. J Nutr. 2009;139(5):1002–7.

    CAS  PubMed  Google Scholar 

  119. 119.

    Gomez-Alonso C, Naves-Diaz ML, Fernandez-Martin JL, et al. Vitamin D status and secondary hyperparathyroidism: the importance of 25-hydroxyvitamin D cut-off levels. Kidney Int Suppl. 2003;85:S44–8.

    CAS  PubMed  Google Scholar 

  120. 120.

    Miura A, Sato H, Whipp BJ, et al. The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics. 2000;43(1):133–41.

    CAS  PubMed  Google Scholar 

  121. 121.

    Jensen MD. Fatty acid oxidation in human skeletal muscle. J Clin Invest. 2002;110(11):1607–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. 122.

    Smogorzewski M, Piskorska G, Borum PR, et al. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle. Kidney Int. 1988;33(2):555–60.

    PubMed  Google Scholar 

  123. 123.

    Sinha A, Hollingsworth KG, Ball S, et al. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013;98(3):E509–13.

    CAS  PubMed  Google Scholar 

  124. 124.

    Bouillon R, Verstuyf A. Vitamin D, mitochondria, and muscle. J Clin Endocrinol Metab. 2013;98(3):961–3.

    CAS  PubMed  Google Scholar 

  125. 125.

    Tague SE, Smith PG. Vitamin D receptor and enzyme expression in dorsal root ganglia of adult female rats: modulation by ovarian hormones. J Chem Neuroanat. 2011;41(1):1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. 126.

    Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120(11):3760–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. 127.

    Tague SE, Clarke GL, Winter MK, et al. Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci. 2011;31(39):13728–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. 128.

    Saleh FN, Schirmer H, Sundsfjord J, et al. Parathyroid hormone and left ventricular hypertrophy. Eur Heart J. 2003;24(22):2054–60.

    CAS  PubMed  Google Scholar 

  129. 129.

    McCarty MF. Nutritional modulation of parathyroid hormone secretion may influence risk for left ventricular hypertrophy. Med Hypotheses. 2005;64(5):1015–21.

    CAS  PubMed  Google Scholar 

  130. 130.

    Westerblad H, Allen DG, Lannergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 2002;17:17–21.

    CAS  PubMed  Google Scholar 

  131. 131.

    Gorostiaga EM, Navarro-Amezqueta I, Calbet JA, et al. Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One. 2012;7(7):e40621.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. 132.

    van Ballegooijen AJ, Visser M, Cotch MF, et al. Serum vitamin D and parathyroid hormone in relation to cardiac structure and function: the ICELAND-MI substudy of AGES-Reykjavik. J Clin Endocrinol Metab. 2013;98(6):2544–52.

    PubMed Central  PubMed  Google Scholar 

  133. 133.

    Baggish AL, Wood MJ. Athlete’s heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 2011;123(23):2723–5.

    PubMed  Google Scholar 

  134. 134.

    Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications. Int J Hypertens. 2011;2011:495349.

    PubMed Central  PubMed  Google Scholar 

  135. 135.

    Allison RJ, Close GL, Farooq A, et al. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur J Prev Cardiol. 2014 (Epub ahead of print).

  136. 136.

    Chinellato I, Piazza M, Sandri M, et al. Vitamin D serum levels and markers of asthma control in Italian children. J Pediatr. 2011;158(3):437–41.

    CAS  PubMed  Google Scholar 

  137. 137.

    Black PN, Scragg R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the third National Health and Nutrition Examination Survey. Chest. 2005;128(6):3792–8.

    CAS  PubMed  Google Scholar 

  138. 138.

    Rehan VK, Torday JS, Peleg S, et al. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary alveolar type II cells. Mol Genet Metab. 2002;76(1):46–56.

    CAS  PubMed  Google Scholar 

  139. 139.

    Vedala SR, Paul N, Mane AB. Difference in pulmonary function test among the athletic and sedentary population. Natl J Physiol Pharm Pharmacol. 2013;3(2):118–23.

    Google Scholar 

  140. 140.

    Ardestani A, Parker B, Mathur S, et al. Relation of vitamin D level to maximal oxygen uptake in adults. Am J Cardiol. 2011;107(8):1246–9.

    CAS  PubMed  Google Scholar 

  141. 141.

    Mowry DA, Costello MM, Heelan KA. Association among cardiorespiratory fitness, body fat, and bone marker measurements in healthy young females. J Am Osteopath Assoc. 2009;109(10):534–9.

    PubMed  Google Scholar 

  142. 142.

    Gregory SM, Parker BA, Capizzi JA, et al. Changes in vitamin D are not associated with changes in cardiorespiratory fitness. Clin Med Res. 2013;2(4):68–72.

    Google Scholar 

  143. 143.

    Forney LA, Earnest CP, Henagan TM, et al. Vitamin D status, body composition, and fitness measures in college-aged students. J Strength Cond Res. 2014;28(3):814–24.

    PubMed  Google Scholar 

  144. 144.

    Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–81.

    CAS  PubMed  Google Scholar 

  145. 145.

    Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103(2):693–9.

    CAS  PubMed  Google Scholar 

  146. 146.

    Sureda A, Ferrer MD, Tauler P, et al. Effects of exercise intensity on lymphocyte H2O2 production and antioxidant defences in soccer players. Br J Sports Med. 2009;43(3):186–90.

    CAS  PubMed  Google Scholar 

  147. 147.

    Kakanis MW, Peake J, Brenu EW, et al. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev. 2010;16:119–37.

    CAS  PubMed  Google Scholar 

  148. 148.

    Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med. 1999;28(3):177–95.

    CAS  PubMed  Google Scholar 

  149. 149.

    Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  150. 150.

    Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83(4):754–9.

    CAS  PubMed  Google Scholar 

  151. 151.

    Peterson CA, Heffernan ME. Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. J Inflamm. 2008;24(5):10.

    Google Scholar 

  152. 152.

    Adams JS, Ren S, Liu PT, et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol. 2009;182(7):4289–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. 153.

    Yusupov E, Li-Ng M, Pollack S, et al. Vitamin D and serum cytokines in a randomized clinical trial. Int J Endocrinol. 2010;2010:pii: 305054.

  154. 154.

    Barnes MS, Horigan G, Cashman KD, et al. Maintenance of wintertime vitamin D status with cholecalciferol supplementation is not associated with alterations in serum cytokine concentrations among apparently healthy younger or older adults. J Nutr. 2011;141(3):476–81.

    CAS  PubMed  Google Scholar 

  155. 155.

    Khoo AL, Chai LY, Koenen HJ, et al. Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin Exp Immunol. 2011;164(1):72–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. 156.

    Barker T, Martins TB, Hill HR, et al. Different doses of supplemental vitamin D maintain interleukin-5 without altering skeletal muscle strength: a randomized, double-blind, placebo-controlled study in vitamin D sufficient adults. Nutr Metab (Lond). 2012;9(1):16.

    CAS  Google Scholar 

  157. 157.

    Willis KS, Smith DT, Broughton KS, et al. Vitamin D status and biomarkers of inflammation in runners. Open Access J Sports Med. 2012;3:35–42.

    PubMed Central  PubMed  Google Scholar 

  158. 158.

    He C, Handzlik M, Fraser WD, et al. Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes. Exerc Immunol Rev. 2013;19:86–101.

    PubMed  Google Scholar 

  159. 159.

    He C, Fraser WD, Gleeson M. Influence of vitamin D metabolites on plasma cytokine concentrations in endurance sport athletes and on multiantigen stimulated cytokine production by whole blood and peripheral blood mononuclear cell cultures. ISRN Nutr. 2014;2014:820524.

    PubMed Central  PubMed  Google Scholar 

  160. 160.

    van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1–2):93–101.

    PubMed  Google Scholar 

  161. 161.

    Dixon BM, Barker T, McKinnon T, et al. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res Notes. 2012;24(5):575.

    Google Scholar 

  162. 162.

    Autier P, Boniol M, Pizot C, et al. Vitamin D status and ill health: a systematic review. Lancet Diab Endo. 2014;2(1):76–89.

    CAS  Google Scholar 

  163. 163.

    Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2579–85.

    CAS  PubMed  Google Scholar 

  164. 164.

    Christakos S, Hewison M, Gardner DG, et al. Vitamin D: beyond bone. Ann N Y Acad Sci. 2013;1287:45–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. 165.

    Shab-Bidar S, Neyestani TR, Djazayery A, et al. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab Res Rev. 2012;28(5):424–30.

    CAS  PubMed  Google Scholar 

  166. 166.

    Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188(5):2127–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. 167.

    Larson-Meyer DE, Willis KS. Vitamin D and athletes. Curr Sports Med Rep. 2010;9(4):220–6.

    PubMed  Google Scholar 

  168. 168.

    Mastorakos G, Pavlatou M, Diamanti-Kandarakis E, et al. Exercise and the stress system. Hormones. 2005;4(2):73–89.

    PubMed  Google Scholar 

  169. 169.

    Calle MC, Fernandez ML. Effects of resistance training on the inflammatory response. Nutr Res Pract. 2010;4(4):259–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. 170.

    Cantorna MT, Zhu Y, Froicu M, et al. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004;80(6 Suppl):1717S–20S.

    CAS  PubMed  Google Scholar 

  171. 171.

    Hewison M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am. 2010;39(2):365–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. 172.

    Jeffery LE, Wood AM, Qureshi OS, et al. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol. 2012;189(11):5155–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. 173.

    Hewison M, Freeman L, Hughes SV, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170(11):5382–90.

    CAS  PubMed  Google Scholar 

  174. 174.

    Prietl B, Pilz S, Wolf M, et al. Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? Isr Med Assoc J. 2010;12(3):136–9.

    PubMed  Google Scholar 

  175. 175.

    Bock G, Prietl B, Mader JK, et al. The effect of vitamin D supplementation on peripheral regulatory T cells and beta cell function in healthy humans: a randomized controlled trial. Diabetes Metab Res Rev. 2011;27(8):942–5.

    CAS  PubMed  Google Scholar 

  176. 176.

    Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40(2):186–204.

    CAS  PubMed  Google Scholar 

  177. 177.

    Spence L, Brown WJ, Pyne DB, et al. Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Med Sci Sports Exerc. 2007;39(4):577–86.

    PubMed  Google Scholar 

  178. 178.

    White JH. Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun. 2008;76(9):3837–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. 179.

    Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol. 2003;170(5):2274–8.

    PubMed  Google Scholar 

  180. 180.

    Guo C, Sinnott B, Niu B, et al. Synergistic induction of human cathelicidin antimicrobial peptide gene expression by vitamin D and stilbenoids. Mol Nutr Food Res. 2014;58(3):528–36.

    CAS  PubMed  Google Scholar 

  181. 181.

    Vandamme D, Landuyt B, Luyten W, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280(1):22–35.

    CAS  PubMed  Google Scholar 

  182. 182.

    Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.

    CAS  PubMed  Google Scholar 

  183. 183.

    Shirakawa AK, Nagakubo D, Hieshima K, et al. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells. J Immunol. 2008;180(5):2786–95.

    CAS  PubMed  Google Scholar 

  184. 184.

    Xiong N, Fu Y, Hu S, et al. CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell. 2012;3(8):571–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department for Employment and Learning for supporting this research. No sources of funding were used to assist directly in the preparation of this review. The authors have no potential conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Magee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Todd, J.J., Pourshahidi, L.K., McSorley, E.M. et al. Vitamin D: Recent Advances and Implications for Athletes. Sports Med 45, 213–229 (2015). https://doi.org/10.1007/s40279-014-0266-7

Download citation

Keywords

  • Female Athlete
  • Human Skeletal Muscle
  • Sport Performance
  • Skeletal Muscle Function
  • Muscle Dysmorphia